用作底层填充组合物的助熔剂和促进剂的羟基喹啉的制作方法

文档序号:3556856阅读:299来源:国知局
专利名称:用作底层填充组合物的助熔剂和促进剂的羟基喹啉的制作方法
技术领域
本发明涉及含有羟基喹啉作为助熔剂,作为促进剂,或者作为助熔剂和促进剂的组合物,特别是用作在电子封装中的底层填充组合物,其中焊接点被用于获得电互连。
背景技术
在半导体封装操作中,一种用于将集成电路附到基底上的方法是所谓的倒装片工艺方法。在倒装片工艺中,半导体芯片的有效面(active side)用金属焊球形成凸起,并倒转,从而焊球可以对准并接触基底上的相应的电终端(electrical terminals)而放置。当焊料被回流而形成与基底的冶金连接时,电路连接得以实现。半导体芯片、焊料和基底的热膨胀系数(CTE)是有差异的,这种失配对焊接点产生应力,这最终可能导致半导体封装的失效。
有机材料,通常填充以有机或无机填料或隔离物(spacers),被用于底层填充在芯片与基底之间的缝隙,以弥补CTE失配和强化焊接点。通过在焊料回流之后沿芯片-基底组装件的边沿进行分布,并使该材料流入芯片与基底之间的缝隙,这样的底层填充材料可以通过毛细管效应而被施用。然后固化该底层填充物,一般通过施加热来完成。
在被称为预施用(pre-applied)的可选工艺中,底层填充材料被施用到带有焊料凸起(solder bumped)的半导体晶片上,或者通过印刷,如果该材料是膏的话,或者通过层叠,如果材料是膜的话。晶片被划分为芯片,随后在回流焊接的过程中,单个的芯片被键合到基底上,这一般在温度和压力的协助下完成。该工艺可以在一步操作中完成回流焊接和底层填充料固化,或者底层填充物可以在回流之后的另外的工艺步骤中被固化。
在被称为无流动(no-flow)的另一种工艺中,底层填充材料被施用到基底上,倒装片被放置在底层填充物之上,一般在温度和压力的协助下,焊料被回流,以实现芯片与基底之间的互联。在热压键合设备上,在可以短至几秒的时间期间内完成此回流工艺。底层填充材料可以在这些相同条件下被固化,或者如同预施用工艺的情形,可以在另外的工艺步骤中被固化。
在所有这三种底层填充操作中,在回流操作之前或者回流操作过程中,焊料必须被熔化,以去除存在的任何金属氧化物,因为金属氧化物的存在阻碍了焊料的回流、焊料对基底的浸润以及电连接。对于毛细流操作,在加入毛细流底层填充物之前,要进行助焊以及焊剂残余物的去除。对于无流动和预施用底层填充操作而言,助熔剂(fluxing agent)被加入到底层填充材料中,助熔在焊料的回流过程中发生。
一般地,在无流动底层填充材料中的助熔剂一般为有机酸或酐,它们不适合于对酸类物质敏感的化学工艺,例如氰酸酯型底层填充树脂。在此类化学工艺中,由于较早的胶凝化,酸性助熔剂缩短了底层填充物的贮存期限,而且它们可能腐蚀固化的底层填充材料中的焊料互接。
如同所有的非结晶聚合物或陶瓷,固化的底层填充组合物具有两种热膨胀系数(CTE)。在玻璃化转变温度(Tg)之下,CTE一般被称为α1。在玻璃化转变温度之上,CTE一般被称为α2。一般而言,α2比α1高得多。具有高Tg的底层填充物在所经历的操作温度的整个范围内将保持在α1;具有低Tg的底层填充物在正常使用条件下更有可能进入α2,引起过度的膨胀和收缩。这可能导致焊接和器件失效。
另外,已知在Tg之上,底层填充物的模量很快地下降;因此,在制造或操作过程中发生的任何温度循环期间,具有较高Tg值的底层填充组合物对焊接提供更好的支持。对于较小的半导体芯片以及对于相对软的焊料,例如高铅合金,具有高Tg不如较大的芯片和无铅焊料那样严格。然而,在倒装片行业中,目前的实践是朝较大的芯片和无铅焊料发展,这从而产生了对具有高Tg值的底层填充物的需求,该Tg值优选高于100℃,甚至高于130℃。
发明概述 本发明是含有羟基喹啉或羟基喹啉衍生物的组合物,其中所述羟基喹啉或羟基喹啉衍生物是增加组合物的Tg的助熔剂(fluxingagent)和/或促进剂(accelerating agent)。在另一个实施方案中,本发明是含有羟基喹啉或羟基喹啉衍生物、可固化树脂和固化剂的组合物,所述羟基喹啉或羟基喹啉衍生物作为助熔剂(当焊料存在时,用于焊料)以及作为促进剂。羟基喹啉化合物是充分酸性的,以便作为焊剂表现良好,但是并非过于酸性,因此不会引起过早胶凝化或腐蚀。羟基喹啉或羟基喹啉衍生物的作用是加速组合物的固化,并且在低温固化条件下增加玻璃化转变温度(Tg)。在又一个实施方案中,本发明是包括羟基喹啉或羟基喹啉衍生物、氰酸酯树脂和固化剂的组合物。如本文所用,词语“羟基喹啉(quinolinol)”与“羟基喹啉(hydroxyquinoline)”同义。


