新的低温酸酐环氧固化体系的制作方法

文档序号:18270295发布日期:2019-07-27 09:36阅读:1133来源:国知局
新的低温酸酐环氧固化体系的制作方法

自从二十世纪六十年代中期以来酸酐已经被用作环氧树脂的固化剂。最初商业上使用十二种这样的化合物。它们与胺固化剂相比具有仅仅产生中等皮肤刺激的优点,并且通常提供低粘度和长有效期。由酸酐固化的环氧树脂通常表现出高温稳定性,良好的辐射稳定性以及高于它们的挠曲温度(dt)时改进的物理和电学性能。对一些试剂的耐化学品性小于胺固化的体系,但是优于含水酸。结果,用酸酐固化的环氧树脂已经广泛用作电绝缘材料。酸酐需要比基于胺的固化剂更苛刻的固化条件,但是适于制造大的模塑件,因为它们具有长的有效期和形成了具有相对良好平衡的电学、化学和机械性能的固化树脂,同时产生少量热。几十年来酸酐已经广泛用作环氧树脂的固化剂,来用于结构复合材料和电学灌注应用。酸酐与树脂的反应取决于许多因素,包括凝胶时间和温度,后固化和后固化温度,存在或者不存在加速剂,加速剂类型,树脂中羟基的量,酸酐与环氧的比率和体系中游离酸的量。不存在加速剂时酸酐将不与环氧基团反应。来自于所述树脂或者来自于加入的醇的羟基可以催化所述反应,但是该反应通常较慢。

几乎全部市售的环氧树脂/酸酐制剂都使用了酸酐加速剂。这些是酸性或者碱性化合物。酸有利于醚化,而碱有利于酯化。最佳的酸酐/环氧比率(a/e)和树脂的固化性能取决于所用加速剂。叔胺常规用作酸酐加速剂。这些描述在threebondtechnicalnews第32卷,1990年12月20日中。它们包括苄基二甲基胺(bdma)和三(二甲基氨基甲基)酚,三亚乙基二胺(teda),n,n-二甲基哌嗪和2-(二甲基氨基甲基)酚。还已经使用了咪唑例如2-甲基咪唑,2-乙基-4-甲基咪唑,1-氰基乙基-2-十一烷基咪唑偏苯三酸盐和环氧-咪唑加成物(2-甲基咪唑/epon828)。

us3839281描述了将n-羟乙基哌啶和哌嗪化合物用作使用酸酐和双氰胺(dicy)固化的环氧树脂体系的加速剂。在us5650477中,将带有醚连接键和腈基的季铵盐用作酸酐固化的环氧树脂在微波辐射下的催化剂。固体金属乙酰基丙酮酸盐在j.smith的j.appl.poly.sci,26,1981,979中被描述为潜伏(latent)固化剂。这些固体的缺点是不能充分分散来实现酸酐对环氧树脂的有效固化。在

wo2013009452a1中,所述酸酐环氧体系是在80℃固化3h来获得90%转化率。该公开文献公开了使用标准环氧:酸酐比率。

在目前用于酸酐固化体系的体系中,使用了下面的条件:

(1)酸酐:环氧树脂比率通常是1:~1(摩尔比)

(2)通常的加速剂用量是1-3%,使用活性加速剂(在更大负载量时在酸酐中不稳定)

(3)固化温度是~150℃持续>4h

酸酐作为环氧树脂固化剂的主要局限是这样的事实,即,它们需要高固化温度(>150℃)持续数小时(>4h)。此外,固化的产物具有差的热湿性能,这限制了它们在热和潮湿环境应用中的用途。通常酸酐活性加速剂例如苄基二甲基胺(bdma)和三(二甲基氨基甲基)酚(dmp-30,k54),三亚乙基二胺(teda),n,n-二甲基哌嗪和2-(二甲基氨基甲基)酚不能以较高负载量预先混合在酸酐制剂中,这归因于它们酸酐环的快速打开。这导致储存过程中不存在环氧树脂时凝胶化。需要基于叔胺的酸酐加速剂,其具有比目前的材料更长的潜伏期,来使得预混的酸酐体系的废料最小化,由此提供原材料成本的明显节约。这些潜伏酸酐加速剂应当在环境温度固化时在与酸酐固化剂和环氧树脂的混合物中表现出延长的储存稳定性。另外,它们应当降低周期时间和由此提供增加的通量。此外,降低固化温度对于加工过程中低能量使用以及减少固化产物中的热点和脆化来说是必需的。本文我们描述了新的酸酐固化体系,其已经解决了目前的固化体系中固有的大部分问题。

