导电性粘接膜和切割芯片接合膜的制作方法

文档序号:11528583阅读:342来源:国知局
导电性粘接膜和切割芯片接合膜的制造方法与工艺
本发明涉及一种导电性粘接膜、以及将其与粘合带贴合而形成的切割芯片接合膜。
背景技术
:以往,在将igbt(绝缘栅双极型晶体管,insulatedgatebipolartransistor)、mos-fet(金属氧化物半导体-场效应晶体管,metal-oxide-semiconductorfield-effecttransistor)等半导体功率器件与金属引线框架接合时,广泛使用无铅焊料,但最近发现了铅的有害性问题。另外,近年来以寻求更高密度的能源控制为背景,正在进行使用了可耐受200℃以上的结温的sic、gan等宽禁带半导体的功率器件的研究,但由于铅焊料的共晶熔点低,所以接合部分的耐热性不足成为瓶颈。基于上述背景,出现了各种不含铅的无铅焊料,其中auge等高熔点焊料作为宽禁带半导体器件的接合材料而受到关注(专利文献1),但因材料昂贵、以及安装温度升高,而导致工艺成本增加,这成为瓶颈,没有推广普及。另外,由于大部分无铅焊料的润湿性较铅焊料差,所以焊料不会向晶片焊垫部分涂敷扩展,在芯片的角等处容易形成焊料缺漏的状态,该部分会产生接合不良的风险,这已成为问题。由于熔点越高则无铅焊料的润湿性会倾向于变得越差,所以难以兼具耐热性和安装可靠性。为了解决上述课题,正在进行cu/sn系焊料等扩散烧结型焊料的研究。这些扩散烧结型焊料虽然安装时的熔点低,但在扩散烧结反应后会发生不可逆的高熔点化,因此与以往的无铅焊料相比,有利于兼具耐热性和安装可靠性。但是,即使是扩散烧结型焊料,其润湿性也略微不如无铅焊料,因此在接合5mm2以上的大面积器件时,仍然存在着焊料缺漏的风险,并且烧结体硬而脆、应力缓和性低,因此存在着耐热疲劳特性低、器件寿命缩短的缺点。除上述无铅焊料以外,还使用ag膏等,但其材料成本非常高、以及ag离子的迁移所引起的污染均已成为问题。另外,已知在大部分的铅焊料或无铅焊料中,为了除去金属的氧化覆膜,通常是添加松脂或醇等助焊剂(专利文献3),但这些助焊剂成分在吸湿后容易渗出,而且这些现有类型的助焊剂其去除金属氧化覆膜的能力并不太高,因此有时还需要大量添加,从而导致渗出分量多,所以会给半导体器件接合的耐回流可靠性带来不良影响,以往在焊料附着后必需清洗助焊剂,但其麻烦以及清洗废液的处理均已成为问题。虽说这样,但为了减少渗出而减少助焊剂的添加量时,氧化膜的去除能力不足,难以体现出导电性等其他性能。现有技术文献专利文献专利文献1:日本特开2002-307188号公报;专利文献2:日本特开2007-152385号公报;专利文献3:us2014/120356a1。技术实现要素:技术问题本发明的目的在于:提供一种在将半导体功率器件与金属引线框架接合时耐热性和安装可靠性优异、并且无铅、环境负荷小的方案。解决问题的方案申请人深入研究的结果,完成了解决上述课题的导电性粘接膜的发明。即,本发明涉及一种导电性粘接膜,包含金属颗粒、热固性树脂、和具有路易斯酸性的化合物或热产酸剂,其特征在于:上述具有路易斯酸性的化合物或热产酸剂选自氟化硼或其络合物、pka=-0.4以下的质子酸、或者将与pka=-0.4以下的质子酸的盐相同的阴离子和氢离子或其他阳离子组合而获得的盐或酸。另外,在上述具有路易斯酸性的化合物或热产酸剂中,优选锑和砷成分的总量不足0.1wt%。另外,优选上述具有路易斯酸性的化合物或热产酸剂选自氟化硼或其络合物、氟硼酸盐或多氟烷基硼酸或其盐、多氟芳基硼酸或多氟烷基氟磷酸或其盐、多氟芳基氟磷酸或其盐。另外,优选上述具有路易斯酸性的化合物或热产酸剂选自芳基硫鎓阳离子的盐和芳基碘鎓阳离子的盐。