疫苗的制作方法

文档序号:3555434阅读:505来源:国知局
专利名称:疫苗的制作方法
技术领域
本发明涉及新的核酸构建体,可用于核酸接种方法,用于治疗和预防表达MUC-1的肿瘤。具体地讲,所述核酸是DNA,所述DNA构建体包括编码MUC-1衍生物的基因,任选地缺少所有完全的重复。更具体地讲,对所述核酸进行修饰,以便降低与野生型Muc-1的同源性。本发明还提供了包括所述构建体的药物组合物,特别是适合颗粒介导的送递的药物组合物,生产所述组合物的方法,以及它们在医学中的应用。
背景技术
上皮细胞粘蛋白MUC-1(又被称作episialin或多形上皮粘蛋白,PEM)是在很多上皮细胞上表达的大分子量糖蛋白。所述蛋白由细胞质尾巴,跨膜结构域和具有20个氨基酸基序(以下称之为VNTR单体,还可称之为VNTR表位或VNTR重复)的不同数量的串联重复组成,所述串联重复含有大比例的脯氨酸,丝氨酸和苏氨酸残基。由于在MUC-1基因座上的遗传多态性,重复的数量是可变的,并且最常见的是在30-100的范围内(Swallow等,1987,Nature 32882-84)。在正常导管上皮细胞中,MUC-1蛋白仅存在于暴露于管腔的细胞的顶面上(Graham等,1996,Cancer Immunol Immunother 4271-80;Barratt-Boyes等,1996,Cancer Immunol Immunother 43142-151)。MUC-1分子的最突出的特征之一是它的广泛的O-连接的糖基化。在每一个MUC-1 VNTR单体内,有五个可利用的O-连接的糖基化位点。
VNTR以典型的或完全的重复和不完全的(非典型的)重复为特征,对于在20个氨基酸中包括2-3个差别的完全的重复来说,具有很小的变化。以下是完全重复的序列。
1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20A PDTR P A P G S T A PPA H G V T SE S TAQ加下划线的氨基酸可以用所示出的氨基酸残基取代。所述完全的重复是相同的重复序列,特定的氨基酸取代除外(即,3号位置上D→E,4号位置上T→S,和14号位置上P→T、A或Q)。完全的重复以以下事实为特征,即在单个MUC1分子内它们能够出现很多次。
不完全的重复对上述共有序列具有不同的氨基酸取代,在氨基酸水平上具有55-90%同一性。在下面示出了四种不完全的重复,在取代下面加下划线APDTRPAPGSTAPPAHGVTS-完全的重复APATEPASGSAATWGQDVTS-不完全的重复1VPVTRPALGSTTPPAHDVTS-不完全的重复2APDNKPAPGSTAPPAHGVTS-不完全的重复3APDNRPALGSTAPPVHNVTS-不完全的重复4野生型-Muc-1上的不完全的重复位于完全的重复区的旁侧。在MUC1序列上,每一个不同的不完全的重复仅出现一次,并且表现出对完全的重复序列进行2-9个氨基酸的取代(相当于55-90%氨基酸同一性)。
在通过所述上皮细胞的肿瘤转化产生的恶性癌中,有若干变化影响MUC-1的表达。所述蛋白的极化表达丧失,并且发现它分布在转化细胞的整个表面上。MUC-1的总量也增加了,通常增加了10倍或更多(Strous & Dekker,1992,Crit Rev Biochem Mol Biol 2757-92)。最显著的是,O-连接的糖链的数量和质量发生了显著改变。有较少的丝氨酸和苏氨酸残基是糖基化的。发现所述糖链异常地缩短了,产生了与肿瘤相关的糖类抗原STn(Lloyd等,1996,J Biol Chem,27133325-33334)。所述糖基化改变的结果是以前通过糖链筛选的MUC-1的肽链上的各种表位现在变得可以接触。通过这种方式变得可以接触的一个表位是通过存在于每个包括20个氨基酸的VNTR完全单体上的序列APDTR(Ala 8-Arg 12)形成的(Burchell等,1989,Int J Cancer 44691-696)。
很明显的是,在MUC-1中发生的这些改变,意味着能够激活针对在肿瘤上表达的MUC-1形式的免疫系统的疫苗,能够有效抗上皮细胞肿瘤,并且,抗实际上存在MUC-1的其他细胞类型,如T细胞淋巴细胞。被所述免疫系统用于杀伤表达异常蛋白的细胞的主要效应物机制之一,是细胞毒性T淋巴细胞免疫反应(CTL′s),并且,该反应是在治疗肿瘤的疫苗和抗体反应中所需要的。好的疫苗能够激活免疫反应的所有途径。不过,现有的糖类和肽疫苗,如Theratope或BLP25(Biomira Inc,Edmonton,Canada)优先激活免疫反应的一种途径——分别为体液和细胞反应,并且需要更好的疫苗设计,以便产生更平衡的反应。
与常规蛋白疫苗接种相比,核酸疫苗具有多种优点,其中,它们能够方便地大量生产。即使是在小的剂量下,业已报导它们能够诱导强的免疫反应,并且能够诱导细胞毒性T淋巴细胞免疫反应以及抗体反应。
不过,完整长度的MUC-1非常难于加工,因为它们具有高度重复的序列,这种序列很容易发生重组,这些重组事件会导致很大的开发困难。另外,VNTR区的富含GC的特性,使得测序困难。另外,是由于调控原因-有必要全面表征DNA构建体。要对具有如此高频率重复结构的分子进行测序是很困难的。由于不能准确地了解在野生型MUC-1中存在多少重复单位,使得不能够准确地表征完整长度的MUC-1,使得它不能被接受用于调控用途。
发明概述本发明提供了编码能够在体内引起免疫反应的MUC-1衍生物的核酸序列,所述免疫反应能够识别表达MUC-1的肿瘤,其中,所述核酸是修饰过的,以便非重复区的RSCU至少为0.6,并且与图9所示的MUC-1VNTR核苷酸序列相比在相应的非重复区与野生型MUC-1DNA具有低于85%的同一性。
在一种实施方案中,上述编码MUC-1衍生物的核酸缺少任何重复(完全的和不完全的)单位。
在另一种实施方案中,所述核酸序列只缺少完全的重复。在另一种实施方案中,所述核酸构建体包括1-15个完全的重复,优选7个完全的重复。所述完全的重复相对野生型MUC-1而言可以是修饰过的或未修饰过的。
