一种陶瓷岩板的制备方法及陶瓷岩板与流程

文档序号:22324544发布日期:2020-09-25 17:52阅读:250来源:国知局
一种陶瓷岩板的制备方法及陶瓷岩板与流程
本发明涉及陶瓷砖领域,具体涉及一种陶瓷岩板的制备方法及陶瓷岩板。
背景技术
:随着人们的生活水平日渐提高,在装饰、装修材料的选择上,审美观也越来越个性化,更重视风格品味,对墙地面、幕墙、家具、橱柜、台面板等饰面材料在现代装修中的应用需求也越来越多。现有的饰面材料主要有天然石材和人造石英石。其中,人造石英石是指将树脂、石英、色料振压、在100~200℃固化后形成的板材,其由于含有树脂材料,硬度低,耐酸碱性差、不耐高温。天然石材虽然硬度相对较高,耐高温性能较良好,且色泽丰富,但是天然石材资源极为有限。近年来,陶瓷大板逐渐被应用到装饰领域,其具有优良的耐酸碱性,硬度高(表面莫氏硬度可达到6级以上),耐高温等优点,因此,具有极其广阔的应用前景。根据国家标准(gb/t23266-2009)的规定,陶瓷板的表面积不小于1.62m2,厚度不大于6mm;目前行业内生产的陶瓷大板厚度也多在10mm以内,这种陶瓷大板可加工性差,可适用于大规格幕墙或地面的铺贴,但是难以利用到饰面领域。因此,需要对陶瓷大板进行进一步开发。近一年来,行业推出了陶瓷岩板,其厚度可达到12~20mm,适应深加工工艺,可应用在地面、幕墙、家居装饰领域。然而,现有的岩板,其尺寸多为1200×1600mm2、2400×1800mm2、2400×1200mm2等规格,仍然无法满足大型家居装饰(灶台、橱柜、浴室柜等)的要求。另一方面,现有的岩板生产系统不成熟,导致干燥裂砖、运输裂砖多,干燥合格率低于95%;同样的,烧成合格率也较低,在90%左右。此外,现有的陶瓷岩板,在加工的过程中,极易破裂,根据统计,现有岩板的加工破裂率达到65%以上,成为了困扰行业的极大难题。一般认为,岩板加工破裂是残余应力造成的。因此,如何降低残余应力,是亟需解决的问题。此外,在从普通陶瓷砖到陶瓷大板的研发过渡中,本领域技术人员形成了一些固化的经验:如对配方而言,在陶瓷大板的配方中,主体是考虑厚度较薄的板在烧成过程中变形严重,因此,很少采用钙镁类矿物熔剂。又如,厚度较薄的陶瓷大板,布料难度低,因此普通的陶瓷粉料的级配即可满足生产。技术实现要素:本发明所要解决的技术问题在于,本发明提供一种陶瓷岩板的制备方法,其可提升干燥、烧成合格率,制备得到的陶瓷岩板深加工性能优良,加工破裂率低,应用范围广。本发明还要解决的技术问题在于,提供一种陶瓷岩板。为了解决上述技术问题,本发明提供了一种陶瓷岩板的制备方法,其包括:(1)将各种原料按照配方混合均匀,并球磨得到浆料;其中,所述配方按照重量份计的原料包括:钾长石15~20份,钠长石8~15份,煅烧高岭土15~20份,黑泥12~20份,白泥8~15份,叶腊石15~20份,增韧剂1~10份;以上各原料的重量份之和为100份。(2)将所述浆料喷雾干燥,得到第一粉料;(3)将40~60%的第一粉料过40~100目筛网,得到筛上物和筛下物;将筛上物与剩余的第一粉料混合,得到第二粉料;将筛下物化浆,并与步骤(1)中的浆料合并;(4)将第二粉料压制,得到生坯;(5)将所述生坯干燥,然后依次施底釉、印刷装饰、施面釉后得到坯体;(6)将所述坯体烧成,得到陶瓷岩板成品。作为上述技术方案的改进,所述第二粉料的颗粒级配为:>20目占比1~4wt%;20~40目占比30~40wt%;40~60目占比25~35wt%,60-120目占比10~17wt%,120~200目占比5~10wt%,200目以下占比1~5wt%。作为上述技术方案的改进,步骤(4)中,压制压力为400~550kg/cm2。