另外,在上述导电性粘接膜中,优选上述具有路易斯酸性的化合物或热产酸剂的重量比例为0.3~3wt%、并且金属颗粒的重量比例为70~96wt%。另外,优选上述具有路易斯酸性的化合物或热产酸剂的沸点或升华点在常压下为200℃以上。另外,在上述导电性粘接膜中,优选铅、汞、锑和砷成分的总量不足0.1wt%。另外,优选上述金属颗粒的至少一部分包含cu、ni、sn的任一种。另外,优选上述金属颗粒为包含彼此可形成金属间化合物的组合在内的两种以上的金属的混合物。另外,优选上述两种以上的金属颗粒中的至少两种选自cu、ag、ni、ti、al、sn、zn、au、in。而且,优选烧结前在100℃~250℃存在至少一个通过dsc(差示扫描量热测定)观测到的吸热峰,并且在烧结后观测不到该吸热峰。而且,优选上述热固性树脂包含1分子中含有2单位以上的亚氨基的马来酰亚胺化合物。而且,优选马来酰亚胺化合物包含来自c10以上的脂肪族胺的骨架。而且,本发明的导电性粘接膜优选还包含环氧化合物。而且,本发明还涉及一种将上述导电性粘接膜与粘合带贴合而形成的切割芯片接合膜。发明效果通过使用本发明所提供的导电性粘接膜、或者将其与切割带组合而获得的切割芯片接合膜,可以提供一种廉价且环境负荷也小的元件,该元件虽然可以在低温下进行安装但烧结后的耐热性优异,不存在焊料缺漏不良,即使省去了助焊剂清洗工序,其耐热疲劳和吸湿后耐回流性也优异,可以将功率半导体与引线框架等进行电性接合。附图说明图1是显示本发明的实施方式所涉及的切割·芯片接合膜的剖面图。图2是显示将本发明的切割·芯片接合膜与半导体贴合后的状态的图。图3是用于说明切割工序的图。图4是用于说明拾取工序的图。图5是用于说明芯片接合工序的图。图6是显示模制完成的半导体器件的剖面的图。图7是显示各酸的摩尔吸光系数图谱的图。具体实施方式本发明的导电性粘接膜的特征在于:至少包含金属颗粒、热固性树脂、和具有路易斯酸性的化合物或热产酸剂。金属颗粒负责导电性和导热性,热固性树脂赋予烧结前的薄膜性和对由于烧结后的热循环而产生的应力等的缓和性,具有路易斯酸性的化合物或热产酸剂具有所谓“助焊剂”的功能、即通过除去金属颗粒表面的氧化膜而有助于其发挥作用。(金属颗粒)本发明的金属颗粒,从虽然降低安装温度但烧结后具有安装温度以上的耐热性的角度考虑,优选其中至少一部分包含彼此可形成金属间化合物的组合。作为可形成金属间化合物的金属的组合,例如可以列举:cu或ni或ag与sn或zn的组合、ag与sn的组合、ni或sn或al与ti的组合、au与in的组合等,但从降低分开安装温度的角度考虑,优选包含低熔点的sn的组合,特别优选为包含cu或ni和sn的组合。除上述可形成金属间化合物的金属的组合以外,根据需要,还可以加入其他的金属成分。例如,还可以在sn中加入zn或bi、ag、in、ga、pd等预先进行合金化,再将该合金化物制成颗粒后使用,从而进一步进行低熔点化。上述金属颗粒在导电性粘接膜中的重量比例优选为70~96wt%。(此外,这种情况下的“粘接膜”不包括pet等的基材重量。下同。)从低环境负荷的角度考虑,上述金属颗粒中尽量不含铅、汞、锑和砷,具体而言,在导电性粘接膜中铅、汞、锑和砷不足0.1wt%。在后述的切割后进行的烧结前,因具有可归属于通过dsc以吸热峰的形式观测到的至少一种金属成分的熔点,故在被粘附体表面涂布该成分可有利于低温下的安装。而且,由于该成分在烧结后通过金属间的扩散反应而高熔点化,所以例如在安装后即使利用高熔点无铅焊料进行引线接合或者进行回流处理等,也具有可耐受的充分的耐热性。安装温度优选为100~250℃,进一步优选为100~200℃。