在更优选的实施方案中,所述不完全的重复区的RSCU(相对同义密码子使用(又被称作密码子指数CI))至少为0.65,并且与不完全的重复区相比具有低于80%的同一性。
令人吃惊的是,所述构建体能够引起识别表达MUC-1的肿瘤的细胞反应和抗体反应。
所述构建体还可以包括改变了的重复(VNTR单位)如减弱了的糖基化突变体。可以掺入的外源T-细胞表位包括T辅助表位,如来自细菌蛋白和毒素,并且来自病毒来源,如来自白喉或破伤风的T-辅助表位,例如,P2和P30或来自Hep B核心抗原的表位。可将它们掺入本发明的MUC-1构建体的任一个末端。
在另一种实施方案中,本发明涉及编码具有异源蛋白的融合蛋白的核酸,它在本发明的MUC-1构建体的N或C末端。所述融合配偶体提供了T-辅助表位,或者能够诱导记忆反应。
其例子包括破伤风,白喉,结核或肝炎蛋白,如破伤风或白喉毒素,特别是掺入了P2和/或P30表位的破伤风毒素的片段。结核杆菌肽的例子是Ra12,相当于Mtb32a的192-323号氨基酸(Skeiky等Infection and Immunity(1999)673998-4007)。乙型肝炎核心抗原是另一种实施方案的例子。
其他的优选的免疫学融合配偶体包括蛋白D,通常是来自肺炎链球菌的N末端1/3(例如,N末端1-109);LYTA或其部分(优选C-末端部分)(Biotechnology)10795-798,1992)。
在本发明的另一方面,所述核酸序列是质粒形式的DNA序列。所述质粒优选是超螺旋的。由所述核苷酸序列编码的蛋白是新的,并且构成了本发明的一个方面。
在本发明的另一方面,提供了药物组合物,它包括如上文所述的核酸序列或蛋白,以及可以药用的赋形剂,稀释剂或载体。
优选的载体是金珠,并且所述药物组合物适合通过颗粒介导的药物送递方法送递。
在另一种实施方案中,本发明提供了用于医学中的药物组合物和新核酸构建体。具体地讲,提供了本发明的构建体,在生产药物,用来治疗或预防表达MUC-1的肿瘤中的用途。
本发明还提供了治疗患有或易感于表达MUC-1的肿瘤,特别是乳腺癌,肺癌,前列腺癌(特别是非小细胞肺癌),胃癌和其他GI(胃肠道)癌的方法,包括施用安全的和有效量的上述组合物或核酸。
在另一种实施方案中,本发明提供了生产上述药物组合物的方法,包括将本发明的核酸构建体或蛋白与可以药用的赋形剂,稀释剂或载体混合。
本发明的详细说明野生型MUC-1分子包括信号序列,前导序列,不完整的或非典型的VNTR,完整的VNTR区,其他非典型的VNTR,非VNTR细胞外结构域,跨膜结构域和细胞质结构域。
提供了构建体,其中,非VNTR区进行过密码子修饰,使它的RSCU至少为0.6,并且与相应的野生型区具有低于85%的同一性。所述构建体是有利的-因为它们降低了同源重组的可能,具有增强了的表达,并且是免疫原性的,并且能够产生识别表达MUC-1的肿瘤细胞的细胞和抗体反应。
更优选的是,所述密码子修饰区的RSCU至少为0.65,并且与相应的野生型区具有至少80%的同一性。在比较多核苷酸序列时,如果两个序列中的核苷酸序列在进行下文所述的最大相关性比对时相同,这两种序列就被认为是“同一的”。
两个序列之间的比较通常是通过在比较窗上比较所述序列进行的,以便确定并且比较具有序列相似性的局部区域。本文所说的″比较窗″,表示具有至少大约20个连续位置的片段,通常具有30-大约75,40-大约50个连续位置,其中,在对两种序列进行最佳比对之后,可以将序列与具有相同数量的连续位置的参考序列进行比较。
因此,在本发明中,用于比较的具有密码子修饰的非重复区和具有最佳序列比对的非重复区可以通过以下方法进行Smith和Waterman的局部同一性算法(1981)Add.APL.Math 2482,Needleman和Wunsch的同一性比对算法(1970)J.Mol.Biol.48443,Pearson和Lipman的相似性检索方法(1988)Proc.Natl.Acad.Sci.USA 852444,所述算法的计算机化实施(Wisconsin Genetics软件包GAP中的BESTFIT,BLAST,FASTA,和TFASTA,Genetics Computer Group(GCG),575 Science Dr.,Madison,WI),或通过检查。
适合确定百分序列同一性和序列相似性的算法的一种优选例子是BLAST和BLAST 2.0程序,分别参见Altschul等(1977)Nucl.AcidsRes.253389-3402和Altschul等(1990)J.Mol.Biol.215403-410。可以使用BLAST和BLAST 2.0,例如,采用本文所披露的参数,以便测定本发明的多核苷酸的百分序列同一性。用于进行BLAST分析的软件,可以从National Center for BiotechnologyInformation公开获得。
DNA密码具有4个字母(A,T,C和G),并且利用这些字母拼写三字母“密码子”,它们表示由生物基因编码的蛋白中的氨基酸。将沿DNA分子的密码子的线性序列翻译成由所述基因编码的蛋白中的氨基酸的线性序列。所述密码是高度简并的,用61种密码子编码20种天然氨基酸,并且有三个密码子表示“终止”信号。因此,大部分氨基酸是由一种以上密码子编码的——实际上有一些氨基酸是由四种或四种以上不同密码子编码的。
由于可以将一种以上密码子用于编码特定氨基酸,业已发现生物的密码子使用模式是高度非随机的。不同的物种在密码子选择方面表现出不同的偏好,另外,在同一物种中,在高水平和低水平表达的基因之间密码子的使用可能明显不同。这种偏好在病毒,植物,细菌和哺乳动物细胞中是不同的,并且某些物种表现出相对其他物种的偏离随机密码子选择的更强的偏好。例如,人和其他哺乳动物的偏好不如某些细菌或病毒的强。由于上述原因,当哺乳动物基因在大肠杆菌中表达或病毒基因在哺乳动物细胞中表达时用于有效表达的密码子不适当分布的可能性较大。据信,在发生表达的宿主中罕见密码子的异源DNA序列簇是该宿主中低异源表达水平的指标。
