失泽抑制组合物和包含该组合物的物品的制作方法

文档序号:3653113阅读:239来源:国知局
专利名称:失泽抑制组合物和包含该组合物的物品的制作方法
技术领域
本发明涉及一种制造密封容器的颗粒填充聚合物,所制成的容器可以用来存放银制物体,尤其是有光亮的表面、没有任何保护涂层的基本上纯银的物体,在有水气和痕量含硫气体(比如硫化氢和二氧化硫气体)污染物存在的含氧气氛中,能延长存放时间而不失去光泽。
技术问题此处所称的失泽问题与腐蚀无关,腐蚀特指氧气或者包含水气的氧化剂,与黑色金属物体的表面发生的化学反应。在硫化氢浓度范围从低于1ppm到约5ppm的气氛中,使存放的银成为合金来防止失泽是另一个问题,举例来说,人们已经知道,银可以与少量的铟形成合金。眼下的问题是找到至少一种活性组分,具有有效的失泽抑制作用,它不与银形成合金而是将其分散在存放银器的容器体内。目标是制造一种含有失泽抑制组分的聚合物物品,失泽抑制组分的数量足以对银制物品的光亮表面提供保护,在至少一年内防止其失去光泽,同时基本上不损害该聚合物的物理性能。
背景技术
基本上纯银制的物品在仅含有痕量硫化氢气体的气氛中极易失泽的倾向,导致了许多被认为能防止失泽的合金。这些合金包括美国专利4,973,446中披露的一种合金,含92.5%银、0.5%铜、4.25%锌、0.02%铟、0.48%锡和1.25%硼铜合金,该硼铜合金含2%硼和98%铜;美国专利5,037,708中披露的一种银钯合金,含80~92.5%银,4~9%钯,0~10%铜和0.5~1%锌或铟;美国专利5,817,195中披露的一种合金,含90~92.5%银、5.75~7.5%锌、0.25~1%铜、0.25~0.5%镍、0.1~0.25%硅、0~0.5%铟;美国专利5,882,441中披露的一种合金,含90~94%银、3.5~7.35%锌、1~3%铜和0.1~0.25%硅;美国专利6,139,652中披露的一种合金,至少含有99.5%银,其余选自易氧化的元素,比如铝、锑等;以及其它几种合金。据称它们都能抑制失泽,但不能提供具有这种抑制作用的任何证据,特别是在含有痕量硫化氢和/或二氧化硫的环境中具有抑制作用的任何证据。
“失泽”一词是指金属银表面的光泽消失变暗,直至在其表面形成灰色阴影,阴影随着时间流逝加深。更具体地说,“失泽”指“在室温下极易产生的金属银与任何形式的硫的反应产物。人们熟知的出现在银表面的黑膜,源自环境中的二氧化硫与金属银反应所形成的硫化银。很容易将黑膜用洗净剂从银表面除去,这不是一种真正的腐蚀。”(参见Hawley所编《精编化学辞典》第14版,约翰·威利父子公司,2001,纽约)如下文所示,二氧化硫本身并不会使银失泽。失泽是在氧气和水气的存在的情况下由硫化氢引起的,并且二氧化硫可能会使其更加严重。
为了抵消银制物品失泽的不利影响,无论该物品由基本上为纯银,即银含量至少为99.5%,或是由此类合金之一制造,人们研制出了大量的有机化合物来清洁银制物品失泽的表面。
近期一个这样的实例在美国专利6,165,284中披露。
授于Franey的美国专利4,944,916披露了存在于聚合物中的铜和铝的混合颗粒,用来清除扩散气体。在其中一个示例中,对该混合颗粒作用于银制结构的效果进行测试,该结构封闭在袋中,并放入一个小室中,该小室先抽成真空,再用纯硫化氢气体回充。在没有水气和氧气分子存在时,纯硫化氢没有在基本上为纯银的光泽表面造成失泽。