发明概述

本发明的组合物使用的环氧树脂:酸酐比率(1:0.4-0.6)低于常用的比率(1:0.8-1.1)。另外,它使用了更高负载量的受阻潜伏叔胺或者咪唑与羧酸组合(组合的胺和羧酸与酸酐的wt%比率是~10%)。使用这种配制体系,可以在明显较低的温度(~100℃)下在小于2h内实现完全固化。

用于本发明的胺是下面的结构所示的1-哌啶基乙醇(n-羟乙基-哌啶,nhep)或者下面的结构所示的咪唑:

nhep

咪唑:r1=h,c1-c20直链或者支链烷基,或者单环芳基;r2=c1-c20直链或者支链烷基,或者单环芳基。

该羧酸表示为rcooh;r=c1-c20直链或者支链烷基,或者单环芳基。

附图简要描述

图1是显示了不同环氧:酸酐(phr)比率的包的tg(℃)的图。

发明详述

为了克服上述限制,我们已经发现当酸酐制剂包含大约10%的基于n-羟乙基哌啶(nhep)或者咪唑盐的液体潜伏加速剂和环氧:酸酐比率(1:0.4-0.6)明显低于常规的(1:0.8-1)时,所述制剂可以在100℃在<2h内实现完全转化。这些条件给出了最佳固化性能来满足结构加工和应用所需。对于这个理念,我们已经使用了甲基六氢邻苯二甲酸酐(mhhpa)和纳迪克甲基酸酐(nadicmethylanhydride)(nma)。然而,这可以应用于在工业上用于固化环氧树脂的其他单和二羧酸酐。

代表性羧酸是乙酸,丙酸,己酸,2-乙基-己酸,癸酸,妥尔油脂肪酸(tofa)以及二羧酸或者三羧酸。对于二羧酸,使用2mol当量的胺和1mol当量的酸,而对于三羧酸,使用3mol当量的胺和1当量的酸。

这些催化剂可以用于由酸酐固化剂和环氧树脂组成的组合物中。合适的环氧树脂包括下面的:

在商标名der383(可获自dow)和epon826(可获自hexionspecialtychemicals)下市售的环氧树脂适于本申请。

其他环氧树脂可以包括但不限于双官能环氧,例如双酚-a和双酚-f树脂。如本文所用的,多官能环氧树脂描述了含有两个或者更多个1,2-环氧基团/分子的化合物。这种类型的环氧化物化合物是本领域技术人员公知的,并且描述在y.tanaka,“synthesisandcharacteristicsofepoxides”,c.a.may编辑,epoxyresinschemistryandtechnology(marceldekker,1988)中,其通过引用并入本文。

适用于本公开的一类环氧树脂包含多元酚的缩水甘油基醚,包括二元酚的缩水甘油基醚。示例性例子包括但不限于下面的物质的缩水甘油基醚:间苯二酚,对苯二酚,双-(4-羟基-3,5-二氟苯基)-甲烷,1,1-双-(4-羟基苯基)-乙烷,2,2-双-(4-羟基-3-甲基苯基)-丙烷,2,2-双-(4-羟基-3,5-二氯苯基)丙烷,2,2-双-(4-羟基苯基)-丙烷(商业上称为双酚a),双-(4-羟基苯基)-甲烷(商业上称为双酚-f,和其可以包含不同量的2-羟苯基异构体)等,或者其任意组合。此外,下面结构的高级二元酚也可以用于本公开:

其中m是整数,和r是二元酚(例如上面所列的那些二元酚)的二价烃基。根据这个式的材料可以如下来制备:聚合二元酚和表氯醇的混合物,或者升级(advancing)二元酚的二缩水甘油基醚和二元酚的混合物。虽然在任何给定的分子中m值是整数,但是所述材料总是混合物,其可以通过m的平均值来表征,其不必需是整数。平均值m是0-大约7的聚合物材料可以用于本公开的一方面。在其他实施方案中,该环氧组分可以是来自下面中的一种或多种的聚缩水甘油基胺:2,2’-亚甲基双苯胺,间二甲苯双苯胺,乙内酰脲和异氰酸酯。