作为上述技术方案的改进,步骤(6)中,烧成制度为:从室温到600℃,升温速率为35~45℃/min;从600℃到900℃,升温速率为20~40℃/min;从900℃到烧成温度,升温速率为10~25℃/min;在烧成温度保温8~15min;从烧成温度到800℃,冷却速率为50~80℃/min;从800℃到500℃,冷却速率为10~20℃/min;从500℃到室温,冷却速度为80~100℃/min。作为上述技术方案的改进,烧成温度为1200~1300℃,烧成周期为60~180min。作为上述技术方案的改进,所述增韧剂包括低温增韧剂和高温增韧剂;所述低温增韧剂可降低烧成过程中1000℃以下坯体内的残余应力;所述高温增韧剂可降低烧成过程中1000℃以上坯体内的残余应力;所述低温增韧剂选用纤维素醚、聚丙烯酸钠、木质素、改性多糖或托贝莫来石;所述高温增韧剂选用块滑石、镁橄榄石、莫来石、氧化镁、氧化锆或氧化铝。作为上述技术方案的改进,所述低温增韧剂选用托贝莫来石;所述高温增韧剂选用镁橄榄石。作为上述技术方案的改进,所述低温增韧剂和高温增韧剂的用量比例为1:(2~5)作为上述技术方案的改进,所述陶瓷岩板的表面积为3~12m2,厚度为12~30mm。相应的,本发明还公开了一种陶瓷岩板,其由上述的制备方法制备而得。实施本发明,具有以下有益效果:(1)本发明的陶瓷岩板制备方法,将喷雾干燥得到的第一粉料部分进行筛分,并将筛上料与剩余的第一粉料合并,得到第二粉料;再用第二粉料进行压制成型;这种制备方法可有效提升粉料的流动性,使得成型后的生坯不同位置的密实程度、厚度更加均匀;这种生坯在后期烧成过程中,应力积累少,可提升后期陶瓷岩板的可加工性能。(2)本发明通过对粉料进行处理,得到了颗粒级配为>20目占比1~4wt%;20~40目占比30~40wt%;40~60目占比25~35wt%,60-120目占比10~17wt%,120~200目占比5~10wt%,200目以下占比1~5wt%;其流动性较高,容易布料;且通过不小于400kg/cm2的成型压力,使得生坯内部均匀性高,密度均匀,后期应力积累少。(3)本发明中的烧成温度制度,可有效消除烧成过程中的应力,提高烧成合格率,提升陶瓷岩板的平整度,提升陶瓷岩板的可加工性能。(4)本发明中的陶瓷岩板规格较大,其表面积为3~12m2,厚度为12~30mm,其可良好地适应后期深加工工艺,可广泛应用在地板、幕墙、饰面领域,如洗手台、茶具、灶台等。可大幅度取代天然石材、人造石英石板材;且其具有高强度、高硬度、耐酸碱、耐高温等优点。(5)本发明的配方之中含有钾长石15~20份,钠长石8~15份,煅烧高岭土15~20份,黑泥12~20份,白泥8~15份,叶腊石15~20份,增韧剂1~10份;这种配方生产得到的陶瓷岩板成品,应力聚集少,可良好适应后期深加工工艺,将后期加工破裂率降低至5%以下。(6)本发明的配方之中引入了增韧剂,其能在岩板基体中建立弱界面结构,吸收裂纹扩展能量,同时,其自身也能够吸收外来能量,进而消除残余应力。具体的,低温增韧剂在1000℃以下坯体内保持良好的晶须状态,可充分吸收烧成前段的应力;高温增韧剂则在1000℃以上可有效促进莫来石晶须的析出、成长,达到降低残余应力的作用。两者综合可减少应力聚集,提升陶瓷岩板深加工性能。(7)本发明中的低温增韧剂,还可在压成、烘干过程中起到提升生坯强度的作用,提升成品率。本发明中的陶瓷岩板生坯的生坯强度可达到1.2~1.8mpa。附图说明图1是本发明一种陶瓷岩板的制备方法流程图;图2是本发明一种陶瓷岩板的结构示意图。具体实施方式为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。