因此,可以对特定原核(例如大肠杆菌或酵母)或真核宿主偏好的密码子进行修饰,以便编码相同的蛋白,但是与野生型序列不同。所述密码子修饰过程可以包括任何序列,通过人工或计算机软件生成,其中天然序列的某些或全部密码子是修饰过的。业已公开了若干种方法(Nakamura等,Nucleic Acids Research 1996,24214-215;WO98/34640)。根据本发明的一种优选方法是Syngene方法,即Calcgene方法的改进(R.S.Hale和G Thompson(ProteinExpression and Purification Vol.12 pp.185-188(1998))。
这种密码子修饰方法可能具有以下优点中的某一些或全部1)通过用更常用的密码子取代罕见的或不常用的密码子而改善基因产物的表达,2)消除或添加限制酶位点,以便有利于下游克隆,和3)降低在DNA载体上的插入序列和基因组序列之间的同源重组的可能性,和4)改善在人体内的免疫反应。本发明的序列有利地具有较低的重组可能,但是,至少能够以与野生型序列相同的水平表达。由于用来产生密码子修饰序列的SynGene程序的算法的性质,它可能产生极大数量的不同的密码子修饰的序列,它们具有类似的功能。简单地讲,密码子是使用统计学方法分配的,以便提供具有接近于在高度表达的人类基因,如β-肌动蛋白中天然存在的密码子频率。
本发明的多核苷酸中,密码子使用模式相对典型的MUC-1的使用模式发生了改变,以便能更好地体现高度表达的基因在目标生物中的密码子偏好,例如,人β-肌动蛋白。″密码子使用系数″是特定多核苷酸序列的密码子模式如何与目标物种类似的指标。密码子频率可以来自很多物种的高度表达的基因的文献来源(例如,参见Nakamura等Nucleic Acids Research 1996,24214-215)。将61个密码子中每一个的密码子频率(用所选类型的基因的每1000个密码子出现的次数表示)对20种天然氨基酸中的每一种进行标准化,以便将每一种氨基酸的最常使用的密码子的值设定为1,并且将不太常用的密码子的频率规定为0-1之间的值。因此,61种密码子中的每一种都赋予了目标物种的高度表达的基因的1或低于1的值。为了计算特定多核苷酸相对所述物种的高度表达的基因的密码子使用系数,给出了所述特定多核苷酸的每一个密码子的折合值,并且取所有这些值的几何平均数(通过用密码子的总数除所述值的天然对数的总和,并且取反对数)。所述系数的值在0和1之间,并且所述系数越高,所述多核苷酸中有越多的密码子是常用的密码子。如果多核苷酸序列的密码子使用系数为1,所有密码子都是目标物种的高度表达的基因的“最常用的”密码子。
根据本发明,所述多核苷酸的密码子使用方式优选排除了表示<10%的用于特定氨基酸的密码子的密码子。相对的同义密码子使用(RSCU)值是观察到的密码子数量除以预期数量,前提是所述氨基酸的所有密码子以相同的频率使用。本发明的多核苷酸优选排除了在目标生物的高度表达的基因中RSCU值低于0.2的密码子。本发明的多核苷酸中高度表达的人类基因的密码子使用系数通常大于0.6,优选大于0.65,最优选大于0.7。用于人类的密码子使用表还可以从Genbank中查阅到。
比较而言,高度表达的β肌动蛋白基因的RSCU为0.747。
下面列出了人的密码子使表
人(高度表达的)基因的密码子选择1/24/91(human_high.cod)
非VNTR细胞外结构域在VNTR5′的大约80个氨基酸,和3′VNTR的190-200个氨基酸。本发明的所有构建体包括来自该区域的至少一个表位。表位通常是由至少七个氨基酸序列组成的。因此,本发明的构建体包括至少一个来自非VNTR细胞外结构域的表位。优选包括基本上所有或更优选所有非VNTR结构域。特别优选的是,所述构建体包括由以下序列组成的表位FLSFHISNL;NSSLEDPSTDYYQELQRDISE,或NLTISDVSV。更优选的是在该构建体中包括两个,优选所有三个表位序列。
在优选实施方案中,所述构建体包括N-末端前导序列。所述信号序列,跨膜结构域和细胞质结构域分别全部是任选存在或缺失的。当存在时,优选对所有这些区域进行修饰。
本发明的优选的构建体是1)密码子修饰的截短的MUC-1(即完整的MUC-1,不具有完全的重复)2)密码子修饰的截短的MUC-1Δss(As I,不过还缺少信号序列)3)密码子修饰的截短的MUC-1ΔTM ΔCYT(As 1,不过缺少跨膜和细胞质结构域)4)密码子修饰的截短的MUC-1Δss ΔTM ΔCYT(As 3,不过还缺少信号序列)同样优选的是上述1-4的等同的构建体,但是缺少不完全的MUC-1重复单位。所述构建体被称作容易消化的(gutted)-MUC-1。在一种实施方案中,所述不完全的VNTR单位中的一个或多个是通过改变糖基化位点突变的,以便降低糖基化可能性。所述突变优选是取代,但是可以是插入或缺失。通常用缬氨酸,异亮氨酸,丙氨酸或天冬酰胺取代至少一个苏氨酸或丝氨酸。因此,优选至少一个,优选2或3个或更多个氨基酸是用上述氨基酸取代过的。
其他优选的构建体与上述构建体是等同的,不过包括1-15,优选2-8,更优选7个VNTR(完全的)重复单位。
在另一种实施方案中,所述容易消化的MUC-1核酸在前导序列和细胞外结构域的结合部分提供有限制位点。通常,该限制位点是Nhe1位点。可将该位点用作克隆位点,用于插入编码其他肽的序列,所述肽包括,例如糖基化突变体(即VNTR区突变以消除O-糖基化位点),或编码T-辅助表位的异源序列,如来自破伤风毒素的P2或P30,或野生型VNTR单位。
根据本发明的另一方面,提供了表达载体,它包括本发明的多核苷酸序列,并且能够指导它的表达。所述载体适合驱动异源DNA在细菌,昆虫,或哺乳动物细胞中,特别是在人细胞中表达。