图1显示了焊接点的SEM照片。
发明详述 本发明的助熔和/或促进剂是羟基喹啉化合物或衍生自羟基喹啉的化合物(在下文中被称为羟基喹啉衍生物),其意指含有羟基喹啉部分的化合物。示例性羟基喹啉化合物是 示例性羟基喹啉衍生物是那些具有下面的双-羟基喹啉结构的物质
其可以通过羟基官能化的喹啉与选择的二酸经由费歇尔酯化反应来制备。在羟基喹啉官能团之间的桥接的属性是由酸的属性确定的。通过选择适当的二酸可以控制性质诸如熔点和溶解度。
所述反应可以通过此处的反应方案来示范,其中R是任何有机部分 具体的合适化合物包括那些其中R是烷基的化合物,特别地,R是戊基、己基、庚基或辛基基团的那些化合物。其它化合物包括那些其中R是芳香基团的化合物。由于它们具有增加的分子量,这些化合物具有降低的挥发性,并且具有两个不稳定的氢充当弱酸,这使得它们特别适合用作底层填充组合物中的焊剂。
其它羟基喹啉衍生物通过下面的化合物而被示范,除了助熔能力之外,它们还含有可聚合的官能团。这些具有羟基喹啉官能团和反应活性官能团的化合物在固化过程中将反应进入底层填充组合物,它们在增加的温度下不会挥发,随后也不会形成空隙。例子包括下列化合物A化合物B 和化合物C
在上面的化合物A、B和C中的反应活性官能团分别是丙烯酸酯、苯乙烯和马来酰亚胺官能团。其它合适的反应活性官能团包括环氧化物、氧杂环丁烷、苯并三唑、肉桂基化合物、苯乙烯化合物和乙烯基醚。
这些以及类似化合物的合成在有机合成领域技术人员的专业技能之内;化合物A、B和C的合成方案被显示在此 本领域技术人员应当理解,其它的官能团可以通过类似的反应而被构建到这些化合物中。
在一个实施方案中,本发明的组合物可以被用于助熔如在本说明书的背景技术部分所述的毛细底层填充操作中的焊料。在此种情况下,所述组合物将包括一种助熔剂或几种助熔剂的组合,和可选地,一种溶剂或几种溶剂的组合。
当用在毛细流动操作中时,助熔剂的热稳定性应当足以耐受焊料被回流时的增高的温度。焊料回流温度将取决于焊料组成,且随着实际的冶金而变化。实践者通过加热焊料直至其回流将能够确定焊料回流温度。通过热重分析(TGA),其为在本领域技术人员的专业范围内的技术,可以容易地评价助熔剂的热稳定性的测定。
在另一个实施方案中,本发明的助熔组合物还包括一种或多种可固化树脂、所述一种或多种树脂的一种或多种固化剂以及可选地导电或不导电填料。所述可固化树脂或树脂(多种)将以按重量计算从百分之10至百分之99.5的量存在;固化剂或固化剂(多种)如果存在的话,将以按重量计算可达百分之30的量存在;填料如果存在的话,将以按重量计算可达百分之90的量存在;助熔剂将以按重量计算从百分之0.5至百分之30的量存在。
底层填充组合物的合适的可固化树脂包括热固性和热塑性聚合物。示例性聚合物包括环氧树脂、聚酰胺、苯氧基树脂、聚苯并嗪、丙烯酸酯、氰酸酯、双马来酰亚胺、聚醚砜、聚酰亚胺、苯并嗪、乙烯基醚、硅化烯烃(siliconized olefin)、聚烯烃、聚酯、聚苯乙烯、聚碳酸酯、聚丙烯、聚氯乙烯、聚异丁烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚乙酸乙烯酯、聚(2-乙烯吡啶)、顺-1,4-聚异戊二烯、3,4-聚氯丁二烯、乙烯基共聚物、聚环氧乙烷、聚乙二醇、聚甲醛、聚乙醛、poly(b-propiolacetone)、聚(10-癸酸酯)、聚对苯二甲酸乙二酯、聚己内酰胺、聚(11-十一酰胺)(poly(11-undecanoamide))、聚对苯二甲酰间苯二胺、聚四亚甲基间苯磺酰胺(poly(tetramethylene-m-benzenesulfonamide))、聚酯型聚芳基化合物、聚苯醚、聚苯硫醚、聚砜、聚醚酮、聚醚酰亚胺、氟化聚酰亚胺、聚酰亚胺硅氧烷(polyimidesiloxane)、聚异吲哚并喹唑啉二酮(poly-isoindolo-quinazolinedione)、聚硫醚酰亚胺(polythioetherimide)、聚苯基喹喔啉、polyquinixalone、酰亚胺-芳基醚苯基喹喔啉共聚物、聚喹喔啉、聚苯并咪唑、聚苯并唑、聚降冰片烯、聚芳撑醚(poiy(arylene ether))、聚硅烷、聚对二甲苯、苯并环丁烯、羟基-(苯并唑)共聚物和poly(silarylene siloxanes)。