该环氧组分可以是脂环族(脂环)环氧化物。合适的脂环族环氧化物的例子包括二羧酸的脂环族酯的二环氧化物例如双(3,4-环氧环己基甲基)草酸酯,双(3,4-环氧环己基甲基)己二酸酯,双(3,4-环氧-6-甲基环己基甲基)己二酸酯,乙烯基环己烯二环氧化物;柠檬烯二环氧化物;双(3,4-环氧环己基甲基)庚二酸酯;二环戊二烯二环氧化物;和其他合适的脂环族环氧化物。其他合适的二羧酸的脂环族酯的二环氧化物描述在例如wo2009/089145a1中,其通过引用并入本文。

其他脂环族环氧化物包括3,3-环氧环己基甲基-3,4-环氧环己烷羧酸酯例如3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯;3,3-环氧-1-甲基环己基-甲基-3,4-环氧-1-甲基环己烷羧酸酯;6-甲基-3,4-环氧环己基甲基甲基-6-甲基-3,4-环氧环己烷羧酸酯;3,4-环氧-2-甲基环己基-甲基-3,4-环氧-3-甲基环己烷羧酸酯。其他合适的3,4-环氧环己基甲基-3,4-环氧环己烷羧酸酯描述在例如美国专利no.2890194中,其通过引用并入本文。在其他实施方案中,该环氧组分可以包括多元醇聚缩水甘油基醚,其来自于聚乙二醇,聚丙二醇或者聚四氢呋喃或者其组合。

合适的酸酐包括线性聚合物酸酐例如聚癸二酸酐和聚壬二酸酐。脂环族酸酐例如甲基四氢邻苯二甲酸酐(mthpa),四氢邻苯二甲酸酐,纳迪克甲基酸酐(nma),六氢邻苯二甲酸酐(hhpa)和甲基六氢邻苯二甲酸酐(mhhpa)。简单的脂环族酸酐例如琥珀酸酐,取代的琥珀酸酐,柠檬酸酐,马来酸酐和马来酸酐的特定加成物,十二烷基琥珀酸酐,十二烯基琥珀酸酐(ddsa),马来酸酐的马来酸酐乙烯基和苯乙烯共聚物,多环脂环族酸酐和芳族酸酐例如邻苯二甲酸酐和偏苯三酸酐。

本发明的组合物可以包含大约0.4-大约0.6当量的酸酐固化剂/当量环氧和优选0.5-0.6当量。该加速剂可以适于以大约1-40份/百份固化剂的比率使用。在另一实施方案中,该加速剂可以适于以大约1-20份/百份固化剂的比率使用。在再一实施方案中,该加速剂可以适于以大约1-10份/百份固化剂的比率使用。与标准环氧:酸酐比率(1:0.8-1,其通常用于这样的制剂中,来用于结构层合体和复合材料应用)相对照,所提出的方案仅仅包含0.4-0.6份酸酐固化剂:1份环氧树脂。

我们相信本技术将带来的优点如下:

1)它将允许制作者降低用于应用例如拉挤的固化温度和时间(150℃持续6h到100℃持续2h)。

2)对于vartm,当它在较低温度(100℃)固化时,使得酸酐制剂在循环负荷下由于微应力导致的失效最小化或者得以消除。

3)与使用胺的情况相比,改进了整体的eh&s性能。

4)提供了新的配制工具来提供到需要长有效期和低放热之处。

本发明的方面例如如下:

<1>用于环氧树脂的固化剂组合物,其包含酸酐和大约等摩尔量的叔胺或者咪唑和羧酸。

<2>根据<1>的固化剂组合物,其中该酸酐与组合的叔胺或者咪唑和羧酸的重量比是95:5。

<3>根据<1>的固化剂组合物,其中该酸酐与组合的叔胺或者咪唑和羧酸的重量比是50:50。

<4>组合物,其包含根据<1>的固化剂和环氧树脂。

<5>根据<4>的组合物,其中该环氧:酸酐重量比是1:0.4-0.6。

<6>根据<5>的组合物,其中固化该组合物的温度是80℃-100℃持续1-2h。

<7>根据<4>-<6>任一项的组合物,其中该环氧树脂是液体环氧树脂或者多官能环氧树脂。

<8>根据<4>-<6>任一项的组合物,其中该环氧树脂包含至少一种缩水甘油基醚,其选自下面物质的缩水甘油基醚:间苯二酚,对苯二酚,双-(4-羟基-3,5-二氟苯基)-甲烷,1,1-双-(4-羟基苯基)-乙烷,2,2-双-(4-羟基-3-甲基苯基)-丙烷,2,2-双-(4-羟基-3,5-二氯苯基)丙烷,2,2-双-(4-羟基苯基)-丙烷,双-(4-羟基苯基)-甲烷及其组合。

<9>根据<1>-<3>任一项的固化组合物,其中该酸酐选自甲基六氢邻苯二甲酸酐(mhhpa),纳迪克甲基酸酐(nma),十二烯基琥珀酸酐(ddsa),甲基四氢邻苯二甲酸酐(mthpa),六氢邻苯二甲酸酐(hhpa)。

<10>根据<4>-<8>任一项的组合物,其进一步包含选自环氧增韧剂、无机纳米和微米填料的添加剂。

<11>根据<4>-<7>任一项的组合物的用途,其中该用途选自粘结剂和复合材料构件。

<12>根据<4>-<7>任一项的组合物,其中该组合物是由选自下面的方法制造的:树脂传递模塑(rtm)、高压树脂传递模塑(hprtm)、轻质树脂传递模塑(lrtm)、压塑(cm)、树脂灌注、纤维缠绕、流延、拉挤、模塑及其组合。

<13>根据<1>的组合物,其中与羧酸组合的叔胺或者咪唑是n-羟乙基哌啶或者下面的结构所示的咪唑:

其中r1=h、c1-c20直链或者支链烷基,或者单环芳基;和r2=c1-c20直链或者支链烷基,或者单环芳基。

<14>根据<13>的组合物,其中该羧酸表示为rcooh;r=c1-c20直链或者支链烷基,或者单环芳基。

实施例

实施例1

制备低温酸酐固化体系的通用程序。

该新的低温固化体系是通过将nhep(19g)和环己烷二甲基胺(28g)加入装备有顶部机械搅拌器和氮气入口和热电偶的三颈圆底烧瓶中来制备的。将乙基己酸(58g)缓慢加入来保持25-30℃的温度1小时。一旦形成盐,则将甲基六氢邻苯二甲酸酐(mhhpa)(900g)缓慢加入来保持~25-30℃的温度30min的时间。完成后,在室温加入环氧(2000g),并且将整个混合物搅拌10min来制造低温酸酐体系。热研究是使用dsc进行来理解固化动力学、反应性和tg。潜伏性研究是使用带有

wingather软件的brookfield粘度计来产生粘度固化曲线来确定的。机械性能例如拉伸、挠曲和压缩是根据astm方法使用instron机器来测试的。

实施例2

制备低温酸酐固化体系的通用程序。

该新的低温固化体系是通过将咪唑(32g)加入装备有顶部机械搅拌器和氮气入口和热电偶的三颈圆底烧瓶中来制备的。将辛酸(68g)缓慢加入来保持25-30℃的温度1小时。一旦形成盐,则将甲基六氢邻苯二甲酸酐(mhhpa)(900g)缓慢加入来保持~25-30℃的温度30min的时间。完成后,在室温加入环氧(2000或者2250g),并且将整个混合物搅拌10min来制造低温酸酐体系。热研究是使用dsc进行来理解固化动力学、反应性和tg。潜伏性研究是使用带有wingather软件的brookfield粘度计来产生粘度固化曲线来确定的。机械性能例如拉伸、挠曲和压缩是根据astm方法使用instron机器来测试的。