耐热温度优选为250℃以上,进一步优选为300℃以上。(热固性树脂)从耐热性和混合金属颗粒时的薄膜性的角度考虑,热固性树脂优选为1分子中包含2单位以上的亚氨基的马来酸亚胺树脂(马来酰亚胺树脂)或环氧树脂。上述马来酸亚胺树脂例如可以通过将马来酸或其酸酐与二胺或多元胺缩合等而获得,但从应力缓和性的角度考虑,优选为包含来自c10以上的脂肪族胺的骨架的马来酸亚胺树脂,特别优选为c30以上,优选为具有下述式(1)这样的骨架的马来酸亚胺树脂。式(1)[化学式1]在上述马来酸亚胺树脂中,通过包含来自马来酸以外的酸成分、例如均苯四甲酸或其酸酐、羟基邻苯二甲酸二醚酯或其酸酐等的骨架,可以调整分子量或tg等。作为马来酸亚胺树脂的固化剂,优选酚醛树脂、自由基发生剂等。作为这种结构的双马来酰亚胺树脂,例如可以列举如下述结构式所示的树脂。[化学式2]此外,上式中“c36”是指下述结构。[化学式3]当选择环氧树脂作为热固性树脂时,从应力缓和性与薄膜性的平衡的角度考虑,优选双酚a型环氧树脂和双酚f型环氧树脂以及它们的组合,进一步优选为它们与作为分子量大的环氧树脂的苯氧树脂的混合物。作为环氧树脂的固化剂,可以选择酸酐、酚醛树脂、胺、咪唑或双氰胺等。通过包含如上所述的具备了应力缓和性的热固性树脂,本发明的导电性粘接膜的烧结体可克服因现有的仅为金属的无铅焊料硬而脆故热疲劳特性差的缺点,同时可确保烧结前的薄膜性。(具有路易斯酸性的化合物或热产酸剂)具有路易斯酸性的化合物或热产酸剂是i)氟化硼或其络合物、或者ii)pka=-0.4以下的质子酸、或者iii)将与pka=-0.4以下的质子酸的盐相同的阴离子和氢离子或其他阳离子组合而获得的盐或酸,从而使得金属氧化膜的去除能力远远优于以往经常用作铅焊料或无铅焊料的助焊剂的pka=+4~+5左右的松香酸或茴香酸等,因此,即使是远少于以往的助焊剂的量也可发挥效果。此外,“热产酸剂”是指通过加热而显示出路易斯酸性的化合物,是一种虽然在室温下未必显示出强的路易斯酸性、但在加热时会显示出强的路易斯酸性的材料。尤其是在与烃化合物等的共存下、在80~200℃左右的加热时因抽取氢而产生质子酸的类型的热产酸剂,其使烧结前的材料在室温下以未反应的状态使物理性质稳定以进行长期保管,但在烧结时会迅速起到助焊剂的作用,因此优选。作为这样的热产酸剂,例如可以列举:将三氟化硼与路易斯碱性化合物组合而获得的络合物、以及将芳基碘鎓阳离子或芳基硫鎓阳离子与和质子酸或其盐相同的阴离子组合而获得的盐。这里,氟硼酸(四氟硼酸)的酸解离常数pka为-0.4,pka=-0.4以下的质子酸是指酸性在氟硼酸以上的强酸。根据物质有时还无法求出酸解离常数pka的值,但酸的相对强弱可根据反应性来定义。例如,在下面这样的平衡状态下,当反应向右大幅进行时,a’是比a强的酸。根据这样的反应性,可得到酸相对于氟硼酸的强度。作为这样的具有路易斯酸性的化合物或热产酸剂,其中i)氟化硼或其络合物例如可以列举三氟化硼、或三氟化硼与苯酚或吡啶或联吡啶等的胺络合物等;上述ii)pka=-0.4以下的质子酸可以列举将四氟硼酸阴离子、六氟磷酸阴离子或氟锑酸阴离子或多氟烷基硼酸阴离子或多氟芳基硼酸阴离子或多氟烷基氟磷酸阴离子与质子组合而获得的酸等;iii)将与pka=-0.4以下的质子酸的盐相同的阴离子和氢离子或其他阳离子组合而获得的盐或酸中的阳离子可以列举芳基碘鎓阳离子或芳基硫鎓阳离子等。