合适的可固化树脂可以由实践者判断决定,但是特别地可以选自氰酸酯、环氧树脂、双马来酰亚胺和(甲基)丙烯酸酯,或者这些物质的组合。已知氰酸酯对酸性条件敏感,由于这个原因,在底层填充组合物中通常被避免,特别是那些具有酸性助熔剂的组合物。因此,在一个实施方案中,本发明是包括氰酸酯树脂、该氰酸酯树脂的固化剂、如本文所述的羟基喹啉或羟基喹啉衍生物助熔剂和可选的导电或不导电填料的助熔组合物。在另一个实施方案中,助熔组合物还包括环氧树脂。
合适的氰酸酯树脂包括那些具有一般结构 的树脂,其中n是1或更大,X是烃基团。示例性的X实体包括但不限于双酚A、双酚F、双酚S、双酚E、双酚O、苯酚或甲酚线型酚醛、二环聚戊二烯、聚丁二烯、聚碳酸酯、聚氨酯、聚醚或聚酯。商业上可获得的氰酸酯材料包括AroCy L-10、AroCy XU366、AroCy XU371、AroCyXU378、XU71787.02L和XU71787.07L,供应自Huntsman LLC;PrimasetPT30、Primaset PT30 S75、Primaset PT60、Primaset PT60S、PrimasetBADCY、Primaset DA230S、Primaset MethylCy和Primaset LECY,供应自Lonza Group Limited;2-烯丙基苯酚氰酸酯、4-甲氧基苯酚氰酸酯、2,2-双(4-氰氧基苯酚)-1,1,1,3,3,3-六氟丙烷、双酚A氰酸酯、二烯丙基双酚A氰酸酯、4-苯基苯酚氰酸酯、1,1,1-三(4-氰氧基--苯基)-乙烷、4-枯基酚氰酸酯、1,1-双(4-氰氧基-苯基)乙烷、2,2,3,4,4,5,5,6,6,7,7-十一氟-辛二醇二氰酸酯和4,4′-双酚氰酸酯,供应自Oakwood Products,Inc.。
在另外的实施方案中,合适的氰酸酯包括具有结构 的氰酸酯,其中R1至R4独立为氢、C1-C10烷基、C3-C8环烷基、C1-C10烷氧基、卤素、苯基、苯氧基和部分或完全氟化的烷基或芳基基团(例子为1,3-苯二氰酸酯(phenylene-1,3-dicyanate)); 氰酸酯,具有结构
其中R1至R5独立为氢、C1-C10烷基、C3-C8环烷基、C1-C10烷氧基、卤素、苯基、苯氧基和部分或完全氟化的烷基或芳基基团; 氰酸酯,具有结构 其中R1至R4独立为氢、C1-C10烷基、C3-C8环烷基、C1-C10烷氧基、卤素、苯基、苯氧基和部分或完全氟化的烷基或芳基基团;Z为化学键或SO2、CF2、CH2、CHF、CHCH3、异丙基、六氟异丙基、C1-C10烷基、O、N=N、C=C、COO、C=N、C=N-C=N、C1-C10烷氧基、S、Si(CH3)2或下列结构之一 (例子是来自Vantico的商业名称为AroCy L-10的4,4′亚乙基双亚苯基氰酸酯); 氰酸酯,具有结构 其中R6是氢或C1-C10烷基,X是CH2或下列结构之一 n是从0至20的数(例子包括来自Vantico的商业产品XU366和XU71787.07); 具有结构N≡C-O-R7-O-C≡N的氰酸酯,或者 氰酸酯,其具有结构N≡C-O-R7,其中R7是具有3至12个碳原子的非芳香烃链,所述烃链可以任选地被部分或完全氟化。
合适的环氧树脂包括双酚、线型酚醛(novolac)、萘和脂族型环氧树脂。商业可得的材料包括双酚型环氧树脂(Epiclon 830LVP、830CRP、835LV、850CRP),供应自Dainippon Ink & Chemicals,Inc.;萘型环氧树脂(Epiclon HP4032),供应自Dainippon Ink & Chemicals,Inc.;脂族环氧树脂(Araldite CY179、184、192、175、179),供应自Ciba Specialty Chemicals,(Epoxy 1234、249、206),供应自DowCorporation,和(EHPE-3150),供应自Daicel Chemical Industries,Ltd.其它合适的环氧树脂包括脂环系环氧树脂、双酚-A型环氧树脂、双酚-F型环氧树脂、环氧-线型酚醛树脂、联苯型环氧树脂、萘型环氧树脂和二环聚戊二烯酚(dicyclopentadienephenol)型环氧树脂。