根据本发明的另一方面,提供了包括本发明的多核苷酸序列的宿主细胞,或本发明的表达载体。宿主细胞可以是细菌,例如大肠杆菌细胞,哺乳动物细胞,例如人细胞,或可以是昆虫细胞。包括本发明的载体的哺乳动物细胞可以是体外转染的培养的细胞或通过给所述哺乳动物施用所述载体体内转染过。
本发明还提供了包括本发明的多核苷酸序列的药物组合物。所述组合物优选包括DNA载体。在优选实施方案中,所述组合物包括多个颗粒,优选金颗粒,用包括编码本发明的多核苷酸序列的DNA包被,所述核苷酸序列编码本文所披露的MUC-1氨基酸序列。在另一种实施方案中,所述组合物包括可以药用的赋形剂和本发明的DNA载体。
所述组合物还可以包括佐剂,或者与佐剂或免疫刺激剂同时或序贯施用。
因此,本发明的一种实施方案是,本发明的载体与免疫刺激剂一起使用。所述免疫刺激剂优选是与本发明的核酸载体同时施用的,并且在优选实施方案中,是配制在一起的。所述免疫刺激剂包括,(不过所列举的并非是详尽的,并且不排除其他制剂)合成的咪唑喹啉如咪喹莫特[S-26308,R-837],(Harrison,等Reduction ofrecurrent HSV disease using imiquimod alone or combined witha glycoprotein vaccine′,Vaccine 191820-1826,(2001));和resiquimod[S-28463,R-848](Vasilakos,等′Adjuvantactivities of immune response modifier R-848Comparison withCpG ODN′,Cellular immunology 20464-74(2000)),在抗原呈递细胞和T-细胞表面上组成型表达的羰基的Schiff碱和胺,如妥卡雷琐(Rhodes,J.等′Therapeutic potentiation of the immunesystem by costimulatory Schiff-base-forming drugs′,Nature37771-75(1995)),作为蛋白或肽的细胞因子,趋化因子和共刺激分子,其中包括促炎细胞因子,如干扰素,特别是干扰素α,GM-CSF,IL-1α,IL-1β,TGF-α和TGF-β,Thl诱导物,如干扰素γ,IL-2,IL-12,IL-15,IL-18和IL-21,Th2诱导物,如IL-4,IL-5,IL-6,IL-10和IL-13和其他趋化因子和共刺激基因,如MCP-1,MIP-1α,MIP-1β,RANTES,TCA-3,CD80,CD86和CD40L,其他免疫刺激导向配体,如CTLA-4和L-选择蛋白,细胞凋亡刺激蛋白和肽,如Fas,(49),合成脂基佐剂,如vaxfectin,(Reyes等,′Vaxfectin enhancesantigen specific antibody titres and maintains Thl type immuneresponse to plasmid DNA immunization′,Vaccine 193778-3786)角鲨烯,α-生育酚,polysorbate 80,DOPC和胆固醇,内毒素,[LPS],Beutler,B.,′Endotoxin,′Toll-like receptor 4,and the afferentlimb of innate immunity′,Current Opinion in Microbiology 323-30(2000));CpG寡核苷酸-和二核苷酸,Sato,Y.等,′Immunostimulatory DNA sequences necessary for effectiveintradermal gene immunization′,Science 273(5273)352-354(1996)。Hemmi,H.等,′A Toll-like receptor recognizesbacterial DNA′,Nature 408740-745,(2000),和其他能够诱导Toll受体产生Thl-诱导性细胞因子的其他可能的配体,如合成的分枝杆菌脂蛋白,分枝杆菌蛋白p19,肽聚糖,磷壁酸和脂质A。可以使用其他细菌免疫刺激蛋白,如霍乱毒素,大肠杆菌毒素和它们的突变类毒素。
用于诱导主要是Thl-型反应的某些优选的佐剂包括,例如,脂质A衍生物,如单磷酰脂质A,或优选3-脱氧乙酰化单磷酰脂质A。MPL佐剂可以从Corixa Corporation获得(Seattle,WA;例如,参见,美国专利号4,436,727;4,877,611;4,866,034和4,912,094)。含有CpG的寡核苷酸(其中CpG二核苷酸是未甲基化的)也诱导主要的Thl反应。所述寡核苷酸是众所周知的,并且披露于以下文献中,例如,参见WO 96/02555,WO 99/33488和美国专利号6,008,200和5,856,462。以下文献中还披露了免疫刺激DNA序列,例如,Sato等,Science 273352,1996。其他优选的佐剂包括皂苷,如Quil A,或其衍生物,包括QS21和QS7(AquilaBiopharmaceuticals Inc.,Framingham,MA);七叶皂苷;毛地黄皂苷;或丝石竹或昆诺藜皂苷。
还提供了本发明的多核苷酸,或本发明的载体用于治疗或预防表达MUC-1的肿瘤或肿瘤转移的用途。
本发明还提供了治疗或预防表达MUC-1的肿瘤,包括肿瘤转移在内的与它相关的任何症状或疾病的方法,包括施用有效量的本发明的多核苷酸,载体或药物组合物。药物组合物的施用可以采用一剂或多剂的形式,例如,采用“激发-加强”治疗接种方案。在某些场合下,“激发”接种可以通过颗粒介导的本发明多核苷酸的DNA送递进行,优选掺入到质粒-衍生的载体,并且通过施用包括相同多核苷酸序列的重组病毒载体“加强”,或用佐剂中的蛋白加强。相反,激发可以用病毒载体或用蛋白制剂进行,通常,使用在佐剂中制备的蛋白,并且用本发明的DNA疫苗加强。