由聚乙烯、聚丙烯和可生物降解聚酯制成的盒式容器和合成树脂薄膜最常用来包装银制物品,防止它们与水气和环境污染物接触;最优选的是透明包装材料,并且最优选的聚合物是低密度聚乙烯(“LDPE”)。典型的低密度聚乙烯的密度低于0.943克/立方厘米。“透明”一词是指失泽抑制聚合物与不含有失泽抑制组分的聚合物对可见光具有基本上相同的透光率。这样的透明度能让人看见包装物中的银制物品,而且如果本文蒙上一层薄膜,人们能阅读这种用12点阵字体印刷的文字。“薄膜”一词指聚合物薄层,其厚度足以在其中将足够量的失泽抑制成分实质性均匀地分散,以能在预定的期间内提供失泽抑制保护。而且,失泽抑制聚合物表面光滑,厚度基本均匀,或者说它的表面摸上去光滑。比如,当薄膜的厚度在0.025mm(1密耳或千分之一英寸)至0.125mm(5密耳或千分之五英寸)范围内时,光滑薄膜的厚度变化通常不超过±0.0125mm(0.5密耳或万分之五英寸)。当厚度变化是由于薄膜表面或靠近表面的固体颗粒或是颗粒团块引起时,薄膜摸上去就不光滑。
本文所使用的“银”和“银制物品”,是指由最重要的银合金所制成的物品,该银合金典型的银含量超过90%,比如用来制造珠宝、通常所说的纯银餐具、铸成的小雕像、半身像或雕像和其他装饰品;也指基本上由纯银制成的物品,比如电子设备电路中的配线,以及上文提及的珠宝、餐具和类似物品,由含量至少99.5%的银制造。虽然教导此类合金的参考文献声称它们能防止失泽,但就该类合金对二氧化硫和/或硫化氢的抑制作用,这些参考文献显然没有任何参照或提供任何证据。在银器存放的整个期间,气体会通过包装物的壁持续透入,除非造成失泽的气体被阻止和清除。尽管试验表明,二氧化硫本身引起的危害基本上不会造成银的失泽,到其存在可能会使硫化氢引起的危害更加严重,人们希望将两种气体同时消除。
将合金或非合金的银涂上气体不能渗透的涂料,常常不是一种可选的方法,因为一种或其他原因,不能在银上涂上一层看不见的保护层,比如透明漆。在某些情形下,即使涂层在成本上不是不能采用,也不使用漆;在另一些情形下,涂漆的物体需要在至少一年的相当长的时间之后装船或交货,而且看起来好像是新制的,那时尽管涂层下面的银表面没有变色,但涂层已变色。
因此人们将存放的银制物品密封在包装物中,其壁对含量范围低至10ppb(十亿分之一)到5ppm(百万分之一)或更高的痕量的硫化氢气体有相当的渗透性。因此付出一定成本,将合金或非合金的银加以包装,以使其在长时间内不易失去光泽,是适当的。
因为除二氧化硫和硫化氢外,气氛中的氧和含氧化合物,如氮的氧化物,通常会损坏包装膜,一般用芳香族三唑或受阻酚抗氧剂,比如2,4,6-三取代苯酚,其中4-取代基选自可取代亚甲基碳和可取代胺,对其进行定期保护。以通常低于100ppm的相对较低的浓度使用,三唑和/或受阻酚能防止包装膜的氧化,清除进入包装膜中的氧原子或硫原子产生的自由基。人们相信,三唑和受阻酚的存在能捕捉合成树脂薄膜中存在的水分子。由于氧化剂的作用所产生的自由基,酚通过生成化合物的基体发挥作用,但是薄膜中的氧气未被清除,硫化氢或二氧化硫也未被清除。
很明显,在任意形状和横截面的物体中,存在的硫化氢和二氧化硫清除剂,应当能够发挥活性失泽抑制组分的作用,防止失泽。“活性”一词是指该组分能与硫化氢和任何酸性污染气体,尤其是二氧化硫气体,都发生相互作用。
该物品通常是合成树脂薄膜或盒式容器。除银制物品外,薄膜用来包装带有金属银电路和接线柱的电子产品,对其存贮和运输提供保护;盒式容器可以内衬布料,将银制品放置其中。海运中,金属银制物品通常用聚烯烃(PO)袋或由聚烯烃热成形的容器包装;或者将物品用含有失泽抑制组分的薄膜包裹后,再放入一个较大的容器内。活性失泽抑制组分作为其中一个组成部分,分散在该薄膜中。
用于保护基本上纯银制物品,在环境温度大约23℃下,单独或同时含有浓度不低于10ppb至10ppm的硫化氢和/或二氧化硫的气氛中,能在至少一年的期限内保持银表面的光泽不变失泽的包装材料尚未见公开披露。
