一种利用放电等离子烧结技术制备铝酸三钙的方法

文档序号:9836461阅读:1844来源:国知局
一种利用放电等离子烧结技术制备铝酸三钙的方法
【技术领域】
[0001]本发明属建筑材料技术领域,具体涉及一种利用放电等离子烧结技术制备铝酸三钙的方法。
【背景技术】
[0002]硅酸盐水泥熟料中的矿物相主要是硅酸三钙、硅酸二钙、铝酸三钙和铁铝酸四钙。按质量计,铝酸三钙(3Ca0.Al2O3,简称C3A)的含量一般为(7-15)%,是硅酸盐水泥熟料的第三大矿物相,仅稍高于铁铝酸四钙。虽然所占的比例较小,但在熟料煅烧的过程中,铝酸三钙能降低熟料的熔融温度和粘度,有利于硅酸三钙的生成,是水泥工业在生产过程中不可或缺和避免的一种产物。
[0003]招酸三I丐具有快凝快硬的特点,能迅速水化并释放出大量的热,这对混凝土的长时间施工和大体积混凝土的温度控制不利;其水化产物也易与S042—反应,导致混凝土产生显著地体积膨胀,发生硫酸盐腐蚀破坏,结构物的服役寿命和安全系数降低。因次,现代的硅酸盐水泥一般都严格限制其含量。但铝酸三钙也有其有利的一面,快硬硅酸盐水泥正是利用了铝酸三钙具有快凝快硬和放热量多的特点,通过提高硅酸三钙和铝酸三钙的含量来促进水泥石早期强度的增长,特别适合紧急抢修和冬季施工的工程;铝酸三钙的水化产物能够吸附氯离子Cl—形成Friedel络合盐(3Ca0.AI2O3.CaCb.1H2O),对提高钢筋混凝土的抗锈蚀能力有利。
[0004]铝酸三钙的最终水化产物是水化铝酸三钙,但早期的水化产物不仅非常复杂,而且还会不断的发生相变和物理和化学性质的变化,相变的进程也受水化环境和条件的影响,如在饱和氢氧化钙溶液中,铝酸三钙的水化速度会降低,而碱离子存在的情况下,其水化速度又会加快;在有so42—存在的情况下,水化铝酸三钙能进一步与之反应生成三硫型水化硫铝酸钙(AFt)和单硫型水化硫铝酸钙(AFm),前者呈针棒状,后者呈六方片状;铝酸三钙的水化产物虽能结合Cl—形成Friedel络合盐,但遭遇S042—后又会发生解体;在有N02—时铝酸三钙可生成亚硝酸型水铝钙石,可吸附Cl—并使之与NO2-发生链式反应;同时铝酸三钙还可能导致水泥石主要胶凝相-水化硅酸钙发生Al3+掺杂,使其微观结构和性能受到影响,进而引发水泥基材料在使用性能上的变化。因此,大量制备高纯态的铝酸三钙,广泛研究其水化行为及水化产物相微观结构的形成过程,对降低水泥工业生产成本、利用现代测试手段和分析方法揭示混凝土材料多尺度本构关系、提升混凝土结构的服役寿命非常必要。
[0005]传统的制备铝酸三钙的方法主要有固相烧结法、溶胶凝胶法和自蔓延燃烧法。固相烧结法使用的原材料主要是是CaO、Al 203、Ca (0H) 2、Al (0H) 3等粉末,存在反应物混合不均匀、煅烧温度高、时间长、能耗大、离子扩散困难等缺点,至少需要经过3次反复的研磨和煅烧才能保证产物具有较高的纯度。溶胶凝胶法针对固相烧结法的上述不足,采用硝酸钙Ca(NO3)2.4H20、硝酸铝Al(NO3)3.9H20等水合硝酸盐为原材料,辅以六次甲基四胺、乙二醇、聚乙二醇等化学试剂制成溶液,使原材料的分散混合达到分子水平,经静置、陈化后再高温烧结而成,具有产物纯度高、均质性好,煅烧温度较固相烧结法低(200-300)°C等优点,但存在制备周期较长、合成步骤较多、工艺复杂等缺陷。自蔓延燃烧法是在溶胶凝胶法的基础上,添加一水柠檬酸、尿素等燃烧剂,利用燃烧剂的急剧燃烧作用提高原材料的局部温度从而降低整体的煅烧温度,被认为是“最具发展前景的合成方法”,但其制备周期仍长达数小时,且燃烧剂对溶胶、凝胶的形成也有影响。放电等离子烧结技术(Spark PlasmaSintering,简称SPS)是近几年来新兴的方法,已广泛应用于陶瓷、金属材料的制造,但在水泥熟料和建筑材料领域还未见报道。放电等离子烧结是在粉末颗粒间直接通入脉冲大电流,瞬间产生放电等离子体,使颗粒表面剥落、融化,综合真空、轴向压力、放电冲击压力、焦耳热和离子扩散等作用,能够在几分钟内完成整个烧结,并制备出均质、密实、高质量的烧结体,具有极高的效率和较低的经济成本。