参见图1,本发明提供了一种陶瓷岩板的制备方法,其包括以下步骤:s1:将各种原料按配方混合均匀,并球磨得到浆料;具体的,配方为:钾长石15~20份,钠长石8~15份,煅烧高岭土15~20份,黑泥12~20份,白泥8~15份,叶腊石15~20份,增韧剂1~10份;以上各原料的重量份之和为100份。其中,钾长石和钠长石为主要的助熔剂,其可促进烧成,得到吸水率<0.1%的陶瓷岩板成品,提升陶瓷岩板抗折强度,减小微气孔,提升耐污能力。其中,钾长石的用量为15~20份,钠长石的用量为8~15份;优选的,钾长石用量为17~20份,钠长石的用量为10~13份。黑泥和白泥是主要的塑性原料,其可提升生坯阶段的强度,避免生坯在运输,烘干过程中破裂;同时,在高温状态可提供莫来石来源,提升强度和优化后期深加工性能。其中,黑泥的用量为12~20份,白泥的用量为8~15份;优选的,黑泥用量为15~20份,白泥用量为8~12份。叶腊石可取代传统陶瓷配方中的部分石英,减少应石英相变带来的大量应力积累;叶腊石也可在高温下分解产生莫来石相,提升陶瓷岩板的强度,提升可加工性。具体的,叶腊石的用量为15~20份;当叶腊石的用量>20份时,会降低生坯强度。煅烧高岭土中的al含量可达到40wt%以上,在后续烧成过程中会形成大量针状的莫来石晶须,从而在陶瓷岩板基体中建立弱界面结构,减少残余应力。优选的,为了充分发挥煅烧高岭土的作用,还需要控制其粒径,具体的,煅烧高岭土中1μm以下的颗粒占比70~90wt%。煅烧高岭土的用量为15~20份。增韧剂包括低温增韧剂和高温增韧剂;其主要作用是在烧成阶段和陶瓷岩板成品中建立弱界面结构,减少残余应力,提升深加工性能,降低加工破裂率;同时也起到确保生产顺利进行的作用。其中,低温增韧剂是指在1000℃以下起到增韧作用的物质;具体的,其可为纤维素醚、聚丙烯酸钠、木质素、改性多糖或托贝莫来石;优选的为托贝莫来石;托贝莫来石呈晶须状,在成型阶段,其可以起到提升生坯强度的作用;在烧成温度低于1000℃时,其主要是相变过程,晶须结构得以维持;从而使得烧成过程中的热应力得以较好的消除。其中,高温增韧剂是指在1000℃以上起到增韧作用的物质;具体的,其可为块滑石、镁橄榄石、莫来石、氧化镁、氧化锆或氧化铝;其中,莫来石、氧化铝、氧化锆虽然能够达到良好的增韧作用,但是其会大幅提升烧成温度,且其原料价格高。优选的,可选用块滑石或镁橄榄石;更优选的,选用镁橄榄石。块滑石和镁橄榄石可促进莫来石晶体针状化,提升其增韧作用。低温增韧剂和高温增韧剂的用量比例为1:(2~5),优选的为1:(2.5~4)。需要说明的是,在常规的陶瓷大板(厚度<10mm)配方中,会尽量降低含钙镁原料的使用量,以防止波浪纹、微翘曲等变形缺陷。在本发明中,陶瓷岩板厚度较大,成型压力较高(后续论述),使得本发明可引入少量的钙镁原料,起到良好增韧作用,有效提升陶瓷岩板的深加工性能,降低加工破裂率。优选的为:钾长石18份,钠长石11份,煅烧高岭土18份,黑泥16份,白泥10份,叶腊石17份,托贝莫来石2.5份,镁橄榄石6.5份。具体的,球磨后,应控制浆料细度为250目筛筛余<0.5%。s2:将浆料喷雾干燥,得到第一粉料;具体的,将浆料喷雾干燥,干燥后过10目筛,得到第一粉料。s3:将40~60%的第一粉料过40~100目筛网,得到筛上物和筛下物;将筛上物与剩余的第一粉料混合,得到第二粉料;将筛下物化浆,并与步骤s1中的浆料合并;通过以上方法,可控制第二粉料的颗粒级配为:>20目占比1~4wt%;20~40目占比30~40wt%;40~60目占比25~35wt%,60-120目占比10~17wt%,120~200目占比5~10wt%,200目以下占比1~5wt%。