发明概述一种失泽抑制聚合物组合物,在含有分子氧和浓度为1ppb(十亿分之一)至10ppm(百万分之一)范围内的硫化氢气体、相对湿度为90%、温度37.4℃(100°F)的密闭环境中,当金属银制品的表面暴露于该组合物时,能够在至少一年内有效保护金属银制品的表面。所述的组合物主要由实质上不水解的聚合物构成,聚合物中实质性均匀地分散有重量百分比约0.01%~5%选自包含碱金属硅酸盐和氧化锌组中的基本无水的清除剂,和可选择的0%~1%惰性添加剂,该聚合物具有至少不低于低密度聚乙烯的水蒸气传输速率(WVTR)。
尽管相互间没有显而易见的联系,作为硫化氢和二氧化硫的清除剂,氧化锌,元素周期表第2族元素的一种特定的两性氧化物,和1a族金属钠和钾的硅酸盐,与其它族,如2a族元素的氧化物相比,当该两类化合物分散在基本不水解,且具有相对较高的、至少不低于低密度聚乙烯的水蒸气传输速率的合成树脂(以下称“聚合物”)中时,在氧分子和水气的存在的情况下,都能特别有效地阻止和清除硫化氢和二氧化硫气体。“基本不可水解”指在受保护的物体在薄膜中存放的条件下,该聚合物发生水解不超过5%。“清除剂”一词指一种加入到聚合物中的化合物,含硫气体在含有该化合物的聚合物中被阻止之后,能抵消含硫气体的不利影响。
每一百份(phr)中0.1~5份的用量,优选范围为0.1~3phr,选自包含细碎的氧化锌和碱金属硅酸盐的一组物质中的清除剂,能出乎意料地有效阻止具有光泽的银制物体失泽。
氧化锌或硅酸钠的有效性出乎人们的意料,因为没有理由相信,这些组分的通常稳定的基本上无水的形态,会与二氧化硫和/或硫化氢发生化学反应,并且起到阻止剂和清除剂的作用;进一步,含有失泽抑制组分的新型薄膜的水蒸气传输速率,与不含有失泽抑制组分的常规聚乙烯薄膜基本相同(见下文表1)。由于含有失泽抑制组分的聚合物水蒸气传输速率较低,将为更好地防止失泽提供理论依据,因此不引起水蒸气传输速率的降低为不使用一种或多种该类组分作为必要的失泽抑制组分提供了合理的解释。
含量低于3phr的锌的氧化物和/或碱金属硅酸盐,优选钠的硅酸盐,能够阻止硫化氢,以此为基础,可以更加确切地预测聚合物中的失泽抑制组分提供抑制失泽的保护作用的有效性。用其他的第2族元素的氧化物,比如氧化钙,代替部分氧化锌,不能比单独使用相同浓度的氧化锌所提供的保护有所提高。
“惰性添加剂”是指在活性失泽抑制组分和聚合物配方中,以优选用量为重量百分比低于0.5%加入的介质,其不与失泽抑制组分发生化学反应,能支持或改善它的效用,在聚合物中的分散性,或稳定性。虽然细碎的固体颗粒可以直接分散在聚合物中,但是除非经熔融的聚合物充分的“润湿”,它们不会均匀地分散。为此,优选的办法是,首先将颗粒分布在第一种聚合物中,该聚合物将颗粒充分润湿以使它们均匀分布于其中,如此形成一种浓缩物。最好将浓缩物磨碎,并将浓缩物大粒剂与第二种聚合物或稀释剂聚合物混合,形成可热成形的混合物,该混合物可以方便地挤压成形、注膜成形或吹膜成形。典型的添加剂可以选自下列助剂中的一种或几种分散剂,如煅制二氧化硅和碳酸钙,用量范围为重量百分比0.01~1%;乳化剂、香料、染料、表面活性剂、加工助剂、杀菌剂、遮光剂和类似助剂。如果有意要求薄膜能隐藏存放其中的材料不被看见,也可加入遮光剂。
用少量的其他金属或碱土金属的氧化物替代部分或全部清除剂,不能提高相同浓度的清除剂所提供的保护。
优选实施方式的详细描述当氧化锌或碱金属硅酸盐加入到前述聚合物,足够的水分子被捕获于聚合物中,从而使润湿的失泽抑制组分能够起到硫化氢和/或二氧化硫清除剂的作用,这两种气体与水气和分子氧一起,造成光亮银表面的失泽。
