一种高效防污闪复合涂料及其制备方法与流程

文档序号:11103690阅读:675来源:国知局

本发明涉及一种高效防污闪复合涂料及其制备方法,属于应用在电力设施上的氟碳涂料技术领域。



背景技术:

随着大气污染的日益严重,输变电线路的运行环境也日益恶化,污闪事故频频发生,严重影响了电网供电的安全与连续运行。污闪是指电气设备绝缘表面附着的污秽物,在潮湿条件下,其中的可溶性物质会逐渐溶于水,从而在绝缘表面形成一层导电膜,使电气设备的表面绝缘水平大大降低,并在电力场作用下出现强烈的放电现象。为保障电网的安全运行,目前采用的防污闪措施较多。普遍的方法有:一)带电干扫、带电水冲洗或春秋两季的停电清扫;二)采用硅油、硅脂等表面涂料,以便合理地调节外绝缘的爬电比距;三)使用防闪增爬裙、喷涂RTV、PRTV等防污闪涂料;四)使用干剂清洗、绝缘剂清洗等。但是这些措施均存在这样或那样的不足,或在很大程度上增加成本投入、增加施工风险,或是防污闪效果不理想。因此开发出一种高效、持续且性能稳定的防污闪材料,已成为高压电力行业防污闪的重要课题。

二氧化钛光催化技术是二十世纪末发展起来的一项高新技术,其在环境保护、国防军事、建筑材料、医疗卫生和果蔬保鲜等众多领域均具有广阔的应用前景。应用在环境治理上的光催化技术具有以下优点:一、因利用太阳能而具有低碳、环保和廉价的特点;二、使有机污染物能在室温下完全氧化成无毒的CO2和H2O,不产生二次污染,绿色环保;三、光催化剂属于无机半导体氧化物,催化剂自身无毒。

氟碳涂料是以含氟树脂为主要成膜物的系列涂料的统称,是在氟树脂基础上经过改性、加工而成的一种新型涂层材料,其主要特点是树脂中含有大量的F-C键,键能485kJ.mol-1,因此F-C键难易断裂。氟原子高的电负性使得核外电子和成键电子云被束缚,氟原子的极化率低,氟碳化合物的介电常数和损耗因子均很小,使得其具有高温稳定性、化学惰性及绝缘性。氟碳涂料特殊的化学结构特性使其具有优良的耐化学腐蚀、耐热、耐老化、润滑性、绝缘性等性能。因此,氟碳涂料被广泛应用于建筑、防腐、高速公路、铁路桥梁、交通车辆、船舶及海洋工程设施等领域,具有极大的应用价值。氟碳涂料中氟碳涂层有极低的表面能、极小的摩擦系数,导致其对无机污染物具有较好的防污效果,但如果当其表面有机污染物渐渐累积再与无机污染物相互累积叠加后,其防污性能将不能持续。



技术实现要素:

为解决现有防污闪技术存在的不足,并结合氟碳涂料以及二氧化钛光催化技术的优缺点,本发明提供一种高效防污闪复合涂料及其制备方法,该涂料解决了高压输电线及绝缘子表面有机和无机污染物的累积问题,使表面设置了该涂料的高压输电线及绝缘子,能够长期、稳定地保持自清洁功能,进而有效提高高压输电线及绝缘子的防污闪性能,保障输电线路的安全运行。

本发明通过以下技术方案实现:一种高效防污闪复合涂料,其特征在于由下列体积比的组分制成:

酚醛树脂/FEVE氟碳树脂 29~90%

TiO2/SiO2复合溶胶 5~65%

分散剂 0.5~1.0%

丙三醇 0.8~1.0%

硅烷偶联剂 3.5~4.0%

上述组分总和为100%。

所述酚醛树脂/FEVE氟碳树脂通过下列方法制备:在匀速搅拌的混合溶液Ⅰ中,按混合溶液Ⅰ体积的0.2~0.7%加入引发剂,得混合溶液Ⅱ,其中:混合溶液Ⅰ的体积比为:醋酸丁酯׃乙醇׃水=60~70 : 25~30 : 5~10;再在混合溶液Ⅱ中,分别按混合溶液Ⅱ体积的12~25%、9~15%加入氟烯烃单体、烷基乙烯基醚,充分搅拌2-3h后,以60滴/min的速度滴加混合溶液Ⅲ,该混合溶液Ⅲ的体积比是:酚醛树脂׃乙醇=30~45 ׃ 55~70,滴加完毕后继续搅拌1.5-2.5h,即得到酚醛树脂/FEVE氟碳树脂。