需要说明的是:传统的陶瓷砖粉料或陶瓷大板粉料较细,其在60目以上的占比为30~50%。而本发明则可占比达到50~80%;大幅度提升了流动性,便于布料。使得成型后的生坯不同位置的密实程度、厚度更加均匀;这种生坯在后期烧成过程中,应力积累少,可提升后期陶瓷岩板的可加工性能。s4:将第二粉料压制,得到生坯;需要说明的是,目前大规格陶瓷板材(陶瓷大板、陶瓷岩板)的压制一般有三种方法,连续辊压成型、皮带干压成型和模腔干压成型三种。其中,连续辊压采用对辊连续压制,然后切割成目标尺寸,对粉料的要求很高;皮带干压成型主要是采用两条钢带进行挤压,然后对边角进行切割,对粉料的要求也相对较高,模腔干压成型采用模框,冲压成型,对粉料要求较低,本发明的粉料可良好满足其要求。本发明选用模腔干压成型,其内应力低,压制得到的生坯平整性良好,尺寸精度高,。进一步的,控制压制过程中压制压力为400~500kg/cm2;由于本发明中的粉料颗粒较大,空气含量高,因此,可采用较大的压力排气,提升坯体压实程度,提升干燥合格率、烧成合格率。s5:将生坯干燥,然后依次施底釉、印刷装饰、施面釉后得到坯体;具体的,干燥最高温度为120~180℃。具体的,底釉、墨水、面釉可采用现有技术。s6:将坯体烧成,得到陶瓷岩板成品;具体的,烧成制度为:从室温到600℃,升温速率为35~45℃/min;本发明中陶瓷岩板中粘土类原料较多,在600℃以前会排出结构水;采用35~45℃/min的升温速率可防止排水过快,应力积累,进而造成收缩不均。从600℃到900℃,升温速率为20~40℃/min;在此阶段,主要发生氧化反应,板材中的一些有机物被氧化,且粘土类矿物进一步相变。由于本发明中的陶瓷岩板厚度较大,且成型压力较高,其密实程度较高。因此,采用较慢的升温速率,以保证氧化反应充分进行。优选的,在此温度区间的升温速率为25~35℃/min;从900℃到烧成温度,升温速率为10~25℃/min;此阶段,熔剂类原料开始熔化,开始析出莫来石晶体。具体的,烧成温度为1200~1300℃,优选的为1220~1290℃。在烧成温度保温8~15min相应的,还要对冷却阶段的温度制度进行控制,以减少应力积累:从烧成温度到800℃,冷却速率为50~80℃/min;从800℃到500℃,冷却速率为10~20℃/min;优选的,在此阶段的冷却速率为10~15℃/min。从500℃到室温,冷却速度为80~100℃/min。控制整体的烧成时间(烧成周期)为60~180分钟。需要说明的是,现有的陶瓷岩板,为了降低应力聚集,一般20mm厚的板材,烧成周期在180~200分钟左右,而本发明通过配方、粉料、压制、烧成相互配合,缩短了烧成周期,提升了烧成效率。具体的,s6包括:s61:将坯体烧成;s62:将烧成的坯体进行抛光,即得到陶瓷岩板成品。需要说明的是,本发明中的配方、制备工艺使得陶瓷岩板在烧成过程中收缩均匀,烧成后尺寸均匀性高;因此在烧成后的加工工艺中,不包括磨边工序,简化了生产流程。相应的,本发明还公开了一种陶瓷岩板,其采用上述制备方法制得。具体的,参考图2,其包括坯体层1、底釉层2、图案层3和面釉层4;其表面积为3~12m2,整体厚度为12~30mm;其中,坯体层1的厚度为11.5~29.5mm,坯体层1的厚度占比达到95%以上。优选的,本发明中的陶瓷岩板为矩形,其对角线长度为2500~6000mm,厚度为18~30mm。这种陶瓷岩板可良好的适应后期深度加工,适应于幕墙、地板。