实施例3

该新的低温固化体系是通过将1-甲基咪唑(ami-1)(36.44g)加入装备有顶部机械搅拌器和氮气入口和热电偶的三颈圆底烧瓶中来制备的。将辛酸(63.66g)缓慢加入来保持25-30℃的温度1小时。一旦形成盐,则将酸酐(mhhpa)(900g)缓慢加入来保持~25-30℃的温度30min的时间。完成后,在室温加入环氧(2250g),并且将整个混合物搅拌10min来制造低温酸酐体系。热研究是使用dsc进行来理解固化动力学、反应性和tg。潜伏性研究是使用带有wingather软件的brookfield粘度计来产生粘度固化曲线来确定的。机械性能例如拉伸、挠曲和压缩是根据astm方法使用instron机器来测试的。

酸酐加速剂的差示扫描量热法(dsc)研究

将甲基六氢邻苯二甲酸酐(54g)(包含酸酐加速剂)和双酚a二缩水甘油基醚树脂(100g)使用不锈钢抹刀混合,直到获得均匀的混合物。这种混合物的样品是通过dsc(tainstrumentsqa20)使用这样的程序来分析的,其始于25℃,并且以10℃/min加热高达300℃,冷却和扫描第二时间到250℃。该第一扫描提供了固化数据(包括开始温度,放热峰和反应热),而第二扫描确定了玻璃化转变温度。

实施例4

酸酐加速剂的潜伏性研究

分析了实施例1所制备的盐的潜伏性。每个体系的有效期是通过连接到膝上型计算机上的brookfield粘度计使用brookfieldwingather程序测量的。记录了粘度相对于时间和温度。

表1

nd:无数据,no:未观察

a2910-ancaminea2910

ancamine是evonikcorp.的注册商标。

这个实验的目的是理解低温的固化转化和该固化材料的最佳tg。为了实现低温完全固化(65℃-2h),制备了上述制剂来使用等温dsc研究固化转化效果。酸酐:加速剂负载量是在90:10–50:50变化。所用环氧酸酐通常的phr是100:80。dsc结果显示对于表1的每个组合存在着残留反应热,其是不完全固化的指示。这个实验的结论是固化温度应当高于65℃。值得注意的是用于这种理念的加速剂允许使用更高的负载量,而不影响固化包的物理形式(例如粘度)。例如用于酸酐环氧固化的其他加速剂在该酸酐中不可以以>5%来使用。在较高的负载量时,这些加速剂(例如k-54,a1110,bdma,lindax-1)引起固化剂制剂不稳定,和导致在不存在环氧树脂时粘度的快速建立。

表2

该第二实验是在较高温度100℃进行的,并且固化时间保持相同来理解温度对于固化转化和tg的影响。dsc的结果显示在表2中。当在较高温度(100℃)固化时tg升高,但是仍然观察到存在残留放热,其表示固化是不完全的。重要的是实现完全固化来获得固化的产物,其对于高温、水和其他化学品是稳定的。后者的条件导致固化网络的劣化,其导致固化产物在它使用过程中失效。

表3

在该第三实验中,将酸酐固化包相对于环氧树脂的化学计量比从1:0.8改变到1:0.6来检查具有较少量固化剂能否获得完全固化。如表3所示,当在100℃固化2h时较少量的固化剂(0.6)导致制剂完全转化。(例如使用dsc没有观察到残留放热)。90:10包的tg优于80:20包,因此对于进一步的研究,我们使用了90:10包制剂。

表4

接下来的实验的目的是确定环氧:酸酐包的最佳比率。dsc的结果显示在表4中。该结果表明用100份环氧:60份酸酐包比率获得了最佳的tg和完全转化。有效期没有明显变化,虽然使用了较高的加速剂:酸酐比率。在传统的酸酐固化环氧体系中,加速剂通常的用量是1-4%。图1显示了不同比率的环氧:酸酐(phr)包的tg(℃)。

动态dsc

实施例5

将下表所述的制剂与双酚a二缩水甘油基醚树脂(所述制剂与环氧树脂的比率是40-50g:100g树脂)使用不锈钢抹刀混合,直到获得均匀的混合物。将这种混合物的2mg样品使用市售的dsc(tainstrumentsqa20)进行分析,其具有嵌入该dsc中的软件程序,其在25℃开始,并且以10℃/min加热高达300℃,冷却和扫描第二时间到250℃。第一扫描提供了固化数据(包括开始温度,放热峰和反应热),而第二扫描确定了玻璃化转变温度。

表5

表6

表7机械性能

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1