合适的马来酰亚胺树脂包括那些具有一般结构 的树脂,其中n是1至3,X1是脂族或芳族基团。示例性X1实体包括聚丁二烯、聚碳酸酯、聚氨酯、聚醚、聚酯、简单烃和含有诸如羰基、羧基、酰胺、氨基甲酸酯、脲、酯或醚的官能团的简单烃。这些类型的树脂是商业可得的,例如可以从Dainippon Ink and Chemicals,Inc.获得。
另外的合适的马来酰亚胺树脂包括但不限于固体芳族双马来酰亚胺(BMI)树脂,特别是那些具有结构 的树脂,其中Q是芳香基团。示例性芳基包括
具有这些Q桥连基团的双马来酰亚胺树脂是商业可得的,例如可以从Sartomer(美国)或HOS-Technic GmbH(奥地利)获得。
其它合适的马来酰亚胺树脂包括下列 其中C36表示具有36个碳原子的直链或支链烃链(具有或没有环部分); 合适的丙烯酸酯和甲基丙烯酸酯树脂包括那些具有一般结构 的树脂,其中n为1至6,R1是-H或-CH3。X2是芳基或脂族基团。示例性X2实体包括聚丁二烯、聚碳酸酯、聚氨酯、聚醚、聚酯、简单烃和含有诸如羰基、羧基、酰胺、氨基甲酸酯、脲、酯或醚的官能团的简单烃。
商业可得的材料包括(甲基)丙烯酸丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸异癸酯、(甲基)丙烯酸n-月桂酯、(甲基)丙烯酸烷基酯、(甲基)丙烯酸十三烷酯、(甲基)丙烯酸n-硬脂醇酯、(甲基)丙烯酸环己酯、(甲基)丙烯酸四氢糠酯、(甲基)丙烯酸2-苯氧乙酯、(甲基)丙烯酸异冰片酯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9壬二醇二(甲基)丙烯酸酯(1,9-nonandioldi(meth)acrylate)、(甲基)丙烯酸全氟辛基乙酯(perfluorooctylethyl(meth)acrylate)、1,10-癸二醇二(甲基)丙烯酸酯(1,10-decandioldi(meth)acrylate)、壬基苯酚聚丙氧基化(甲基)丙烯酸酯(nonylphenolpolypropoxylate(meth)acrylate)以及polypentoxylate tetrahydrofurfurylacrylate,供应自Kyoeisha Chemcial Co.,LTD;聚丁二烯氨基甲酸酯二甲基丙烯酸酯(CN302、NTX6513)和聚丁二烯二甲基丙烯酸酯(CN301、NTX6039、PRO6270),供应自Sartomer Company,Inc.;聚碳酸酯氨基甲酸酯二丙烯酸酯(ArtResin UN9200A),供应自Negami ChemicalIndustries Co.,LTD;丙烯酸酯化脂族氨基甲酸酯低聚物(acrylatedaliphatic urethane oligomer)(Ebecryl 230、264、265、270、284、4830、4833、4834、4835、4866、4881、4883、8402、8800-20R、8803、8804),供应自Radcure Specialities Inc.;聚酯丙烯酸酯低聚物(Ebecryl 657、770、810、830、1657、1810、1830),供应自Radcure Specialities,Inc.;和环氧丙烯酸酯树脂(CN104、111、112、115、116、117、118、119、120、124、136),供应自Sartomer Company,Inc.。在一个实施方案中,丙烯酸酯树脂选自丙烯酸异冰片酯、甲基丙烯酸异冰片酯、丙烯酸月桂酯、甲基丙烯酸月桂酯、带有丙烯酸酯官能团的聚丁二烯以及带有甲基丙烯酸酯官能团的聚丁二烯。