下面采用具体实施例对本发明进行说明:实施例1本实施例提供一种陶瓷岩板,其尺寸为3600×2000×20mm3;其中,坯体层的厚度为19mm;坯体层的配方为:钾长石19份,钠长石12份,煅烧高岭土16份,黑泥18份,白泥10份,叶腊石18份,低温增韧剂1份,高温增韧剂6份;其中,煅烧高岭土中80%的颗粒粒径<1μm;低温增韧剂选用甲基纤维素,高温增韧剂选用莫来石晶须;陶瓷岩板的制备方法:(1)将各种原料按照配方混合均匀,并球磨得到浆料;其中,浆料的250目筛余为0.2%;(2)将浆料喷雾干燥,筛分后得到第一粉料;(3)将45%的第一粉料过40目筛网,得到筛上物,将筛上物与剩余的第一粉料混合,得到第二粉料;将筛下物化浆,并与步骤(1)的浆料合并;具体的,第二粉料的颗粒级配为:>20目占比2wt%;20~40目占比38wt%;40~60目占比32wt%,60-120目占比16wt%,120~200目占比8wt%,200目以下占比4wt%。(4)将第二粉料压制,得到生坯;具体的,采用ht36000型压机进行压成,成型压力为450kg/cm2。(5)将生坯干燥,并依次施底釉、喷墨印刷、施面釉,得到坯体;(6)将坯体烧成,得到陶瓷岩板成品;其中,烧成温度曲线为:从室温到600℃,升温速率为35℃/min;从600℃到900℃,升温速率为20℃/min;从900℃到1300℃,升温速率为12℃/min;在1300℃保温15min;从1300℃到800℃,降温速率为60℃/min;从800℃到500℃,降温速率为11℃/min;从500℃到室温,降温速率为85℃/min;烧成周期为120min。实施例2本实施例提供一种大规格陶瓷岩板,其尺寸为3600×1800×25mm3;其中,坯体层的厚度为24.5mm;坯体层的配方为:钾长石19份,钠长石12份,煅烧高岭土16份,黑泥18份,白泥10份,叶腊石18份,低温增韧剂1份,高温增韧剂6份;其中,煅烧高岭土中90%的颗粒粒径<1μm;低温增韧剂选用托贝莫来石,高温增韧剂选用块滑石;陶瓷岩板的制备方法:(1)将各种原料按照配方混合均匀,并球磨得到浆料;其中,浆料的250目筛余为0.4%;(2)将浆料喷雾干燥,筛分后得到第一粉料;(3)将50%的第一粉料过60目筛网,得到筛上物,将筛上物与剩余的第一粉料混合,得到第二粉料;将筛下物化浆,并与步骤(1)的浆料合并;具体的,第二粉料的颗粒级配为:>20目占比2wt%;20~40目占比37wt%;40~60目占比33wt%,60-120目占比16wt%,120~200目占比9wt%,200目以下占比3wt%。(4)将第二粉料压制,得到生坯;具体的,采用ht36000型压机进行压成,成型压力为480kg/cm2。(5)将生坯干燥,并依次施底釉、喷墨印刷、施面釉,得到坯体;(6)将坯体烧成,得到陶瓷岩板成品;其中,烧成温度曲线为:从室温到600℃,升温速率为40℃/min;从600℃到900℃,升温速率为24℃/min;从900℃到1280℃,升温速率为15℃/min;在1280℃保温10min;从1280℃到800℃,降温速率为75℃/min;从800℃到500℃,降温速率为12℃/min;从500℃到室温,降温速率为85℃/min;烧成周期为100min。实施例3本实施例提供一种大规格陶瓷岩板,其尺寸为3600×1800×20mm3;其中,坯体层的厚度为19mm;坯体层的配方为:钾长石18份,钠长石11份,煅烧高岭土18份,黑泥16份,白泥11份,叶腊石17份,低温增韧剂2.5份,高温增韧剂6.5份;其中,煅烧高岭土中90%的颗粒粒径<1μm;低温增韧剂选用托贝莫来石,高温增韧剂选用镁橄榄石;陶瓷岩板的制备方法:(1)将各种原料按照配方混合均匀,并球磨得到浆料;其中,浆料的250目筛余为0.4%;(2)将浆料喷雾干燥,筛分后得到第一粉料;(3)将50%的第一粉料过60目筛网,得到筛上物,将筛上物与剩余的第一粉料混合,得到第二粉料;将筛下物化浆,并与步骤(1)的浆料合并;具体的,第二粉料的颗粒级配为:>20目占比2wt%;20~40目占比36wt%;40~60目占比34wt%,60-120目占比17wt%,120~200目占比8wt%,200目以下占比3wt%。