一种石墨烯银纳米线复合柔性可折叠导电发热布及其制备方法与流程

文档序号:14111131阅读:847来源:国知局
一种石墨烯银纳米线复合柔性可折叠导电发热布及其制备方法与流程
本发明涉及一种导电发热布,属于碳材料领域。
背景技术
:随着社会的发展,人们对材料的要求越来越高,这使得材料的发展也日新月异,新型碳材料具有传统材料所不能比拟的优良性能,如密度小、高导电、高导热、热膨胀小。石墨烯是一种由单层碳原子排列呈六角形网状结构的新型薄膜材料。单层石墨烯是已知材料中最薄最坚固的材料,这些优异的性能使其在电子乃至加热领域有着巨大的应用价值。导电发热布指具有导电发热功能的布料或薄膜,通常是通过导电纤维与普通纤维混纺,或在聚酯薄膜上沉积导电发热层得到。导电发热布兼具了导电纤维或导电层较为优秀的导电性以及织物的柔韧性,在柔性电热材料、柔性电磁屏蔽材料、柔性吸波材料等方面得到了广泛的应用。公告号为cn106592203a的中国专利,公开了一种石墨烯导电布的制备方法,通过将石墨烯片层嵌入纤维基体中,形成连续石墨烯导电网络。但其操作步骤繁杂,且制备的导电布方阻很不均匀,方阻变化范围宽1kω/sq—100kω/sq,而且发热速度慢,约30分钟。公告号为cn105898907a的中国专利,公开了一种石墨烯导电发热膜的制备方法,采用碳纤维和石墨烯混合均匀后用粘结剂与pvc、pe或pet结合制备石墨烯导电发热膜。但其方法操作复杂、碳纤维易老化,所制备的石墨烯导电发热膜电阻不稳定、柔韧性差。综上,现有的石墨烯导电发热布普遍存在制备方法复杂、电阻不稳定、发热不均匀、发热速度慢等问题。因此,一种制备方法简单、电阻稳定、发热均匀、发热速度快的导电发热布有待研究。技术实现要素:为避免上述现有技术所存在的不足之处,本发明提供了一种石墨烯银纳米线复合柔性可折叠导电发热布及其制备方法,旨在解决现有石墨烯导电发热布制备方法复杂、电阻不稳定、发热不均匀、发热速度慢等问题。本发明解决技术问题,采用如下技术方案:本发明的石墨烯银纳米线复合柔性可折叠导电发热布,其特点在于:所述导电发热布是由导电发热浆料通过流延法成膜制得;所述导电发热浆料的各原料按质量份的构成为:1~10mg/ml银纳米线分散液1~20份、石墨烯粉体20~50份、炭黑1~20份,固含量在30-55%的水性聚氨酯树脂20~50份、固含量在30-80%的水性环氧树脂1~50份、固含量在30-80%的水性丙烯酸树脂1~20份、水1-30份、分散剂0.1~5份、固化剂己二胺0.1~2份。优选的,所述导电发热布的厚度为0.03-0.1mm,单位质量为10-200g/m2。优选的,所述银纳米线分散液中银纳米线的直径为30~500nm、长度为10~400μm。优选的,所述石墨烯粉体的粒径为4~60μm,所述炭黑的粒径为2-20nm。优选的,所述分散剂选自十二烷基硫酸钠、十六烷基苯磺酸钠、羟丙基甲基纤维素和羧甲基纤维素钠中的至少一种。上述所述导电发热布的制作方法,包括如下步骤:(1)按配比将石墨烯粉体、炭黑、分散剂、水性聚氨酯树脂和水混合,并在球磨机中球磨分散均匀,最后经250目网布过滤,获得混合浆料a;将银纳米线分散液、水性环氧树脂和水性丙烯酸树脂加入到真空搅拌机中真空脱泡、混合均匀,获得混合浆料b;将混合浆料a加入到真空搅拌机中,在持续搅拌下,加入ph缓冲剂调节ph为6~10,再依次加入混合浆料b和固化剂己二胺,继续搅拌均匀,获得导电发热浆料;(2)将所述导电发热浆料加水调节固含量,并搅拌均匀,获得用于流延成膜的溶液;(3)将所述用于流延成膜的溶液经流延机的模头流延到流延生产线的钢带上,控制流延车速在20~70m/min,再经过60~150℃的干燥烘道进行干燥,最后剥离收卷,即获得石墨烯银纳米线复合柔性可折叠导电发热布。其中,所述ph缓冲剂按如下方法配置:在25ml含硼酸0.2mol/l、氯化钾0.2mol/l的混合液中,加入4ml0.1mol/l的氢氧化钠溶液,混合均匀后,加水稀释至100ml,即获得ph缓冲剂。所述用于流延成膜的溶液的固含量为30%-50%。60-150℃的干燥烘道是指干燥烘道分段控温的范围,四个干燥区的温度依次为:60-90℃、80-120℃、120-160℃、100-150℃。与现有技术相比,本发明的有益效果体现在:1、本发明利用石墨烯粉体、银纳米线、导电炭黑和树脂混合,经过流延法制备导电发热布,实现了石墨烯大规模大尺寸应用,制作过程简单,所得发热布发热均匀稳定、发热温度可精确控制、柔韧性好、可折叠、可水洗;2、本发明导电发热布中银纳米线的加入,实现了导电发热布的抗菌杀菌功能,具有远红外理疗保健的效果,可用于智能穿戴设备。