前述的每一种基本无水的失泽抑制组分在至少含有痕量水气和硫化氢的环境中都表现出有效性,这一点被在密封的广口瓶中所进行的定性比较(以下称“广口瓶实验”)加以证实,广口瓶中试样的表面可以用肉眼观察进行比较。广口瓶实验表明,当具光泽的银表面暴露在硫化氢和/或二氧化硫中,任何一种失泽抑制组分或是其混合物都能提供极好的保护。
而且,每一种组分都能清除进入到薄膜或容器中的二氧化硫和/或硫化氢;至少在初始的几个月的时间内,依薄膜的厚度和失泽抑制组分的浓度,保护光亮的银表面防止其失泽,与常规薄膜相比,这种保护出乎意料地更好。初始阶段后,在平衡状态下,水蒸气传输速率最终回复到不含有失泽抑制组分的薄膜的数值。
如果要求聚合物成品基本上是可透光的,或是说基本上透明的,那么粉末状存在于聚合物中的失泽抑制组分的颗粒大小和用量非常关键。在不引起薄膜实质上变脆的同时,透明性要求满足一个附加条件,即按上文所述的用量失泽抑制组分的粉末要实质性均匀地分散,这一限制条件只有在下列情况能够满足在薄膜或其他基质热成形后,粉末态组分保持固体状态,并且其主要粒子尺寸要小于53μm(微米,270号标准测量筛——金属网),优选范围为约1μm~45μm(325号)。
尽管实质上均匀地分散,由于细碎的氧化锌或碱金属硅酸盐的用量很小,以致不会降低其中分散着失泽抑制组分的聚乙烯—失泽抑制聚合物的水蒸气传输速率;并在不对相同厚度的不含有失泽抑制组分的薄膜的物理性能产生实质影响的情况下提供了保护。
如此可以在选定期间内,通常长达四年或更长,保护银制物品防止其失泽,方法是将其密封在厚度足以将失泽抑制组分实质性均匀地分散于其中的失泽抑制薄膜中,所含数量充足的失泽抑制组分可以在选定的期间内完成必要的清除任务。薄膜厚度通常以0.20mm(8密耳)为限,因为在不超过5年的期间内,没有必要在失泽抑制薄膜中加入数量更多的失泽抑制组分(如果以能够提供适当保护的优选的浓度使用的话),同时也因为在较厚的横截面中,在优选的浓度范围内分散的均匀度难以控制。
在四年内提供保护的“薄膜”的厚度通常小于0.20mm(8密耳),并且该薄膜可以热成形到带有刚性高的器壁的容器内。如果所要求的保护期间超过四年,或者对防止水蒸气提出极端要求并且水蒸气传输速率是最重要的标准,或者结构刚性是主要关心之处,或者强度和撕裂引起的损害是考虑的关键因素,在上述各种情形下,薄膜厚度可以为1.25mm(50密耳)。尽管失泽抑制组分相当大的部分不可避免地处于或靠近薄膜的表面,但失泽抑制组分的主要部分留在薄膜内是必要的。当处于或靠近表面的失泽抑制组分耗尽时,这样的分布能确保较好的清除效果。
“分散的均匀度”是指可以采用已知的显微技术或吹塑膜试验,对薄膜中的分散颗粒的均匀性进行定量表达。
在吹塑膜试验中,将含有固体粉状颗粒的聚合物通过吹塑膜设备挤压,该设备挤压出一层厚0.025mm(1密耳)的薄膜,然后将挤压成的薄膜放在适当波长和强度的光源上面,人们就能对颗粒数量进行计量,颗粒表现为薄膜上的“缺陷”;而且能看见每一个颗粒的大小。
“硅酸钠”一词指基本上无水的正硅酸钠、偏硅酸钠、二硅酸钠、三硅酸钠,以及晶体或玻璃态的类似物。最优选的是粉末状的硅酸盐,比如从PQ公司购买的该物品。虽然也可以采用其他碱金属的硅酸盐,但较少选用它们,不是因为它们太容易吸湿,难以将其研磨成所需要的尺寸范围内的粉末状颗粒,就是因为作为阻止剂的效果不充分。