其中,从与环氧树脂或聚酰亚胺树脂等热固性树脂成分的相容性和保存稳定性的角度考虑,优选三氟化硼与苯酚或胺的络合物、或者将四氟硼酸阴离子或六氟磷酸阴离子或氟锑酸阴离子或多氟烷基硼酸阴离子或多氟芳基硼酸阴离子或多氟烷基氟磷酸阴离子或多氟芳基氟磷酸阴离子与芳基碘鎓阳离子或芳基硫鎓阳离子组合而获得的盐,而且,由于氟锑酸盐、多氟烷基硼酸盐、多氟芳基硼酸盐特别是氧化膜的去除能力强且其中大部分盐的沸点或升华点在常压下为200℃以上,因此烧结时在粘接膜中产生空隙而使接合的强度及可靠性降低的风险小,而且多氟烷基硼酸盐或多氟芳基硼酸盐不含毒性高的锑,所以在低环境负荷方面优选,又由于其呈亲油性,所以也容易溶解于有机溶剂等中再分散于热固性树脂中,因此从薄膜的制造性方面考虑也优选。这些具有路易斯酸性的盐或热产酸剂还起到环氧树脂或马来酰亚胺树脂的潜在性固化剂、或潜在性固化催化剂的作用。从充分具有去除金属氧化膜的能力、同时避免因渗出引起的吸湿后回流可靠性降低的风险的角度考虑,上述具有路易斯酸性的化合物或热产酸剂在导电性粘接膜中的重量比例优选为0.3~3wt%,进一步优选为0.5~1wt%。因助焊剂成分极少,即使不经过助焊剂清洗工序也可降低渗出的风险,可以确保充分的可靠性。金属颗粒的重量比例优选为70~96wt%。通过将金属颗粒的重量比例设为70wt%以上,可以使金属颗粒彼此接触,能够降低体积电阻率。另外,通过将金属颗粒的重量比例设为96wt%以下,可以确保将组合物形成薄膜状的薄膜性。由于本发明的导电性粘接膜呈膜状,所以例如在将其帖在形成有功率半导体器件的晶片的背面、并将晶片分割成每个器件而形成芯片的切割工序中可以将粘接膜连同晶片一起分割,由此可以容易地将粘接膜恰好地安装在器件的整个背面,且与焊料的润湿性、即润湿扩散或溢出等因身为液体而产生的问题无关。另外,由于是按照预先规定的厚度调整粘接膜,因此与现有的焊料或导电膏相比还可以高精度地调节芯片接合后的器件的高度。而且,通过将本发明的导电性粘接膜与切割带组合形成切割芯片接合膜,可以一次性将粘接膜和切割带与晶片贴合,能够省略工序。根据附图,对上述方案进行说明。图1是显示本申请发明的切割芯片接合膜10的剖面图。切割芯片接合膜10主要由切割带12、粘接膜13构成。切割芯片接合膜10是半导体加工用带的一个例子,根据使用工序或装置,可以将其预先切割(预切割)成规定的形状,也可以切割成一块一块的半导体晶片,可以呈长的筒状。切割带12由支撑基材12a和形成于其上的粘合剂层12b构成。剥离处理pet11覆盖切割带12,保护着粘合剂层12b及粘接膜13。作为支撑基材12a,优选呈放射线透过性,具体而言,通常使用塑料、橡胶等,只要透过放射线即可,没有特别限定。对粘合剂层12b的粘合剂的基质树脂组合物没有特别限定,使用通常的放射线固化性粘合剂。优选为具有羟基等能与异氰酸酯基反应的官能团的丙烯酸酯系粘合剂。虽然没有特别限定,但丙烯酸酯系粘合剂优选碘值为30以下、且具有放射线固化性碳-碳双键结构。作为本申请发明的粘接膜13的构成,如上所述,从将半导体功率器件与金属引线框架接合时耐热性和安装可靠性优异、且环境负荷小的角度考虑,非常优选为包含金属颗粒、热固性树脂和具有路易斯酸性的化合物或热产酸剂的导电性粘接膜。(切割芯片接合膜的使用方法)在制造半导体装置时,可以适当使用本发明的切割芯片接合膜10。首先,从切割芯片接合膜10上取下剥离处理pet11,如图2所示,在半导体晶片1上贴附粘接膜13,利用环形框架20固定切割带12的侧部。环形框架20是切割用框架的一个例子。粘接膜13层叠在切割带12的贴有半导体晶片1的部位。在切割带12的与环形框架20接合的部位不存在粘接膜13。之后,如图3所示,利用吸附台22来吸附、固定切割带12的下面,同时使用切割刀片21将半导体晶片1切割成规定的尺寸,制造多个半导体芯片2。之后,如图4所示,利用环形框架20将切割带12固定,在此状态下使带上凸环30上升,将切割带12的中央部盘曲在上方,同时对切割带12照射紫外线等放射线,以减弱切割带12的粘合力。