合适的乙烯基醚树脂是含有乙烯基醚官能团的任何树脂,包括聚丁二烯、聚碳酸酯、聚氨酯、聚醚、聚酯、简单烃和含有诸如羰基、羧基、酰胺、氨基甲酸酯、脲、酯或醚的官能团的简单烃。商业可得的树脂包括环己烷二甲醇二乙烯基醚(cyclohenanedimethanoldivinylehter)、十二烷基乙烯基醚(dodecylvinylether)、环己基乙烯基醚(cyclohexyl vinylether)、2-乙基己基乙烯基醚、双丙二醇二乙烯基醚(dipropyleneglycol divinylether)、己二醇二乙烯基醚(hexanedioldivinylether)、十八烷基乙烯基醚(octadecylvinylether)和丁二醇二乙烯基醚,供应自International Speciality Products(ISP);Vectomer 4010、4020、4030、4040、4051、4210、4220、4230、4060、5015,供应自Sigma-Aldrich,Inc。
固化剂可以是任何自由基引发剂或离子引发剂(阳离子或阴离子),取决于选择的是自由基固化树脂还是离子固化树脂,并且将以有效量存在。对于自由基固化剂而言,有效量按重量计算一般为有机化合物(不包括任何填料)的0.1%至10%,但是可以高达按重量计算30%。对于离子固化剂或引发剂而言,有效量按重量计算一般为有机化合物(不包括任何填料)的0.1%至10%,但是可以高达按重量计算30%。固化剂的例子包括咪唑、叔胺、有机金属盐、胺盐和改性咪唑化合物、无机金属盐、酚类、酸酐和其它这样的化合物。
示例性咪唑包括但不限于2-甲基-咪唑、2-十一烷基咪唑、2-十七烷基咪唑、2-苯基咪唑、2-乙基4-甲基-咪唑、1-苄基-2-甲基咪唑、1-丙基-2-甲基-咪唑、1-氰基-乙基-2-甲基咪唑、1-氰基乙基-2-乙基-4-甲基咪唑、1-氰基乙基-2-十一烷基咪唑、1-氰基乙基-2-苯基咪唑、1-胍氨乙基-2-甲基咪唑和咪唑与偏苯三酸的加成产物。
示例性叔胺包括但不限于N,N-二甲基苄胺、N,N-二甲基苯胺、N,N-二甲基甲苯胺、N,N-二甲基对甲氧基苯胺、对-卤代-N,N-二甲基苯胺、2-N-乙基苯胺基乙醇、三正丁胺、吡啶、喹啉、N-甲基吗啉、三乙醇胺、三亚乙基二胺、N,N,N′,N′-四甲基丁烷二胺、N-甲基哌啶。其它合适的含氮化合物包括双氰胺、二烯丙基三聚氰胺、二氨基顺丁烯二腈、胺盐和改性咪唑化合物。
示例性酚类包括但不限于苯酚、甲酚、二甲苯酚、间苯二酚、线性酚醛树脂和间苯三酚。
示例性有机金属盐包括但不限于环烷酸铅、硬脂酸铅、环烷酸锌、辛酸锌、油酸锡、顺丁烯二酸二丁基锡、环烷酸锰、环烷酸钴和乙酰丙酮铁(acetyl aceton iron)。其它合适的金属化合物包括但不限于金属乙酰丙酮酸盐(metal acetoacetonate)、金属辛酸盐、金属乙酸盐、金属卤化物、金属咪唑络合物、Co(II)(乙酰丙酮酸)(Co(II)(acetoacetonate))、Cu(II)(乙酰丙酮酸)(Cu(II)(acetoacetonate))、Mn(II)(乙酰丙酮酸)(Mn(II)(acetoacetonate))、Ti(乙酰丙酮酸)(Ti(acetoacetonate))和Fe(II)(乙酰丙酮酸)(Fe(II)(acetoacetonate))。示例性无机金属盐包括但不限于氯化锡、氯化锌和氯化铝。
示例性过氧化物包括但不限于过氧化苯甲酰、月桂酰过氧化物、辛酰过氧化物(octanoyl peroxide)、过辛酸丁酯(butyl peroctoate)、过氧化二枯基、过氧化乙酰、对氯过氧化苯甲酰和二-叔丁基邻羧酸过苯二甲酸酯(di-t-butyl diperphthalate)。
示例性酸酐包括但不限于马来酸酐、邻苯二甲酸酐、月桂酸酐、1,2,4,5-苯四酸酐、1,2,4-苯三酸酐、六氢邻苯二甲酸酐、六氢均苯四酸酐(hexahydropyromellitic anhydride)和六氢偏苯三酸酐(hexahydrotrimellitic anhydride)。
示例性偶氮化合物包括但不限于偶氮异丁腈、2,2′-偶氮二丙烷、2,2′-偶氮双(2-甲基丁腈)、m,m′-偶氮氧化苯乙烯(m,m′-azoxystyrene)。其它合适的化合物包括腙(hydrozones)、己二酸二酰肼和BF3-胺络合物。