许多热塑性聚合物制成的透光薄膜可以用来作为基质,将失泽抑制组分分散于其中,这类聚合物包括低密度聚乙烯,聚酯如Malar,聚氯乙烯,聚苯乙烯和聚酰胺如尼龙-6。这些聚合物按照在37.4℃(100°F)和90%相对湿度(RH)下,对每密耳厚度和645cm2(100平方英寸)面积测得的水蒸气传输速率从低到高的顺序排列,水蒸气传输速率的范围从最低1.5gm/24hr(低密度聚乙烯)到8gm/24hr(尼龙-6)。“低密度”聚乙烯是指密度低于0.943g/cm3的聚乙烯。较少使用聚碳酸酯、聚胺酯和聚丁烯-1薄膜。
优选的可生物降解聚合物薄膜包括星形ε-己内酯和可商购的薄膜,比如线形ε-己内酯(PCL)(联合碳化物公司,PCL TONE787);聚羟基丁酸共戊酸酯(PHBV),含有8%、16%和24%戊酸酯(帝国化学工业公司);未涂覆和硝化纤维涂覆的玻璃纸薄膜(杜邦公司);通过与表氯醇反应制备的交联壳聚糖(protan实验室);淀粉/亚乙基乙烯醇(St/EVOH)混合薄膜和纯亚乙基乙烯醇薄膜(乙烯摩尔百分比38%)(分别来自Novamont,Novara,Italy和EVALCo,Lisle,IL);和聚己内酯(PCL),分子量约80,000道儿顿(联合碳化物公司)。
较少采用不可生物降解薄膜,包括聚碳酸酯、聚氨酯和聚丁烯-1。薄膜的选择取决于下列因素用来装运钢制或铸铁物体的容器所要求的强度和韧性、保护的时间长短和保护程度、环境中的酸性气体和初步处理的情况、包装物存放的特定环境中的湿度,以及经济上的考虑。最优先选择的、活性失泽抑制组分蒸气能够渗透的薄膜包括低密度聚乙烯、聚丙烯、两种或两种以上C2-C8低级链烯烃的共聚物、C2-C8低级链烯烃与乙烯/乙烯醇的共聚物,和线形或星形ε-己内酯。在要求高韧性的场合也会选择这些薄膜。人们优先采用聚苯乙烯或者聚酯来制造侧壁相对坚硬、透光的薄壁容器,其壁厚小于0.25mm(10密耳),含0.01~1phr(每百份之一份,按聚合物重量计)范围内的每一种VCI活性组分。
薄膜的选择取决于下列因素用来装运银制物体的容器所要求的强度和韧性、提供的保护的时间长短和保护程度、环境中的硫化氢和酸性气体和初步处理的情况、包装物存放的特定环境中的湿度,以及经济上的考虑。最优先选择的、硫化氢和二氧化硫能够渗透的薄膜包括,低密度聚乙烯、聚丙烯、两种或两种以上低级链烯烃的共聚物,和乙烯/乙烯醇的共聚物。在要求高韧性时也会选择这些薄膜。人们优先采用聚苯乙烯或者聚酯来制造侧壁相对坚硬、透光的薄壁容器,其壁厚小于0.25mm(10密耳),含0.75phr~1phr范围内的每一种活性失泽抑制组分。可以使用添加剂增加薄膜的强度,比如玻璃纤维;也可以选择性地加入惰性添加剂和/或加工助剂,如增塑剂或加工油;还可以加入着色剂、除臭剂或香味剂、惰性填充物和任何其他常用添加剂,只要所加入的添加剂不会给聚合物的物理性能或是其中的失泽抑制组分的清除作用造成不利影响,而且在要求聚合物透明的情况下,不影响其透明度。
除非能容易地将失泽抑制组分的粉末直接分散制成失泽抑制聚合物,否则需要首先制成一种浓缩物。将抑制组分的粉末分散在细碎的聚合物中,所述聚合物通常是在搅拌器的作用下易在稀释剂聚合物中混合的低密度聚乙烯或MicrotheneFE 532颗粒。将混和物送入挤压机的料斗中。经过细的挤压杆的挤压,该混和物被挤压形成球状浓缩物,大小在3mm(0.125英寸)到9mm(0.375英寸)范围内,浓缩物小球中含有高浓度失泽抑制组分固体粉末,范围在10~50phr。为了制得含失泽抑制组分的聚合物,接着在搅拌作用下,将选定数量的小球均匀地分散在稀释剂聚合物中,比如低密度聚乙烯颗粒中;再将该混合物送入加热成形设备的料斗中。可以使用通常的薄膜挤压机挤压形成薄膜成品,即稀释后含有上述确定浓度的活性失泽抑制组分的薄膜。