如上文所述,本发明包括表达载体,所述载体包括本发明的核苷酸序列。所述表达载体通常是在分子生物学领域构建,并且可以,例如,涉及使用质粒DNA和合适的引发剂,启动子,增强子和其他因子,例如,聚腺苷酸化信号,这些因子可能是必需的,并且它们是以正确的取向定位的,以便能够进行蛋白表达。其他合适的载体对于本领域技术人员来说是显而易见的。作为这一方面的其他例子,可以参见Sambrook等Molecular Cloninga Laboratory Manual.2ndEdition.CSH Laboratory Press.(1989)。
优选的是,本发明的多核苷酸,或用于本发明载体中的多核苷酸是与控制序列可操作地连接,所述控制序列能够提供宿主细胞对编码序列的表达,即所述载体是表达载体。术语″可操作地连接″表示并列关系,其中,上述部分的关系使得它们能够以预期的方式起作用。与编码序列″可操作地连接″的调控序列,如启动子是以这种方式定位的,使得所述编码序列能够在与调控序列相容的条件下表达。
例如,所述载体可以是质粒,人工染色体(例如,BAC,PAC,YAC),具有复制起点的病毒或噬菌体载体,任选具有用于表达所述多核苷酸的启动子,并且任选具有所述启动子的调控因子。所述载体可以包括一个或多个选择标记基因,例如,对于细菌质粒来说包括氨苄青霉素或卡那霉素抗性基因,或对于真菌载体来说包括抗性基因。载体可以体外使用,例如用于生产DNA或RNA,或用于转染或转化宿主细胞,例如,哺乳动物宿主细胞,例如用于生产由所述载体编码的蛋白。所述载体还适合体内使用,例如,用于DNA疫苗接种方法或基因治疗。
可以选择启动子和其他表达调控信号,以便与设计表达的宿主细胞相容。例如,哺乳动物启动子包括金属硫蛋白启动子,它能够反应于诸如镉的重金属而被诱导,和β-肌动蛋白启动子。还可以使用病毒启动子,如SV40大T抗原启动子,人巨细胞病毒(CMV)立即早期(IE)启动子,劳氏肉瘤病毒LTR启动子,腺病毒启动子,或HPV启动子,特别是HPV上游调控区(URR)。所有这些启动子有充分的报导并且在本领域中可方便地获得。
优选的启动子元件是缺少内含子A,但是包括外显子1的CMV立即早期启动子。因此提供了包括受HCMV IE早期启动子控制的本发明的多核苷酸的载体。
合适的病毒载体的例子包括单纯疱疹病毒载体,牛痘或甲病毒载体和逆转录病毒,包括慢病毒,腺病毒和腺伴随病毒。使用所述病毒的基因转移技术为本领域技术人员所公知。例如,可以将逆转录病毒用于将本发明的多核苷酸稳定地整合到宿主基因组中,尽管所述重组不是优选的。相反,复制缺陷型腺病毒载体保留了附加染色体,并因此可以瞬时表达。可以采用能够在昆虫细胞(例如,杆状病毒载体),在人类细胞或在细菌中驱动表达的载体,以便生产大量由本发明的多核苷酸编码的HIV蛋白,例如,用作亚基疫苗或用于免疫测定。本发明的多核苷酸在病毒疫苗中具有特殊用途,因为以前尝试制备完整长度的牛痘构建体的努力一直没有成功。
还可以使用细菌载体,例如,减毒的沙门氏菌属,或利斯特氏菌属可以用作细菌载体。本发明的多核苷酸可用于通过表达编码的蛋白进行生产,所述表达可以在体外进行,在体内进行或离体进行。因此,所述核苷酸可能涉及重组蛋白合成,例如,用于提高产量,或实际上将它本身用作治疗剂,用于DNA接种技术。当本发明的多核苷酸被用于在体外或离体细胞,例如在细胞培养物中生产所编码的蛋白时,应当进行修饰,以便包括要表达的多核苷酸。所述细胞包括瞬时,或优选包括稳定的哺乳动物细胞系。可以通过插入编码本发明的多肽的载体进行修饰的细胞的特定例子包括哺乳动物HEK293T,CHO,HeLa,293和COS细胞。所选择的优选的细胞系是这样的细胞系,它不仅是稳定的,而且还能够进行成熟的糖基化,和多肽的细胞表面表达。表达可以在转化过的卵母细胞中进行。多肽可以是由本发明的多核苷酸表达的在转基因非人动物的细胞,优选小鼠细胞中表达。表达来自本发明的多核苷酸的多肽的转基因非人动物属于本发明的范围。
本发明还提供了对哺乳动物对象进行免疫的方法,该方法包括给所述动物对象施用有效量的所述疫苗或疫苗组合物。最优选的是,用于DNA疫苗,疫苗组合物和免疫治疗剂中的表达载体是质粒载体。
DNA疫苗能够以″裸露的DNA″形式施用,例如利用注射器或高压喷射器施用的液体制剂,或用脂质体或刺激性转染增强剂制备的DNA,或通过粒子介导的DNA送递(PMDD)。所述所有送递系统为本领域所公知。例如,可以通过病毒载体送递系统将所述载体导入哺乳动物。
本发明的组合物可以通过多种方法送递,如肌内,皮下,腹膜内或静脉内,黏膜,如鼻内途径。
在优选实施方案中,所述组合物是通过皮内途径送递的。具体地讲,所述组合物是通过基因枪(特别是粒子轰击)施用技术送递的,该技术涉及将所述载体包被在珠子(例如,金)上,然后在高压下施用到表皮中;例如,在以下文献中所披露的Haynes等,JBiotechnology 4437-42(1996)。
在一种典型例子中,气体驱动的粒子加速可以用诸如由Powderject Pharmaceuticals PLC(Oxford,UK)和PowderjectVaccines Inc.(Madison,WI)生产的器械实现,其中的某些例子披露于以下文献中美国专利号5,846,796;6,010,478;5,865,796;5,584,807;和欧洲专利号0500 799。该方法提供了无针头送递途径,其中,在通过手持式器械产生的氦气射流中将诸如多核苷酸的微颗粒的干粉制剂加速到高速度,将所述颗粒推进到感兴趣的目标组织中,通常是皮肤。所述颗粒优选是0.4-4.0μm直径的金球,更优选0.6-2.0μm直径,并且将DNA缀合物包被在其上,然后装入药筒或弹夹,以便放入“基因枪”。
在相关实施方案中,可用于本发明的组合物的气体驱动的无针头注射的其他器械和方法包括由Bioject,Inc.(Portland,OR)提供的器械,其中的某些例子披露于以下文献中美国专利号4,790,824;5,064,413;5,312,335;5,383,851;5,399,163;5,520,639和5,993,412.