所述TiO2/SiO2复合溶胶通过下列方法制备:在45~55℃的水浴中,按体积比V钛酸丁酯׃VCH3CH2OH =0.5~1.0 ׃ 5~5.5,将钛酸丁酯缓慢滴加到搅拌着的乙醇中,搅拌15min后,用稀硝酸调节溶液pH至4~6,继续搅拌1.5h后,得钛酸丁酯与乙醇的混合液;按体积比V正硅酸乙酯׃V钛酸丁酯/CH3CH2OH = 0.2~0.7 : 5.5~6.5,将正硅酸乙酯缓慢滴加至钛酸丁酯与乙醇的混合液中,继续搅拌7~9h后,常温下静置2~3h,即得到TiO2/SiO2复合溶胶。

所述分散剂为XL250、BYK-P1045、PONW597、D4040中的一种或多种,且多种组合的比例是任意的。

所述硅烷偶联剂为KH550、KH560、KH850中的一种。

所述丙三醇为市购分析纯产品。

所述乙醇为市购的分析纯产品。

所述钛酸丁酯、正硅酸乙酯均为市购化学纯产品。

所述引发剂为:过氧化苯甲酰、2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮、苯偶酰二甲基缩酮中的一种,市购的化学纯产品。

所述氟烯烃单体为四氟乙烯、偏氟乙烯、氟乙烯中的一种。

所述烷基乙烯基醚为十二烷基乙烯基醚、十八烷基乙烯基醚、环己基乙烯基醚中的一种或多种,且多种组合的比例是任意的。

所述醋酸丁酯、酚醛树脂均为市购工业纯产品。

本发明提供的高效防污闪复合涂料通过下列方法制备:

1)按下列体积比的组分备料:

酚醛树脂/FEVE氟碳树脂 29.2%

TiO2/SiO2复合溶胶 65%

分散剂 1.0%

丙三醇 0.8%

硅烷偶联剂 4.0%

上述组分总和为100%;

2)以2ml/min的速度,将TiO2/SiO2复合溶胶、分散剂、丙三醇滴加至匀速搅拌的酚醛树脂/FEVE氟碳树脂中,在50℃下充分搅拌6h,再加入硅烷偶联剂,继续搅拌2.5h,即得到防污闪复合涂料。

所述TiO2/SiO2复合溶胶经检测具有丁达尔效应。

本发明具备的显著优点在于:

a、本发明以TiO2为主体与SiO2制备复合溶胶,能对太阳光的吸收波长红移至可见光区,显著提高了光催化性能,更有效地降解有机污染物;

b、本发明所用的酚醛树脂/FEVE氟碳树脂,能有效提高憎水性能,从而减少无机污染物在其表面附着;

c、本发明制备的防污闪复合涂料用在高压输电线及绝缘子表面后,经太阳光照射,能有效分解高压输电线及绝缘子表面的有机污染物,从而减小有机污染物与无机污染物之间的相互作用,同时复合涂料本身拥有极小的表面能,使无机污染物的粘附能力大大降低,在风吹、雨淋等自然外力的作用下,均能保持高压输电线及绝缘子表面洁净,从而大大减少高压输电线及绝缘子等高压电力设施的污闪,同时降低供配电线路的运行维护成本;

d、本发明制备生产工艺简单、便捷,原料及制备方法均为环保型,不会对环境和参与人员造成损害。

下面通过实施例对本发明做进一步说明。

本发明所用原料再无特殊说明的情况下,均为市购常规产品。

实施例1

一种高效防污闪复合涂料的制备方法,包括下列各步骤:

1)TiO2/SiO2复合溶胶的制备:在45℃的水浴中,按体积比V钛酸丁酯׃VCH3CH2OH =0.5׃5.5,将钛酸丁酯缓慢滴加到搅拌着的分析纯乙醇中,搅拌15min后,用稀硝酸调节溶液pH至4,继续搅拌1.5h后,得钛酸丁酯与乙醇的混合液;按体积比V正硅酸乙酯׃V钛酸丁酯/CH3CH2OH =0.2:6.5,将正硅酸乙酯缓慢滴加至钛酸丁酯与乙醇的混合液中,继续搅拌7h后,常温下静置2h,即得到TiO2/SiO2复合溶胶,经检测具有丁达尔效应;