普通聚乙烯薄膜与聚乙烯—失泽抑制薄膜的水蒸气传输速率的对比根据ASTM E96中规定的试验规程,可以对普通聚乙烯薄膜和本发明的聚乙烯—失泽抑制薄膜的水蒸气传输速率进行比较。每一种膜都挤压成大约0.1mm(4密耳)厚,方法是首先在低密度聚乙烯如LDPE Dupont 20-6064,或线形低密度聚乙烯(LLDPE)Dowlex 2535,或MicrotheneFE 532乙烯/乙烯基乙酸酯共聚物中制成浓缩物;然后将一部分浓缩物在Equistar 940-094低密度聚乙烯中稀释,并熔融形成所述混合物。因为在挤压成形的薄膜中共聚物的浓度低于7%,所以制成的薄膜称为“失泽抑制-聚乙烯薄膜”,其中分散有失泽抑制组分。“普通聚乙烯薄膜”指商购的低密度聚乙烯薄膜,比如Equistar 940-094,相信其BHT含量小于100ppm。
首先,失泽抑制组分和Microthene FE 532按以下用量25%失泽抑制组分和75%Microthene FE 532制成总量为45.45Kg(100磅)的小球以形成浓缩物,该浓缩物特别适合稀释在聚合物中,其中失泽抑制组分将会基本均匀地分散。
为了挤压成适合在0℃~50℃循环温度,95%相对湿度的条件下、硫化氢污染的含有分子氧的潮湿气氛中,至少能保护银制物品一年的薄膜,将1.363Kg(3磅)的小球与44.1Kg(97磅)普通聚乙烯混合,挤压形成一束45.45Kg(100磅)的聚乙烯—失泽抑制薄膜。制成的聚乙烯—失泽抑制薄膜,厚0.1mm(4密耳),包含0.75%氧化锌或二硅酸钠失泽抑制组分。
两种失泽抑制组分可以混合使用形成浓缩物,包含25%二硅酸钠、25%氧化锌和50%Microthene FE 532。
接着将0.909Kg(2磅)浓缩物用45.45Kg(100磅)普通聚乙烯加以稀释并挤压成形,在制成的聚乙烯—失泽抑制薄膜中,每种失泽抑制组分重量百分比占0.5%(总和1%)。也制备了含有氧化钙的浓缩物并适当稀释,得到浓度1%的挤压成形的聚乙烯—失泽抑制薄膜。
下文叙述的对比结果分别用“普通聚乙烯”(上文定义)和“聚乙烯—失泽抑制”薄膜表示。
测定水蒸气传输速率实验将含上述浓度的各种失泽抑制组分的每一种薄膜的试样,切割后套在杯子上,每一个杯子带有直径为7.62cm(3英寸)外螺纹的开口。从范围在0.4375mm(3.5密耳)到0.525mm(4.2密耳)内不同厚度的薄膜上切割五个试样,并将五个试样的读数进行平均。每个杯中填充相同重量的氯化钙,并且每个试样通过旋转内螺纹的杯盖固定在杯中。接着将杯子放在烘箱内,烘箱内环境相对湿度为90~95%,温度37.2℃(100°F)。在一定时间间隔后将杯子从烘箱内取出称量,测定平均重量增加(前后重量变化)。每个试样的平均水蒸气传输速率如下表1-WVTRs比较
对0.75%浓度的失泽抑制组分,无论是氧化锌或二硅酸钠,结果基本相同。由前述可知,很明显,所对比的薄膜的水蒸气传输速率没有在显著差异。既然不存在显著差异,那么没有理由预期氧化锌或金属钠的硅酸盐能对所述的气体提供更高的清除能力。
二氧化硫失泽影响研究下面的结果来自于在没有硫化氢存在的条件下,测定二氧化硫对高度抛光和干燥的纯银小匙的失泽影响程度的实验。
实验将银制小匙装入袋中,袋子放在能加盖密闭的1加仑玻璃广口瓶中进行。每一把小匙装入测试薄膜的袋中,但与薄膜间隔一定距离,装入袋中的试样悬挂在广口瓶中。除普通聚乙烯薄膜外,所有的测试薄膜都含有氧化锌和二硅酸钠混合组成的失泽抑制组分,浓度分别为0.5%,合计1%。制成的聚乙烯—失泽抑制薄膜厚度是0.1mm(4密耳),并且透明。
下面描述试验过程中的一次循环每次循环后,将小室中的溶液替换以重复下一次循环。每一次24小时的循环从16个小时在50℃的腔室内开始,8小时在腔室外23℃的环境中。在每一次循环结束后,不将小匙从袋中取出,但用眼进行观察,因为薄膜保持透明。