在另一种实施方案中,本发明的核苷酸可以通过微型针头施用,它可能具有包被在针头上的DNA,或从储存物中送递所述组合物。包括编码抗原性肽的核苷酸序列的载体是以这样的用量施用的,它是预防或治疗有效的。要施用的量对于粒子介导的送递来说,通常在1皮克-1毫克核苷酸/剂范围内,优选1皮克-10微克核苷酸/剂,而对于其他途径来说为10微克-1毫克核苷酸/剂。确切用量根据要免疫的患者的体重和施用途径可能有很大的不同。
对于包括编码抗原性肽的核苷酸序列的免疫原成分来说,可以一次性施用或反复施用,例如,施用1-7次,优选1-4次,间隔时间为大约1天至大约18个月。另外可能的是,施用需要有规律地进行较长的时间,同时监测疾病的进展。例如,对于慢性癌症或其他慢性疾病来说,可能需要每月施用,持续超过18个月的较长的时间。对于某些患者/疾病状况来说,需要在患者的生命时间中经常性地施用。不过,这种治疗方案同样可以根据患者的体形,要治疗/预防的疾病,所施用的核苷酸的量,施用途径,以及对于有经验的医学从业者来说显而易见的其他因素而有显著的改变。患者可以接受一种或多种其他抗癌药物,作为它们的总体治疗方案的一部分。
将裸露的多核苷酸或载体导入患者体内的合适的技术还包括用合适的媒介物局部涂敷。所述核酸可以在皮肤上或在黏膜表面上局部外用,例如,通过鼻内,口腔,阴道内或直肠内施用。裸露的多核苷酸或载体能够与可以药用的赋形剂,如磷酸缓冲的盐溶液(PBS)同时存在。还可以使用诸如丁哌卡因的促进剂促进DNA吸收,它可以是独立的或包含在DNA制剂中。给受体直接施用核酸的其他方法包括超声波,电刺激,电穿孔和显微接种,这些方法披露于US-5,697,901中。
可以通过若干种已知的转染技术增强核酸构建体的吸收,例如,包括使用转染剂的技术。所述制剂的例子包括阳离子制剂,例如,磷酸钙和DEAE-葡聚糖和lipofectants,例如,lipofectam和transfectam。要施用的核酸的剂量可以改变。
还可以通过转化细胞的方法施用本发明的核酸序列。所述细胞包括从对象体内收获的细胞。可以在体外将本发明的裸露的多核苷酸或载体导入所述细胞,并且随后可以将转化过的细胞送回对象体内。可以通过同源重组事件将本发明的多核苷酸可以整合到业已存在于细胞中的核酸中。如果需要,转化过的细胞可以在体外生长,并且可以将一种或多种所得到的细胞用于本发明。可以通过已知的外科手术和显微手术技术(例如,移植,显微注射等)将细胞提供在患者体内的适当的部位。
实施例1.导入MUC1密码子修饰方法尽管MUC1是RSCU(又被称作密码子系数指数(C1))为0.535的人类基因,密码子修饰能进一步改进密码子指数和表达。这对于剂量可能有限的临床设置来说是特别重要的。第二个优点是密码子使用的操作会降低在MUC1免疫治疗和基因组中的MUC1基因座之间重组的潜力。在重组可能导致质粒整合到基因组中的临床设置下是特别重要的。
1.1序列设计在

图1中示出了用于MUC1修饰的起始序列。该序列来自质粒JNW656,并且表示包括七个VNTR重复单位的MUC1表达盒的完整的编码序列。在密码子修饰之前,并且由于以前用寡核苷酸建立VNTR重复单位的困难性,制备了缺少VNTR重复的实际的MUC1序列(图2)。该序列的CI值为0.499。该方法是对MUC1的非VNTR序列进行密码子优化,然后工程化到密码子修饰的序列上的限制酶位点重新插入7xVNTR片段。
通过Syngene程序,根据图2a中的实际的MUC1序列获得了实际的密码子修饰序列的选择(图3)。表1表示起始MUC1序列的CI值与两种典型的密码子修饰序列的比较。
表1.MUC1修饰序列的密码子系数指数
除了密码子修饰之外,还筛选了所有序列的限制酶克隆位点。根据最高的CI值和有利的限制酶位点特征,选择了序列2。为了促进克隆和表达,在所述序列上产生了以下序列(参见图4)1)添加了5′和3′克隆位点(Nhel,Xbal,Xhol,Notl和BamHl)2)将Kozak序列(GCCACC)插入起始密码子ATG的5′。
3)通过在64号密码子(AGC→TCC)和209号密码子(AGC→TCC)上的沉默突变,除去了两个不合适的BlpI位点。
4)通过在259号密码子上发生的以下突变(TTG→CTG),除去了罕见的亮氨酸密码子。
5)重新导入了Bpu101/BbvC1位点(参见图4,加方框的区域),以便促进7x VNTR片段的克隆。
6)重新导入了Blp1位点(参见图4,加方框的区域),以便促进7x VNTR区的克隆。
在图4示出的这种工程改造过的序列的CI值为0.735。将Syngene程序用于将该片段分解成52-60-聚体的寡核苷酸,具有20个碱基的最低的重复。
1.2寡核苷酸构建使用两个步骤的PCR方法,使用以下条件首先组装了重叠的引物。由此产生了片段的多样性群体。用5′和3′末端末端引物回收/扩增完整长度的片段。从琼脂糖凝胶上切除所得到的PCR片段,纯化,用Nhe1和Xho1限制,并且克隆到pVAC上。通过限制酶分析和序列验证阳性克隆。将验证过的载体标为JNW749。JNW749上的MUC1密码子修饰的序列包括两个沉默突变(在图5中突出显示的),这些突变是由于寡核苷酸构建的易错性质造成的。
组装反应-PCR条件反应混合物
1x Pfx缓冲液1μl寡核苷酸混合物0.5mM dNTPsPfx聚合酶(5U)1mM MgSO4总体积=50μl1. 94℃30秒2. 40℃120秒3. 72℃10秒4. 94℃15秒5. 40℃30秒6. 72℃20秒+3秒/循环7.循环到步骤4,25次8.保持在4℃下回收反应-PCR条件反应混合物1x Pfx缓冲液10μl组装反应混合物0.625mM dNTPs50皮摩尔5′末端引物50皮摩尔3′末端引物Pfx聚合酶(5U)1mM MgSO41x Pfx增强剂总体积=50μl1. 94℃45秒2. 60℃30秒3. 72℃120秒4.循环到步骤1,25次
5. 72℃240秒6.保持在4℃下1.3重新导7x VNTR片段JNW749包括缺少7x VNTR单位的密码子修饰的MUC1表达盒。将7x VNTR盒从Blp1/BbvC1盒上的JNW656中切除,并且连接到事先用Blp1和BbvC1限制过的JNW749上。在进行限制酶分析和序列验证之后,选择被标明为JNW758的克隆作进一步的分析。在图5中示出了JNW758上的MUC1盒。JNW758中的MUC1表达盒的最终的C1值为0.699,它体现了相对起始值0.535的明显提高。