之后,对于每个半导体芯片在其所对应的位置升高顶出针31,利用吸附筒夹32拾取半导体芯片2。之后,如图5所示,将所拾取的半导体芯片2与引线框架4等支撑部材及其他半导体芯片2粘接(芯片接合工序),如图6所示,经过al线的布设、以及树脂模制、加热固化、烧结等工序,得到半导体装置。实施例下面,通过实施例来具体说明本发明,但本发明不该受到该实施例的任何限定、约束。此外,wt%表示重量%。<实施例1~7>按照表1的组成,在金属颗粒为92wt%、树脂为7wt%、具有路易斯酸性的化合物或热产酸剂(助焊剂)为1wt%的混合物中加入甲苯制成浆液,将所得浆液用行星式搅拌机搅拌后薄薄地涂在进行了脱模处理的pet上,在120℃下干燥,得到了厚40μm的粘接膜。表1中,bmi-3000是指下述结构(n=1~10)。[化学式4]此外,虽然没有求出实施例1~7中使用的产酸剂(助焊剂)的pka值,但根据其与氟硼酸的反应性判定了pka是否为-0.4以下。给出具体的方法。将显色试剂(三苯基甲醇)溶解于二乙醚:1,2-二氯乙烷=1:1的混合溶剂中,调制了显色试剂溶液a。接下来,将表1中记载的各酸用二乙醚稀释或溶解,调制了与上述显色试剂溶液a相同浓度的酸溶液b。对于显色试剂溶液a与酸溶液b的混合溶液c,使用紫外、可见分光光度计((株)岛津制作所制造的uv-1800)测定450nm的吸光度,该吸光度来自下述反应式所示的通过显色试剂三苯基甲醇的脱水进行的三苯甲基化显色反应,再根据该值并根据混合溶液c中的显色试剂的浓度计算摩尔吸光系数,如表1所示,确认到了:酸的pka越小,则该摩尔吸光系数越大。该摩尔吸光系数图谱见图7。这里,图7中的图谱分别如下。a:仅三苯基甲醇(没有酸)b:戊酸c:三氯乙酸d:四氟硼酸e:锍盐(加热)f:锍盐(未加热)[化学式5][表1]酸pka摩尔吸光系数@450nm戊酸4.80.27mol-1·cm-1三氯乙酸0.70.54mol-1·cm-1四氟硼酸-0.48.14mol-1·cm-1锍盐(加热)?9.50mol-1·cm-1锍盐(未加热)?0.24mol-1·cm-1三苯基甲醇-0.29mol-1·cm-1将三苯基甲醇溶解于1,4-二恶烷中,调制了显色试剂溶液a’。接下来,将实施例的各产酸剂和作为氢源的三苯基甲烷溶解于甲苯或碳酸丙烯酯中,调制与上述显色试剂溶液a’相同浓度的产酸剂溶液b’,之后在100℃下搅拌1小时,通过向来自三苯基甲烷的产酸剂中抽入氢的反应进行产酸处理。对于显色试剂溶液a’与产酸剂溶液b’的混合溶液c’,使用紫外·可见分光光度计((株)岛津制作所制造的uv-1800)测定450nm的吸光度,该吸光度来自上述反应式所示的通过显色试剂三苯基甲醇的脱水进行的三苯甲基化显色反应,再根据该值并根据混合溶液c’中的显色试剂的浓度计算摩尔吸光系数,根据与pka=-0.4的四氟硼酸相比是大还是小,判定了pka的值是否为-0.4以下。由此,确认了实施例中使用的产酸剂(助焊剂)的pka值为-0.4以下。<比较例1、比较例2>除了按照表2的组成形成了金属颗粒为85wt%、树脂为8wt%、助焊剂为7wt%的组成以外,按照与实施例相同的方法制作了粘接膜。此外,比较例2中使用的松香酸的pka为约+4.6。<比较例3>按照表2的组成,利用与实施例相同的方法制作了粘接膜。即,在比较例2中,作为助焊剂的松香酸的添加量为1wt%。<支撑基材>将市售的由低密度聚乙烯构成的树脂珠粒(日本聚乙烯(株)制造、novatecll)在140℃下熔融,使用挤出机成型成厚100μm的长薄膜状。