在一些情况下,使用不止一种类型的固化可能是被期望的。例如,阳离子和自由基引发可能都是期望的,在该情况下,自由基固化和离子固化树脂可以被用在组合物中。例如,这样的组合物将允许例如,固化过程通过使用紫外光照射的阳离子引发而开始,并且在后来的处理步骤中,通过施加热的自由基引发而完成。
在一些系统中,除了固化剂,固化促进剂可以被用于最优化固化速率。固化促进剂包括但不限于金属环烷酸盐、金属乙酰丙酮酸盐(螯合物)、金属辛酸盐、金属乙酸盐、金属卤化物、金属咪唑络合物、金属胺络合物、三苯膦、烷基取代的咪唑、咪唑盐及硼酸盐(oniumborate)。
当使用固化步骤时,固化温度一般在80°-250℃的范围内,并且固化将在数秒或可达120分钟的时间期间内完成,这取决于具体的树脂化学和所选择的固化剂。每种粘合组合物的时间和温度固化曲线会有所变化,并且不同的组合物可以被设计为提供适合具体工业制造工艺的固化曲线(curing profile)。
取决于最终应用,一种或多种填料可以被包括在组合物中,并且通常被加入是用于改进流变性质和减小应力。对于底层填充应用,填料将是不导电的。合适的不导电填料的例子包括氧化铝、氢氧化铝、二氧化硅、蛭石、云母、硅灰石、碳酸钙、二氧化钛、沙子、玻璃、硫酸钡、锆、炭黑、有机填料和卤化乙烯聚合物,例如四氟乙烯、三氟乙烯、偏二氟乙烯、乙烯基氟、偏二氯乙烯和乙烯基氯。
填料颗粒可以是任何合适的尺寸,其可以在从纳米级至数毫米范围。用于任何具体最终用途的此类尺寸的选择在本领域技术人员的专业范围之内。填料可以以按总组合物的重量计算从10%至90%的量存在。在组合物中可以使用不止一种填料,并且填料可以进行或没有进行表面处理。适合的填料尺寸可以被实践者确定,但是一般而言,在20纳米至100微米的范围内。
实施例 实施例1.双-羟基喹啉的制备 根据The Journal of Organic Chemistry,Volume 26,number 10,October 24,1961,第4078至4083页的Donald.S.Noyce and Lloyd J.Dolby,Amino-and Chloromethylation of 8-Quinlinol.Mechanism of Preponderant orthoSubstitution in Phenols under Mannich Conditions所述的步骤,通过8-羟基喹啉与过量甲醛在盐酸水溶液中的反应制备助熔剂双-羟基喹啉。在配有磁搅棒、回流冷凝器和热油浴的250mL四颈圆底烧瓶中,组合8-羟基喹啉(29.0克,0.2000mol)和盐酸(37%,85mL)。起初,在混合这些试剂之后,观察到~25℃的放热量。然后加入甲醛(37%,9mL),这导致清澈的黄色溶液变为金色溶液。混合物在回流下被加热90分钟。在该段时间期间,浓重的酸性烟雾产生。回流混合15分钟之后,结晶黄色固体从溶液中沉淀。回流之后,将混合物冷却至室温,并使其放置过夜。
14小时后,观察到,更多的固体已经结晶,并且此刻烧瓶被沉淀塞满。从清澈的金色母液中过滤黄色固体,并将其溶解在~850mL的水中。所形成的黄色溶液的pH经测量在0至1之间。浓氢氧化铵被缓慢加入以中和溶液。在pH在3和4之间时,清澈的黄色溶液转为不透明,在pH为5时,细粒开始形成。加入更多氢氧化铵,至pH为10.02。加入在90分钟内完成,并且在该时间期间,反应溶液/混合物的温度不超过27℃。
反应被混合70分钟,形成细粒大小的乳白混合物。反应的最终pH为10.08。浅灰色粉饼从混合物中被过滤出来,留下清澈的金色液体。将滤饼加入到300mL二甲基甲酰胺中,并剧烈混合30分钟。过滤之后,收集白色滤饼;滤液为浅紫色液体。接下来,将滤饼湿加到300mL丙酮中,混合30分钟,过滤。然后重复洗涤,留下白色滤饼和清澈无色滤液。将白色滤饼风干,磨成白色粉末,在真空下于50℃进一步过夜干燥。从该反应中获得36%的收率。
该物质的结构经1HNMR证实,其具有与在文献中公开的相同的峰,纯度为大约95%,双-羟基喹啉的DSC结果表明,mp为285℃,其值与在文献中找到的熔点匹配。TGA结果表明,在200℃的重量损失仅为1.2%。