将30ml的测试液(1%Na2SO4+1%NH4Cl溶于去离子水)倒入50ml塑料烧杯中,放进每一个容积为1加仑玻璃广口瓶中,以保护环境的相对湿度约95%。将0.04gNa2S2O3·5H2O加入20ml塑料烧杯中,将烧杯放置在广口瓶中,接着向烧杯中的硫代硫酸钠中加入适量ml的0.1N的硫酸,并立即用盖封住广口瓶瓶口,结果袋中的小匙垂直悬挂在广口瓶内,并且包裹试样的薄膜都暴露在产生的二氧化硫气体中。广口瓶中,环境中的二氧化硫浓度约0.2%。
接着将密闭的广口瓶放置在50℃炉子中,16小时之后将广口瓶从炉子中取出,在室温下(23℃)保持8小时。重复进行该循环,并用眼观察小匙,直到因失泽产生的表面斑点变得明显。用1~10数字进行度量,其中1代表表面与实验开始时的原始表面无法区分,10代表包裹在作为对照物的聚乙烯薄膜中,没有受到失泽抑制组分保护的金属试样所受到的严重腐蚀的平均程度。在7次循环后发现如下结果普通聚乙烯薄膜1含有失泽抑制组分聚乙烯薄膜1该实验提供证据证明没有硫化氢存在时,使用二氧化硫可渗透的普通聚乙烯,在超过一周之后没有产生可见的失泽作用。因此,没有必要在不存在硫化氢时清除二氧化硫来消除失泽。
硫化氢的作用将高度抛光的纯银小匙放入到聚乙烯—失泽抑制薄膜制成的袋中,并将其放置在相对湿度95%的潮湿含氧环境中,环境中硫化氢的浓度,决定于封闭在每一个试验用广口瓶中的硫化铵溶液的浓度,超过1000ppm。用这一方法对聚乙烯薄膜中的失泽抑制组分的作用进行定性比较。
硫化铵溶液的制备先制备重量百分比为20%的硫化铵去离子水溶液(或从Aldrich Chemical公司购得,#30,941-9);将1ml该溶液以99mL去离子水稀释,得到重量百分比浓度0.2%的溶液。将10ml稀释后的溶液加入到容积为1夸脱的广口瓶的底部。
试验将透明的普通聚乙烯薄膜和每种用来测试的透明聚乙烯—失泽抑制薄膜制成小袋,小袋应适合于将纯银小匙在它的中间垂直地悬挂,以保持银表面与聚合物间隔一定距离。将每一小匙抛光到高度光亮,在热环境中干燥,并悬挂在袋中,然后将袋封闭。接着将袋悬挂在广口瓶中溶液的液面之上。每个袋中装一个小匙,每一个广口瓶中挂一个袋。
完全相同的样品进行具有统计意义的次数(3次)试验。
失泽的严重程度用范围1~10数字进行定量描述,失泽的严重程度越高,数字越大。
每隔30min将每个袋子取出并用肉眼进行观察。普通聚乙烯袋中的样品2小时之后已变得严重失泽,等级评定为10。因此2小时后停止对失泽相对严重程度的观察。
2小时后每一种测试薄膜的平均结果记录如下
很明显,浓度1%的氧化钙有一定的防止失泽作用,但是与相同浓度的二硅酸钠和氧化锌的混合物相比,其效果相差很多;而且浓度为0.75%的氧化锌或二硅酸钠,都比浓度1%的氧化钙更加有效。这表明尽管元素周期表2a族元素的氧化物表现出显著的清除硫化氢的作用,但它们并不如氧化锌或碱金属硅酸盐同样有效。
尽管为说明本发明之目的,本说明书披露了某些典型的实施方式和细节,显而易见的是,本领域的技术人员可以在不脱离本发明的要旨或范围的情况下,在其中进行各种各样的改变和改进。
权利要求
1.一种有效保护银含量超过90%的金属银制品表面的失泽抑制组合物,当银制品表面在密闭环境中暴露于所述组合物,在相对湿度为90%、温度为37.4℃(100°F)的情况下,含有浓度范围从1ppb(十亿分之一)至10ppm(百万分之一)的硫化氢的含分子氧的气氛中,能够在至少一年的时间内防止银制品失泽;所述的组合物主要由基本上不水解的聚合物组成,其中实质性均匀地分散重量百分比约0.01%~5%选自碱金属硅酸盐和氧化锌的基本无水的清除剂,和0%~1%的惰性添加剂,该聚合物具有至少不低于低密度聚乙烯的水蒸气传输速率(WVTR)。