<粘合剂组合物>将丙烯酸正辛酯、丙烯酸-2-羟乙酯、甲基丙烯酸、作为聚合引发剂的过氧化苯甲酰的200:10:5:2(重量比)的混合物分散在适量的甲苯中,调整反应温度和反应时间,得到了具有官能团的丙烯酸树脂的溶液。接下来,向该丙烯酸树脂溶液中加入相对于100重量份的上述丙烯酸树脂溶液为2重量份的作为聚异氰酸酯的coronatel(日本聚氨酯制造)、和作为追加溶剂的适量的甲苯,进行搅拌,得到了粘合剂组合物1。<切割带>在支撑基材上涂布上述粘合剂组合物使粘合剂组合物1的干燥后的厚度达到5μm,将其在120℃下干燥3分钟,制成了切割带。对于通过实施例1~5、比较例1~3得到的粘接膜、以及使用了该粘接膜的切割芯片接合带,就以下记载的项目进行了评价,结果同样见表2。·体积电阻率···利用依据jis-k7194的四探针法进行测定·dsc···使用dsc测定装置(日立high-tech制造的dsc7000),对于烧结前的各样品确认了在200~250℃的温度范围是否存在吸热峰。然后,将各样品在氮中、在250℃下烧结了4小时,对所得烧结物进行了同样的测定。·粘接力···通过将粘接膜与切割带贴合,调制了芯片接合膜,在100℃下将其与背面镀au的si晶片贴合,之后切割成5mm2,得到了单片的芯片和粘接膜。在140℃下在镀ag的金属引线框架上接合芯片,之后在230℃下烧结3小时,对于所制得的样品,使用芯片剪切测定仪(arc&tec制造、4000系列)测定了260℃下的剪切粘接力。·tct后的粘接力···对与上述相同的样品进行-40~+150℃×200的冷热冲击(tct)处理,之后测定了260℃下的剪切粘接力。·msl-lv1、lv2后是否发生pkg剥离···将与粘接力相同的样品用环氧系模制树脂密封,之后通过jedecj-std-020d1中规定的吸湿后回流试验(基于无铅焊料)的msl-lv1、lv2(参照表3)进行处理,然后使用超声波图像装置(日立powersolution制造、sat)观察内部是否发生了剥离。[表2][表3]msl吸湿条件回流等级温度lv.185℃-85%rh×168小时260℃lv.285℃-60%rh×168小时260℃由上述结果证实:包含金属颗粒、热固性树脂和作为助焊剂的具有路易斯酸性的化合物或热产酸剂、且上述具有路易斯酸性的化合物或热产酸剂的pka小于-0.4的实施例1~7的导电性粘接膜,尽管其中未使用环境负荷高的铅焊料、而且助焊剂的添加量也少至1wt%,但却兼具耐热性、吸湿可靠性和结合可靠性,发挥着现有技术所没有的显著效果。相对于此,在作为助焊剂使用了不是路易斯酸或热产酸剂的四甘醇的比较例1、以及使用了虽然是路易斯酸但pka高的松香酸的比较例2中,证实了由于tct后的粘接力低、而且在比较例1、2中使用了许多助焊剂,所以在msl试验后仍显示出内部剥离等,难以实现吸湿可靠性和结合可靠性。另外,由松香酸的添加量与实施例一样少的比较例3证实了:其与本申请实施例的差异越来越明显,与实施例相比粘接力大幅变差。另外,由于松香酸是弱酸,所以当添加像实施例那样少量的松香酸时无法除去氧化膜。因此,氧化膜成为阻碍,金属间的扩散反应没有进行,因此得到了烧结后仍残留有吸热峰的结果。附图标记说明1:半导体晶片;1a:背面镀au层2:半导体芯片;4:金属引线框架;4a:镀ag层;5:模制树脂;6:al线;10:切割芯片接合膜;11:剥离处理pet;12:切割带;12a:支撑基材;12b:粘合剂层;13:粘接膜;20:环形框架;21:切割刀片;22:吸附台;30:带上凸环;31:上凸销;32:吸附筒夹。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1