实施例2.羟基喹啉/哌啶的制备 羟基喹啉可以是挥发性的,在本实施例中,羟基喹啉/哌啶衍生物被制备,目的是增加体积并降低羟基喹啉的挥发性。该衍生物的不对称性促成了比所发现的双-羟基喹啉熔点低的熔点。羟基喹啉/哌啶是通过等摩尔量的8-羟基喹啉、哌啶和低聚甲醛的反应在熔融状态被制备的。
将8-羟基喹啉(29.0克,0.2000mol)、哌啶(17.0克,0.2000mol)和低聚甲醛(6.0克,0.2000mol)加入配有机械混合器、温度计和回流冷凝器的100mL三颈圆底烧瓶中。随着混合,固体部分地溶解为不透明的金色液体,并且反应温度在5分钟之内从室温升至71℃。继续混合直到反应温度降至~60℃。此刻,将烧瓶放置在预热至100℃的热油浴中。反应在油浴中被混合~3.5小时,在该时间期间,反应温度在80与90℃之间变化。
在反应结束时,产物为深琥珀色浆体。在85℃,通过Kugelrohr设备将残留的原材料从浆中去除。将所形成的清澈的金色粘性液体(33克)与33mL石油醚组合并研磨。从而,从浆中形成了暗象牙色粉末。将该粉末在石油醚中再洗两次,并且在真空炉中于70℃干燥两天。该物质的结构经1HNMR和GC/MS证实,结果符合那些发现于文献中的结果。从该反应获得了41%的收率。116℃的DSC熔点与在文献中发现的熔点匹配(Donald.S.Noyce and Lloyd J.Dolby,Amino-andChloromethylation of 8-Quinlinol.Mechanism of Preponderant orthoSubstitution in Phenols under Mannich Conditions,The Journal of OrganicChemistry,Volume 26,number 10,October 24,1961,4078-4083)。
实施例3.羟基官能化羟基喹啉的制备 通过等摩尔量的8-羟基喹啉与甲醛在盐酸水溶液中反应,制备羟基官能化羟基喹啉中间体。(注意,羟基喹啉被类似地制备,但是相对于8-羟基喹啉,使用摩尔过量的甲醛)。该反应的产物显示了相比双-羟基喹啉改进的溶解度,并且更容易被表征。合成方法获自Donald.S.Noyceand Lloyd J.Dolby,Amino-and Chloromethylation of 8-Quinlinol.Mechanism of Preponderant ortho Substitution in Phenols under MannichConditions,The Journal of Organic Chemistry,Volume 26,number 10,October 24,1961,4078-4083。
在配有磁搅棒、温度计、回流冷凝器和热油浴的1升的四颈圆底烧瓶中,混合8-羟基喹啉(120.0克,0.8267mol)、盐酸(37%,352mL)和甲醛(37%,67.7克)。混合这些试剂之后,观察到~20℃的放热量。反应变为清澈的金色溶液。接下来,在125℃的油浴中加热反应,黄色固体几乎立刻从溶液中沉淀出来。在回流下(95至111℃)继续加热~65分钟。然后将嫩黄色反应混合物冷却至室温。
从清澈的黄色母液中过滤固体,并将其溶解在~800mL水中。所形成的深黄色溶液的pH经测量在0至1之间。浓氢氧化铵被缓慢加入以中和溶液。在pH在3和4之间时,清澈的黄色溶液转为不透明的桔红色。在pH为5时,细粒开始形成且反应变稠。加入更多氢氧化铵,至pH为10.0。加入在50分钟内完成,并且在该时间期间,反应溶液/混合物的温度不超过35℃。反应被混合60分钟,形成细粒大小的黄浆。然后它被混合过夜,反应的最终pH为10.15。
茶色粉饼从混合物中被过滤出来,留下深琥珀色液体。将滤饼加入到500mL二甲基甲酰胺中,并剧烈混合30分钟。过滤之后,收集白色滤饼;滤液为清澈的浅金色液体。然后重复用水洗涤。将白色滤饼风干,磨成粉末,在真空下于45℃进一步干燥过夜。从该反应获得了42%的收率。经1HNMR和GC/MS证实该物质的结构。另外,进行DSC扫描,得出137℃的mp,这与发现于上述参考文献中的138-139℃的熔点非常接近。