(4)将第二粉料压制,得到生坯;具体的,采用ht36000型压机进行压成,成型压力为460kg/cm2。(5)将生坯干燥,并依次施底釉、喷墨印刷、施面釉,得到坯体;(6)将坯体烧成,得到陶瓷岩板成品;(6)在图案层上施面釉,形成面釉层,得到坯体;(7)将坯体烧成,得到大规格岩板成品;其中,烧成温度曲线为:从室温到600℃,升温速率为40℃/min;从600℃到900℃,升温速率为25℃/min;从900℃到1260℃,升温速率为16℃/min;在1260℃保温8min;从1260℃到800℃,降温速率为74℃/min;从800℃到500℃,降温速率为15℃/min;从500℃到室温,降温速率为90℃/min;烧成周期为88min。对比例1某江西厂家生产的规格为2400×1200×15mm3的陶瓷岩板,对各项性能进行测定。对比例2某企业生产的规格为800×800×11mm3的普通抛光砖50片,对各项性能进行测定。对实施例1~3、对比例1~2中的材料进行性能测定,具体结果如下(参考方法参见gb/t3810-2016):实施例1实施例2实施例3对比例1对比例2吸水率(%)0.09%0.06%0.05%0.1%0.2%断裂模数(mpa)45.645.148.237.545.1实施例4干燥、烧成合格率的测定1,干燥合格率的测定压制500片陶瓷岩板生坯,进行干燥。干燥后,若生坯断裂或边角有小开裂纹路,计为不合格,否则计为合格;此外,干燥后,选取20片合格的生坯,测定边弯曲度和中心弯曲度(gb3810.2-2016)。2,烧成合格率的测定对干燥后的合格的陶瓷岩板生坯进行烧成。烧成后,若发生断裂或边角有开裂纹路,或肉眼可见明显翘曲,则计为不合格;否则计为合格;烧成后,选取20片合格的陶瓷岩板,测定变弯曲度和中心弯曲度。测定结果如下表(其中对比例2的数据为经验数据):实施例5加工破裂率的测定加工破裂率分为切割加工破裂率和雕刻加工破裂率两部分;其具体测试方法如下:1,切割加工破裂率:采用电锯切割机对岩板边部(1/3边长以内)、中心(中心线)分别进行贯穿切割。若切割后,产生除切割纹以外的破裂或断裂纹路,则计为破裂。若切割后,未产生肉眼可见裂纹,则测定切割后陶瓷岩板的断裂模数(gb/t3810.4-2016);若断裂模数变化为原断裂模数的90%以下,则计算为破裂;否则,计为不破裂。2,雕刻加工破裂率:采用数控水刀对陶瓷岩板中心区域进行雕刻,雕刻出深度为5~10mm,内径为495mm,外径为500mm的环形孔。若雕刻过程中或雕刻后,陶瓷岩板断裂,则记为破裂;若雕刻后,陶瓷岩板未产生肉眼可见裂纹,则对雕刻后陶瓷岩板的断裂模数进行测定,若断裂模数变化为原断裂模数的80%以下,则计为破裂。否则,计为不破裂。选用实施例1~3中陶瓷岩板50片,对比例1的陶瓷岩板50片(对比例1);对比例2的抛光砖50片(对比例2);进行加工破裂率实验,其实验数据如下表:实施例1实施例2实施例3对比例1对比例2切割破裂率0%4%0%48%0%雕刻破裂率4%4%4%64%8%以上所述是发明的优选实施方式,应当指出,对于本
技术领域
的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1