3、本发明通过流延工艺制备导电发热布,使其膜方阻分布均匀。附图说明图1和图2为实施例1所制备的石墨烯银纳米线复合柔性可折叠导电发热布的照片;图3为石墨烯银纳米线复合柔性可折叠导电发热布通电后的发热红外成像图;图4为实施例1~6所得导电发热布在5v电压下的发热稳定温度及达到发热稳定温度的时间的对比图;图5为实施例2所得导电发热布在不同电压下的发热稳定温度。具体实施方式为了便于本领域技术人员理解,下面结合附图和实施例对本发明作进一步说明。下述实施例所用原料如下:石墨烯粉体:粒径为4-5μm,源自合肥微晶材料科技有限公司,可市场购得;银纳米线分散液:浓度为5mg/ml,源自合肥微晶材料科技有限公司,可市场购得,其所含银纳米线的直径为60-70nm、长度为30-40μm;导电炭黑:粒径为9-17nm,天津亿博瑞化工有限公司,牌号f900a;水性聚氨酯树脂:固含量50%,东莞米人占化工有限公司,牌号mr-709;水性环氧树脂:固含量50%,广东顺德大地缘新材料有限责任公司,牌号drdse560;水性丙烯酸树脂:固含量50%,广东顺德大地缘新材料有限责任公司,牌号drds050;分散剂为十二烷基硫酸钠。实施例1本实施例导电发热布是由导电发热浆料通过流延法成膜制得;导电发热浆料的各原料按质量份的构成为:5mg/ml银纳米线分散液10份、石墨烯粉体35份、炭黑5份,固含量在50%的水性聚氨酯树脂20份、固含量在50%的水性环氧树脂2份、固含量在50%的水性丙烯酸树脂2份、水20份、分散剂2份、固化剂己二胺2份。本实施例的导电发热布采用以下方法制备得到:(1)按配比将石墨烯粉体、炭黑、分散剂、水性聚氨酯树脂和水混合,并在球磨机中球磨分散均匀,最后经250目网布过滤,获得混合浆料a;将银纳米线分散液、水性环氧树脂和水性丙烯酸树脂加入到真空搅拌机中真空脱泡、混合均匀,获得混合浆料b;将混合浆料a加入到真空搅拌机中,在持续搅拌下,加入ph缓冲剂调节ph为~8,再依次加入混合浆料b和固化剂己二胺,继续搅拌均匀,获得导电发热浆料;(2)将导电发热浆料加水调节固含量至40%,并搅拌均匀,获得用于流延成膜的溶液;(3)将用于流延成膜的溶液经流延机的模头流延到流延生产线的钢带上,控制流延车速在50m/min,再经过干燥烘道进行干燥(四个干燥区的温度依次为:80℃、100℃、130℃、100℃),最后剥离收卷,即获得石墨烯银纳米线复合柔性可折叠导电发热布,其厚度为0.05mm、单位质量为80g/m2。图1和图2为本实施例所得石墨烯银纳米线复合柔性可折叠导电发热布的照片。采用方阻仪随机测试本实施例所得导电发热布的多个不同位置的电阻,如表1所示,可以看出导电发热布的电阻稳定、分布均匀。表1位置方阻ω/sq122.4221.1321.7420.3523.4622.9实施例2~6按表2对实施例1中的各原料用量进行调整,并按相同的方式制备导电发热布。表2将上述各实施例所制备的导电膜进行性能测试:电性能测试(采用方阻仪测试多个不同位置的电阻并取平均值),耐老化测试(设置温度为65℃,湿度为90%rh,保持时间为30天,测试方阻变化小于10%为合格,否则不合格),抑菌率测试(送样至广东省微生物检测中心),红外发热均匀性测试(通电观察红外发热均匀性),发热温度及发热速度测试(通电利用温度探测仪记录发热温度温度和达到发热稳定温度所需时间)。结果如表3所示。表3实施例方阻抑菌率(大肠杆菌)耐老化红外发热均匀性实施例122ω/口99.99%良好均匀实施例250ω/口99.99%良好均匀实施例390ω/口99.99%良好均匀实施例4130ω/口99.99%良好均匀实施例5120ω/口99.99%良好均匀实施例6100ω/口99.99%良好均匀图3为实施例1的导电发热布通电后的发热红外成像图,可以看出导电布发热均匀,无发热异常点。图4为实施例1~6所得导电发热布在5v电压下的发热稳定温度及达到发热稳定温度的时间的对比图,由图可知,6款导电发热布达到发热稳定温度所需时间约为4-5秒,发热迅速。图5为实施例2所得导电发热布在不同电压下的发热稳定温度,由此可知可通过调节通电电压实现精准控温。以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1