1.4MUC1表达的比较在瞬时转染到CHO细胞中之后,比较了来自载体JNW656(天然MUC1)和JNW758(密码子修饰的MUC1)的MUC1表达。采用流式细胞分析(FACS),在它们的表面上表达MUC1的细胞的百分比在天然(对于JNW656来说为13.2%),和密码子修饰的盒(对于JNW758来说为18.1%)之间非常相似。在通过Western印迹分析时(图6),结果表明了密码子修饰的MUC1的表达与天然MUC1相比中度地增强。使用Area Density Tool(Labworks,UVP Ltd,UK),通过密度测定法分析,对Western印迹上的MUC1表达进行定量。来自JNW656(天然MUC1)的MUC1表达提供了48527的随意斑点密度值,而密码子修饰的MUC1(JNW758)提供了94839的值,表明了与天然7x VNTR MUC1相比,密码子修饰的MUC1的表达提高了大约2倍。
1.5DNA相似性在对MUC1的起始序列(来自JNW656)和密码子修饰的序列(来自JNW758)进行ClustalV(加权的)比对之后的配对距离证实密码子修饰的序列与原始MUC1序列的相似性为82.8%。缺少7x VNTR区(位于BbvC1和Blp1位点之间)的相同的序列的相似性在进行ClustalV比对之后进一步降低到75.1%。
1.6对7x VNTR MUC1和密码子修饰的7x VNTR MUC1的细胞反应的比较在用pVAC(空载体),JNW656(7x VNTR MUC1)和JNW758(密码子修饰的7x VNTR MUC1)在第0天初次免疫和第21天加强免疫之后通过ELISPOT评估了细胞反应。在使用CD8肽SAPDNRPAL(SAP)进行强化免疫7天之后进行分析。图7表示在用SAP肽和IL-2重新刺激脾细胞之后IFNγ的生产与用7x VNTR MUC1或密码子修饰的7x VNTRMUC1免疫的组相当。
结合来自Western印迹的结果,这些数据表明了密码子修饰的7xVNTR MUC1与天然7x VNTR MUC1表达和免疫原性相比是有利的,并且在降低与基因组MUC1序列的重组可能方面具有显著优点。
1.7其他方法进行瞬时转染分析的方法可以通过以下方法分析来自各种DNA构建体的MUC1表达将质粒瞬时转染到CHO(中国仓鼠卵巢)细胞中,然后对总细胞蛋白进行Western印迹分析,或对细胞膜表达的MUC1进行流式细胞分析。瞬时转染可以使用Transfectam试剂(Promega)按照生产商的指南进行。简单地讲,可以用5×104CHO细胞/孔接种24-孔组织培养平板,所述细胞存在于1ml DMEM完全培养基(DMEM,10% FCS,2mM L-谷氨酰胺,青霉素100IU/ml,链霉素100μg/ml)中,并且在37℃培养16小时。可以将0.5μg DNA添加到251μl的0.3M NaCl(足够一个孔)中,并且将2μl的Transfectam添加到25μl的Milli-Q中。所述DNA和Transfectam溶液应当轻柔地混合,并且在室温下培养15分钟。在该培养步骤中,应当用PBS洗涤细胞一次,并且用150μl的无血清培养基(DMEM,2mM L-谷氨酰胺)覆盖。然后应当将所述DNA-Transfectam溶液滴加到所述细胞中,并且轻柔地摇晃所述平板,并且在34℃下培养4-6小时。然后应当添加500μl的DMEM完全培养基,并且在37℃下再培养细胞48-72小时。
1.8用MUC1质粒瞬时转染的CHO细胞的流式细胞分析在瞬时转染之后,用PBS洗涤CHO细胞一次,并且用凡尔生(1∶5000)/0.025%胰蛋白酶溶液处理,以便将所述细胞转移到悬浮液中。在胰蛋白酶化之后,使CHO细胞沉淀,并且重新悬浮在FACS缓冲液(PBS,4%FCS,0.01%叠氮化钠)中。以15μg/ml的最终浓度添加第一抗体ATR1,并且将样品放在冰上培养15分钟。对照细胞在没有ATR1的条件下用FACS缓冲液培养。用FACS缓冲液洗涤细胞三次,重新悬浮在100μl含有10μl第二抗体山羊抗小鼠免疫球蛋白FITC偶联的F(ab′)2(Dako,F0479)的FACS缓冲液中,并且在冰上培养15分钟。在进行第二抗体染色之后,用FACS缓冲液洗涤所述细胞三次。用FACScan(Becton Dickinson)进行FACS分析。同时测定每一个样品的1000-10000个细胞的FSC(前角光散射)和SSC(集成光散射)以及绿色(FL1)荧光(表达为集成荧光的对数)。进行记录,排除了FCS超出范围的聚集体。数据表达为用细胞数量(Y-轴)对荧光强度(X-轴)作图的直方图。
1.9用MUC1质粒瞬时转染的CHO细胞的Western印迹分析用PBS洗涤瞬时转染的CHO细胞,并且用凡尔生(1∶5000)/0.025%胰蛋白酶溶液处理,以便将所述细胞转移到悬浮液中。在胰蛋白酶化之后,使CHO细胞沉淀,并且重新悬浮在50μl的PBS中。添加等体积的含有50mM DTT的2x TRIS-甘氨酸SDS样品缓冲液(Invitrogen),并且将该溶液加热到95℃保持5分钟。将1-20μl的样品加样到4-20%TRIS-甘氨酸凝胶1.5mm(Invitrogen)上,并且在恒定电压(125V)下,在1x TRIS-甘氨酸缓冲液(Invitrogen)中电泳90分钟。将预先染色的大范围的标记(New England Biolabs,#P7708S)用于测定所述样品的大小。在电泳之后,将所述样品转移到Immobilon-P PVDF膜(Millipore)上,用甲醇预先湿润,使用Xcell III Blot Module(Invitrogen),含有20%甲醇的1x转移缓冲液(Invitrogen),并且用25V的恒定电压电泳90分钟。在4℃下,用含有3%干燥的脱脂乳(Marvel)的TBS-Tween(Tris-缓冲的盐溶液,pH 7.4,含有0.05%的Tween 20)封闭所述膜过夜。第一抗体(ATR1)以1∶100的比例稀释,并且与所述膜一起在室温下培养1小时。在用TBS-Tween充分洗涤之后,第二抗体以1∶2000的比例用含有3%干燥的脱脂乳的TBS-Tween稀释,并且在室温下与所述膜一起培养1小时。在充分洗涤之后,所述膜与Supersignal West Pico化学发光底物(Pierce)一起培养5分钟。除去过量的液体,并且将所述膜密封在两片食品薄膜之间,并且对Hyperfilm ECL胶片(Amersham Pharmacia Biotech)曝光1-30分钟。