【发明内容】

[0006]本发明的目的就是克服传统方法存在的问题,进一步缩短铝酸三钙的制备周期,提高其合成效率,提供一种利用放电等离子烧结技术制备铝酸三钙的方法。
[0007]其具体技术方案如下:
[0008]一种利用放电等离子烧结技术制备铝酸三钙的方法,该方法包含以下步骤:
[0009]—、原料预处理:称取碳酸I丐和氧化招,将二者倒入球磨机中,在(300-500)rpm的转速下持续球磨30-50min后将原料取出并冷却得到混合物;
[0010]所述碳酸钙和氧化铝的质量比为:1.7847:0.6061;
[0011]二、升温与烧结:
[0012]a、在圆柱形石墨坩祸里内衬好石墨烯纸,把上步所得混合物倒入圆柱形石墨坩祸内,然后将圆柱形石墨坩祸移到放电等离子烧结炉中并安置好上下两端的导电石墨圆饼;
[0013]b、设定放电等离子烧结炉的轴向压力为(l_3)kN,脉冲比0N/0FF= (6?48)/(1?8)=6;
[0014]C、启动放电等离子烧结炉,当真空度达到30_50Pa时打开升温系统,控制放电等离子烧结炉使其分阶段升温至1300-1400 °C,并恒温保持10-20min;
[0015]三:降温与活性保持
[0016]恒温结束后,混合物先随炉冷却,然后取出并自然降温;
[0017]待石墨坩祸温度降至(60-90)°C时,将混合物倒出并磨细使其粒径小于20μπι,即得到具有水化活性的铝酸三钙。
[0018]所述步骤一中按磨球与碳酸钙和氧化铝的质量之和的质量比为按磨球:(碳酸钙+氧化招)=(2-4):1,所述磨球为直径为18mm的刚玉磨球。
[0019]所述步骤二中c步中的分阶段升温是指放电等离子烧结炉在100tC之前的升温速率为 300-500°C/min,1000-1300 °C 之间的升温速率为 100-150°C/min,1300-1400 °C 之间升温速率不超过70°C/min。
[0020]所述步骤三中a步中的随炉冷却是指恒温结束后,启动放电等离子烧结炉的水冷降温系统,当放电等离子烧结炉指示温度在1400-1500°C之间时,控制其降温速率为100-200 TVmin0
[0021]所述步骤三中a步中的混合物取出并自然降温是指在混合物温度降至500°C后,先关闭放电等离子烧结炉的水冷降温系统和真空栗,通入空气使内外气压平衡,然后卸掉轴向压力,打开放电等离子烧结炉,再将再将圆柱形石墨坩祸从中取出,拿掉坩祸盖并置于通风处自然降温。
[0022]所述的碳酸钙和氧化铝均为化学分析纯试剂。
[0023]所述的氧化铝为γ-Α1203。
[0024]与现有技术相比,本发明存在以下优点:
[0025]本发明采用放电等离子烧结方法,能够在20min内完成制备过程,合成效率较传统方法提高10倍以上;使用传统的氧化物粉末作为原材料,技术要求比常规方法并无特别的提高,但能耗和费用却显著降低;合成产物的均质性高、致密性好,化学成分一致,游离氧化钙含量均低于0.8%。利用该方法制备的硅酸盐水泥熟料单矿铝酸三钙经玛瑙研钵研磨之后,所得的粉末平均粒径为(3_5)μπι,颗粒形貌不规则,水化特性良好,一次烧结即完成制备。
【附图说明】
[0026]图1为用本方法在煅烧温度为1350°C下制备产物的X射线衍射图谱;
[0027]图2为用本方法在煅烧温度为1350°C下制备产物的FT-1R图谱;
[0028]图3为用本方法在煅烧温度为1350°C下制备产物的水化放热曲线;
[0029]图4为用本方法在煅烧温度为1300°C下制备产物的X射线衍射图谱;
[0030]图5为用本方法在煅烧温度为1300°C下制备产物的FT-1R图谱;