2.权利要求1中的组合物,其中所述的聚合物选自在37.4℃(100°F)温度和90%相对湿度(RH)的情况下,对每0.025mm(密耳)厚度和645cm2(100平方英寸)面积测得的水蒸气传输速率高于1.5gm/24hr的低密度聚乙烯、聚丙烯、C2-C8低级链烯烃的共聚物、C2-C8低级链烯烃与乙烯/乙烯醇的共聚物、不可生物降解的聚酯、聚氯乙烯、聚苯乙烯、聚胺和可生物降解的聚酯。
3.权利要求2中的组合物,其中所述的可生物降解的聚酯选自星形ε-己内酯、ε-己内酯(PCL)、含有8%、16%和24%戊酸酯的聚羟基丁酸共戊酸酯(PHBV)、未涂覆和硝化纤维涂覆的玻璃纸薄膜、交联壳聚糖、淀粉/亚乙基乙烯醇(St/EVOH)混合薄膜、纯亚乙基乙烯醇薄膜(乙烯摩尔百分比38%)、和分子量约80000道儿顿的聚己内酯(PCL)。
4.权利要求1中的组合物,其中所述的碱金属硅酸盐为金属钠的硅酸盐;所述的添加剂选自煅制二氧化硅和碳酸钙,用量范围为重量百分比0.01~1%。
5.权利要求2中的组合物,其中所述的组合物是透明的,所述的清除剂和添加剂主要粒子尺寸在约1μm~53μm范围内,并实质性均匀地分散于聚合物中。
6.一种具有任意大小和形状的物品,由主要包含合成树脂的基质聚合物制成,合成树脂中实质性均匀地分散有用量各占聚合物重量百分比0.01%-5%、选自氧化锌和碱金属硅酸盐的清除剂、和0%~1%的惰性添加剂;其中所述的清除剂和添加剂主要粒子尺寸在1μm~53μm范围内,并且所述的合成树脂的水蒸气传输速率(WVTR)与不含有清除剂和添加剂的树脂基本相同。
7.权利要求6中的物品,其中所述的薄膜包含具有2到8个碳原子的低级链烯烃,该薄膜有光滑的上下表面,厚度在0.0125mm(0.5密耳或0.0005英寸)到0.125mm(5密耳或0.005英寸)范围内;并且惰性添加剂是无机分散剂,选自煅制二氧化硅和碳酸钙。
8.一种在导致失泽的气氛中防止银制物体失泽的方法,包括将物体放入可热成形的合成树脂制成的容器中,合成树脂中实质性均匀地分散清除剂和惰性添加剂固体颗粒,清除剂选自氧化锌和碱金属硅酸盐,用量各占树脂重量的0.01%~5%,惰性添加剂用量占0%~1%;清除剂和添加剂主要粒子尺寸在1μm~53μm范围内,而且该合成树脂的水蒸气传输速率(WVTR)与不含有清除剂和添加剂的树脂基本相同。
全文摘要
一种有效的失泽抑制(TI)聚合物组合物包括一种在选择性存在一种酸性气体如二氧化硫时硫化氢的一种清除剂,能够极佳地防止银制物品光亮表面失泽。当所述组合物被热成形为一种盒状容器或挤压成包含来自于存在量不超过所述组合物重量5%的氧化锌和一种碱金属硅酸盐的均匀分散的固体微米级清除剂粒子时,它是透明的,从而可以评估被存放银器的状态。此外,还可以加入一种惰性添加剂。该组合物中所有固体粒子的主要尺寸都小于53μm从而使之可得到均匀分散。一种银制物品可以包裹在薄膜中,或存放在密闭的盒子里,从而所述聚合物中的粒子不被涂覆在银制物品的表面。
文档编号C08K5/13GK1798877SQ200480015425
公开日2006年7月5日 申请日期2004年5月14日 优先权日2003年6月3日
发明者唐纳德·A·库比克, 鲍瑞斯·瓦萨尔, 艾费姆·亚·柳布林斯基, 芭芭拉·A·内格尔德 申请人:北方技术国际公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1