实施例2.对7VNTR-MUC-1-PADRE-C和密码子修饰的7VNTR-MUC-1-PADRE-C的细胞反应的比较2.1密码子优化的MUC-1 Padre的构建与PADRE辅助表位融合的MUC1表达盒的构建构建了含有PADRE辅助表位(参见Immunity(1994)1(9)751-761)的三种MUC1设计。PADRE是含有聚丙氨酸主链的泛-DR结合表位,所述主链在T细胞受体能够接触的位点上具有大的/带电荷的残基。首先通过将短的接头插入pVAC1产生了C-末端融合体。所述接头是通过让两种引物PADREFOR和PADREREV退火产生的,并且,通过Nhe1和Xho1位点将该接头克隆到pVAC1上,产生了载体JNW800。通过切除Xba1片段上的MUC1盒,将来自JNW656(7x VNTR MUC1)和JNW758(密码子优化的7x VNTR MUC1)的7x VNTR MUC1表达盒插入JNW800,并且克隆到Xba1位点上,产生了以下两种载体。
7x VNTR MUC1 C-term PADREJNW8107x VNTR MUC1(密码子优化的)C-term PADREJNW812来自JNW810和JNW812的MUC1表达盒和PADRE表位的测序构建了第三种载体,其中,将PADRE序列插入C-末端的最外端,并且还位于紧靠MUC1的信号序列之后的第二个位置。将所述N-末端PADRE表位插入信号序列下游的原因是避免所述表位作为MUC1肽的天然的翻译后加工的一部分被切除(有关MUC1上的裂解位点的细节参见Biochem.Biophys.Res.Comm(2001)283715-720)。所述载体是通过两个阶段的方法构建的。首先,在silico制备了含有N-末端和C-末端PADRE表位的MUC1的N-末端序列,然后通过使用重叠的寡核苷酸(如上文所述)通过PCR构建。通过Nhe1-Xho1位点将PCR片段插pVAC1,并且验证序列,产生了质粒JNW802。从存在于BbcVI-Xba1片段上的JNW758中分离密码子优化的7x VNTR MUC1的C-末端部分,并且克隆到JNW802中,由此重新产生了含有两个PADRE表位的7x VNTR MUC1表达盒。该载体被标明为7x VNTR MUC1(密码子优化的)C/N′PADRE或JMW814。
2.2分五组评估了30只C57小鼠(六只小鼠/组)A.PVac 7 VNTR JNW656B.pVac 7 VNTR PADRE C(密码子优化的) JNW812C.pVac 7 VNTR PADRE C(野生型) JNW810D.pVav 7 VNTR PADRE C/N′(密码子优化的) JNW814E.pVac Empty
在第0,12和42天,通过粒子介导的免疫用表达质粒(1μg MUC-1DNA+0.5μg IL-2)对每一只动物进行免疫,并且在第28和第49天评估细胞免疫反应。
结果如图8A和B所示。
结论在用PVAC 7VNTR,PVAC 7VNTR-PADRE-C密码子优化的序列,PVAC7VNTR-PADRE-C wt序列,PVAC 7VNTR-PADRE C/N′密码子优化的序列免疫之后通过ELISPOT评估细胞反应,在第0天进行初次免疫之后,在第21和42天进行加强。在用MUC1CD8肽(SAP)MUC1 CD4肽(298/9)和PADRE肽加强7天之后进行分析。结果表明,与野生型小鼠相比,CD4和CD8 T细胞MUC1专一性反应在密码子优化的构建体中在第28天和第49天是相似的(或稍好一些),并且被设计成避免同源重组。
总之,在MUC1抗原中包含密码子优化的序列能改善蛋白表达,在体内使用时能产生类似的或稍好一些的免疫反应,在用于人类临床疫苗中时预计具有更好的安全谱。
权利要求
1.编码能够在体内引起免疫反应的MUC-1衍生物的核酸分子,所述反应能够识别表达MUC-1的肿瘤,其中,所述核酸的非重复区的RSCU值至少为0.6,并且与图9所示的MUC-1 VNTR核苷酸序列相比,对于相应的野生型MUC-1的非重复区具有低于85%的同一性水平。
2.如权利要求1的核酸分子,其中,所述RSCU至少为0.65。
3.如权利要求1的核酸分子,其中,所述同一性低于80%。
4.如权利要求1的编码MUC-1衍生物的核酸分子,具有少于15个完全的重复单位。
5.如权利要求4的核酸分子,具有不完全的重复。
6.如权利要求1-6中任意一项的核酸分子,它缺少信号序列。
7.如权利要求1-6中任意一项的核酸分子,它编码选自下组的一种或多种序列FLSFHISNL;NSSLEDPSTDYYQELQRDISE;和NLTISDVSV。
8.如权利要求1-7中任意一项的核酸分子,还包括编码T-辅助表位的异源序列。
9.如权利要求1-8中任意一项的核酸分子,它是DNA分子。
10.包括权利要求1-9的DNA分子的质粒。
11.一种药物组合物,包括权利要求1-9的核酸或权利要求10的质粒,和可以药用的赋形剂,稀释剂或载体。
12.如权利要求11的药物组合物,其中所述载体是微粒。
13.如权利要求12的药物组合物,其中所述微粒是金。
14.如权利要求11-13中任意一项的药物组合物,还包括佐剂。
15.权利要求1-9中任意一项的核酸,权利要求10的质粒,或权利要求11-14的药物组合物在医学中的用途。
16.权利要求1-9中任意一项的核酸在制备用于治疗或预防表达MUC-1的肿瘤的药物中的用途。
17.一种治疗或预防肿瘤的方法,包括施用安全的和有效量的如权利要求1-9的核酸,或权利要求10的质粒。
全文摘要
提供了与天然MUC-1具有较低同源性的MUC-1 DNA构建体。提供了含有所述MUC-1构建体的药物组合物。
文档编号C07K14/435GK1753994SQ200480005230
公开日2006年3月29日 申请日期2004年2月26日 优先权日2003年2月28日
发明者P·A·汉布林, M·D·L·A·罗查德尔库拉 申请人:葛兰素集团有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1