2)酚醛树脂/FEVE氟碳树脂制备:在匀速搅拌的混合溶液Ⅰ中,按混合溶液Ⅰ体积的0.2%加入化学纯的引发剂——过氧化苯甲酰,得混合溶液Ⅱ,其中:混合溶液Ⅰ的体积比为:醋酸丁酯׃乙醇׃水=60:30:10;再在混合溶液Ⅱ中,分别按混合溶液Ⅱ体积的12%、15%加入氟烯烃单体——四氟乙烯、烷基乙烯基醚——十二烷基乙烯基醚,充分搅拌2-3h后,以60滴/min的速度滴加混合溶液Ⅲ,该混合溶液Ⅲ的体积比是:酚醛树脂׃乙醇=30׃ 70,滴加完毕后继续搅拌2.5h,即得到酚醛树脂/FEVE氟碳树脂;

3)按下列体积比的组分备料:

步骤(2)的酚醛树脂/FEVE氟碳树脂 89.7%

步骤(1)的TiO2/SiO2复合溶胶 5%

分散剂 1.0%

丙三醇 0.8%

硅烷偶联剂 3.5%

以2ml/min的速度,将TiO2/SiO2复合溶胶、分散剂、丙三醇滴加至匀速搅拌的酚醛树脂/FEVE氟碳树脂中,在45℃下充分搅拌7h,再加入硅烷偶联剂——KH550,继续搅拌2h,即得到防污闪复合涂料。

实施例2

一种高效防污闪复合涂料的制备方法,包括下列各步骤:

1)TiO2/SiO2复合溶胶的制备:在50℃的水浴中,按体积比V钛酸丁酯׃VCH3CH2OH =1.0׃5,将钛酸丁酯缓慢滴加到搅拌着的分析纯乙醇中,搅拌15min后,用稀硝酸调节溶液pH至5,继续搅拌1.5h后,得钛酸丁酯与乙醇的混合液;按体积比V正硅酸乙酯׃V钛酸丁酯/CH3CH2OH =0.7:5.5,将正硅酸乙酯缓慢滴加至钛酸丁酯与乙醇的混合液中,继续搅拌9h后,常温下静置3h,即得到TiO2/SiO2复合溶胶,经检测具有丁达尔效应;

2)酚醛树脂/FEVE氟碳树脂制备:在匀速搅拌的混合溶液Ⅰ中,按混合溶液Ⅰ体积的0.7%加入化学纯的引发剂——2-甲基-1-(4-甲硫基苯基)-2-吗啉基-1-丙酮,得混合溶液Ⅱ,其中:混合溶液Ⅰ的体积比为:醋酸丁酯׃乙醇׃水=70:25:5;再在混合溶液Ⅱ中,分别按混合溶液Ⅱ体积的25%、9%加入氟烯烃单体——偏氟乙烯、烷基乙烯基醚——十八烷基乙烯基醚,充分搅拌2-3h后,以60滴/min的速度滴加混合溶液Ⅲ,该混合溶液Ⅲ的体积比是:酚醛树脂׃乙醇=45׃ 55,滴加完毕后继续搅拌1.5h,即得到酚醛树脂/FEVE氟碳树脂;

3)按下列体积比的组分备料:

步骤(2)的酚醛树脂/FEVE氟碳树脂 70.8%

步骤(1)的TiO2/SiO2复合溶胶 24%

分散剂 0.5%

丙三醇 0.9%

硅烷偶联剂 3.8%

以2ml/min的速度,将TiO2/SiO2复合溶胶、分散剂、丙三醇滴加至匀速搅拌的酚醛树脂/FEVE氟碳树脂中,在60℃下充分搅拌5h,再加入硅烷偶联剂——KH560,继续搅拌2.5h,即得到防污闪复合涂料。

实施例3

一种高效防污闪复合涂料的制备方法,包括下列各步骤:

1)TiO2/SiO2复合溶胶的制备:在55℃的水浴中,按体积比V钛酸丁酯׃VCH3CH2OH =0.8׃5.2,将钛酸丁酯缓慢滴加到搅拌着的分析纯乙醇中,搅拌15min后,用稀硝酸调节溶液pH至6,继续搅拌1.5h后,得钛酸丁酯与乙醇的混合液;按体积比V正硅酸乙酯׃V钛酸丁酯/CH3CH2OH =0.5:6.0,将正硅酸乙酯缓慢滴加至钛酸丁酯与乙醇的混合液中,继续搅拌8h后,常温下静置3h,即得到TiO2/SiO2复合溶胶,经检测具有丁达尔效应;

2)酚醛树脂/FEVE氟碳树脂制备:在匀速搅拌的混合溶液Ⅰ中,按混合溶液Ⅰ体积的0.5%加入化学纯的引发剂——苯偶酰二甲基缩酮,得混合溶液Ⅱ,其中:混合溶液Ⅰ的体积比为:醋酸丁酯׃乙醇׃水=65:28:8;再在混合溶液Ⅱ中,分别按混合溶液Ⅱ体积的20%、12%加入氟烯烃单体——氟乙烯、烷基乙烯基醚——环己基乙烯基醚和十二烷基乙烯基醚,充分搅拌2-3h后,以60滴/min的速度滴加混合溶液Ⅲ,该混合溶液Ⅲ的体积比是:酚醛树脂׃乙醇=40׃ 60,滴加完毕后继续搅拌2.5h,即得到酚醛树脂/FEVE氟碳树脂;

3)按下列体积比的组分备料:

步骤(2)的酚醛树脂/FEVE氟碳树脂 29.2%

步骤(1)的TiO2/SiO2复合溶胶 65%

分散剂 1.0%

丙三醇 0.8%

硅烷偶联剂 4.0%

以2ml/min的速度,将TiO2/SiO2复合溶胶、分散剂、丙三醇滴加至匀速搅拌的酚醛树脂/FEVE氟碳树脂中,在50℃下充分搅拌6h,再加入硅烷偶联剂——KH850,继续搅拌2.5h,即得到防污闪复合涂料。

下面通过对比试验对本发明的技术效果加以证明:

取12个洁净的普通玻璃绝缘子,将其分为四个组,三个绝缘子为一组,第1-3组的每个绝缘子表面均对应涂覆实施例1-3的防污闪复合涂料3ml,待其表面干燥后,在1-3组绝缘子表面喷涂下列体积比的混合油:V菜籽油:V煤焦油=5 : 3,且每一组的三个绝缘子表面分别喷涂3.5ml、2.0ml、0.3ml混合油;在第四组的三个普通玻璃绝缘子表面仅分别喷涂3.5ml、2.0ml、0.3ml上述相同的混合油;待其基本风干后,将三组涂有防污闪复合涂料和混合油的绝缘子、一组仅涂有混合油的普通绝缘子,共同置于冶炼厂附近高台上进行自然积污对比试验,实验结果以检测其盐密、灰密表示。四组对比试验结果如表1所示:

表1 自然积污样品盐密、灰密测试结果

由表中对比试验测试结果可以看出:

实施例1的酚醛树脂/FEVE氟碳树脂占比例较多,TiO2/SiO2复合溶胶占比较少,其对比试验结果为有机污染物混合油涂覆量越多,其盐密、灰密值越大,防污闪效果越差,因此实施例1的配方更适用于有机污染少、但无机污染严重的区域;

实施例3的酚醛树脂/FEVE氟碳树脂占比例较少,TiO2/SiO2复合溶胶占比较多,其对比试验结果为有机污染物混合油涂覆量越多,其盐密、灰密值越小,防污闪效果越好,因此实施例3的配方更适用于无机污染少、但有机污染严重的区域;

实施例2的酚醛树脂/FEVE氟碳树脂和TiO2/SiO2复合溶胶占比例相对较为适中,其盐密、灰密介于实施例1和实施例3之间,因此更适用于有机污染和无机污染相对均衡的区域。

普通绝缘子表面未进行任何防污闪涂料的涂覆,其防污闪性能远低于本发明的防污闪复合涂料。

同时我们可以根据不同的污染物区域以及不同的污染程度制备生产出与之相适应的高效防污闪复合涂料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1