[0031]图6为用本方法在煅烧温度为1300°C下制备产物的水化放热曲线;
[0032]图7为用本方法在煅烧温度为1400°C下制备产物的X射线衍射图谱;
[0033]图8为用本方法在煅烧温度为1400°C下制备产物的FT-1R图谱;
[0034]图9为用本方法在煅烧温度为1400°C下制备产物的水化放热曲线;
[0035]图10为用本方法在煅烧温度为1375°C下制备产物的X射线衍射图谱;
[0036]图11为用本方法在煅烧温度为1375°C下制备产物的FT-1R图谱;
[0037]图12为用本方法在煅烧温度为1375°C下制备产物的水化放热曲线。
【具体实施方式】
[0038]下面结合具体实施例对本发明进行详细的说明。
[0039]实施例1
[0040]目的:制备20.0Og铝酸三钙。
[0041]根据铝酸三钙化学式的氧化物形式3Ca0.Al203,计算出其中CaO的含量为62.27% ,Al2O3的含量为37.73%。根据欲制备铝酸三钙的质量为20.0Og,计算烧结完成后样品中 CaO 的质量为 20.00 X 62.27% = 12.45g。
[0042]根据Ca元素质量守恒,按CaO质量的1.7847倍计算出分析纯碳酸钙CaCO3需要量为12.45X1.7847 = 22.22g;
[0043]按分析纯碳酸钙Ca⑶3质量的0.3396倍计算出所需的分析纯γ相氧化铝γ -Al2O3的质量为 22.22X0.3396 = 7.55g。
[0044]计算分析纯碳酸钙CaCO3和分析纯γ相活性氧化铝γ-Al2O3的总质量22.22+7.55=29.77g,按粉末材料总质量的2倍计算出所需磨球质量为29.77 X 2 = 59.54g。[°°45] 将原材料和磨球装入实验室用小型球磨机中,设定转速为450rpm,球磨40min至原料混合均勾;所述磨球为直径为18mm的刚玉磨球。
[0046]将混合后的粉末装入石墨坩祸内,设定放电等离子烧结炉的真空度为45Pa,脉冲比(0N/0FF)为6/1,轴向压力为lkN,目标温度为1350°C,恒温时间为15min,启动放电等离子烧结炉,当真空度达到30-50Pa时打开升温系统,1000°C之前的升温速率为300°C/min,(1000-1300) °C之间的升温速率为150°C/min,( 1300-1350) °C之间的升温速率为50°C/min。
[0047]恒温结束后,放电等离子烧结炉先通冷却水降温,设定降温速率为200°C/min,待温度降至500°C时关闭放电等离子烧结炉的水冷降温系统和真空栗,通入空气使内外气压平衡,卸掉轴向压力,打开放电等离子烧结炉,取出石墨坩祸并置于通风处,待石墨坩祸温度降至60°C左右时,将样品取出再玛瑙研钵样品磨细使其粒径小于20μπι,即得。所得产物的X射线衍射图谱如图1所示,各衍射峰与铝酸三钙标准卡片匹配良好,其FT-1R图谱如图2所示;经甘油-乙醇法测定的其游离氧化钙f-CaO含量为0.56%,证明产物的纯度较高;其在水灰比w/c = 0.4,环境温度为40°C时的水化放热曲线如图3所示。
[0048]实施例2
[0049]目的:制备15.0Og铝酸三钙。
[0050]根据铝酸三钙化学式的氧化物形式3Ca0.Al203,计算出其中CaO的含量为62.27% ,Al2O3的含量为37.73%。根据欲制备铝酸三钙的质量为15.00g,计算烧结完成后样品中 CaO 的质量为 15.00 X 62.27% =9.34g。
[0051]根据Ca元素质量守恒,按CaO质量的1.7847倍计算出分析纯碳酸钙CaCO3需要量为9.34X1.7847 = 16.67g;
[0052]按分
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1