实施例4.底层填充组合物的工作寿命将来自实施例1的双-羟基喹啉(按重量计算3.5份)与氰酸酯(按重量计算20份,来自Huntsman的产品编号XU71787.07与来自Lanza的产品名称Lecy的1比1比例的混合物);环氧树脂(按重量计算25.92份,来自Resolution Performance Products的产品名称Epon 826);壬基酚(按重量计算0.47份);催化剂(按重量计算0.03份);流变改性剂(按重量计算0.05份,来自Solution,Inc.的产品Modafiow);和二氧化硅填料(按重量计算50份)配制到底层填充组合物中,并对其进行电互连测试,工作寿命被测量为粘度随时间的变化。每一种配方都通过了电互连测试,这表明助熔发生了。工作寿命的结果被列在表A中,其显示,粘度在经过冻/融循环之后保持稳定长达16小时。

实施例5.互连图1助熔组合物被制备为含有按重量计算3.5%的具有结构

的羟基喹啉助熔剂、按重量计算28.4%的环氧树脂、按重量计算18.01%的氰酸酯树脂、按重量计算0.08%的催化剂、按重量计算0.01%的流变改性剂和按重量计算50%的二氧化硅填料。使用热压Toray键合机,制备焊料凸起芯片和BT基底的组装件,以在凸起芯片和基底之间建立电路互连。将助熔组合物分布在BT基底上,该基底被阻焊剂覆盖,暴露痕量为镀到Cu上的Ni/Au。用带有Sn95.5Cu3.8Ag0.7焊料凸起的硅芯片(5×5mm)与基底上的暴露痕量对准。基底被加热至80℃,并且在热压键合机中,使芯片和基底在20牛顿的压力下接触。然后在1-2秒之内,将组装件按斜坡曲线(ramped profile)从200℃加热至220℃,并且在220℃保持5-6秒,以完成固化和焊接的形成。
通过使用Agilent 34401 Digital Multimeter测量电路的电阻,证实了焊接的电路互连。在热压键合之后立刻检查这些互连,并且在160℃进一步固化2小时之后再次检查这些互连。在固化之前和固化之后电路互连显示几乎没有变化,组装件通过了反映电连接的电路测试。SEM照片被示于图1中,表明了优良的焊接浸润和焊接质量。相同配方但是没有羟基喹啉的对照组合物没有实现电互连。
实施例6.TG改进。
使用不同的羟基喹啉,按表B中所示制备组合物,并且针对没有任何羟基喹啉的对照测量玻璃化转变温度(Tg)。结果也被报告在表B中,结果显示,羟基喹啉的加入引起Tg增加。(Tg是在制剂于160℃保持2小时之后被测量)。

2-甲基-8-羟基喹啉具有结构 4-羟基-2-甲基喹啉具有结构 结果显示,羟基喹啉的存在起到了作为组合物的促进剂的作用,引起Tg增加。
权利要求
1.底层填充组合物,其包括羟基喹啉或羟基喹啉衍生物作为助熔剂和促进剂。
2.根据权利要求1所述的底层填充组合物,其中所述助熔剂和促进剂选自 其中R是任何有机部分。
3.根据权利要求1所述的底层填充组合物,其中所述助熔剂和促进剂选自
4.根据权利要求1、2或3所述的底层填充组合物,还包括可固化树脂和该树脂的固化剂。
5.根据权利要求1、2或3所述的底层填充组合物,还包括马来酰亚胺树脂、丙烯酸酯树脂、甲基丙烯酸酯树脂、环氧树脂、氰酸酯树脂或这些树脂的组合。
6.根据权利要求1、2或3所述的底层填充组合物,还包括氰酸酯树脂。
7.根据权利要求1、2或3所述的底层填充组合物,还包括氰酸酯树脂和环氧树脂。
8.化合物,其适合用作底层填充组合物中的助熔和促进剂,所述化合物选自
9.一种增加组合物的玻璃化转变温度的方法,所述组合物含有可固化树脂和该树脂的固化剂,所述方法包括将羟基喹啉或羟基喹啉衍生物加入到所述组合物中。
10.一种增加组合物的助熔能力的方法,所述组合物含有可固化树脂和该树脂的固化剂,所述方法包括将羟基喹啉或羟基喹啉衍生物加入到所述组合物中。
全文摘要
底层填充组合物含有羟基喹啉或羟基喹啉衍生物作为助熔剂,作为促进剂,或者作为助熔剂和促进剂。所述组合物是足够酸性的,以便作为焊剂表现良好,但不是太酸以至引起过早胶凝化或腐蚀。与不含羟基喹啉或羟基喹啉衍生物的类似组合物比较,所述组合物也展示了较高的Tg值。
文档编号C07D215/20GK1919525SQ20061012650
公开日2007年2月28日 申请日期2006年8月22日 优先权日2005年8月25日
发明者O·M·穆扎, 刘臻 申请人:国家淀粉及化学投资控股公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1