一种保持车轮定位参数不变的多连杆后独立悬架的制作方法

文档序号:3913010阅读:246来源:国知局
专利名称:一种保持车轮定位参数不变的多连杆后独立悬架的制作方法
技术领域
本发明涉及汽车悬架系统,特别涉及空间多连杆后独立悬架系统,属于汽车工程领域。
背景技术
从机构学上來看,悬架与转向系都是空间多连杆机构,它们的性能在很大程度上决定了 汽车的操纵稳定性和行驶平顺性。悬架是车架(或承载式车身)与车桥(或车轮)之间一切 传力连接装置的总称,其功用主要有①缓和由路面不平引起的冲击而导致的振动。有合适 的减振性能,使汽车的振动频率较低,振动衰减快。保证汽车具有良好的行驶平顺性以及乘 员承受的振动加速度不超过国际标准界限值。②能可靠地传递车轮与车身间的一切力和力矩, 零部件质量轻并有足够的强度和寿命。③保证汽车有良好的操纵稳定性,有适当的抗侧倾能 力,有良好的抗"点头"和抗"仰头"能力。④当车轮跳动时,能够有利于减轻轮胎的磨损。 ⑤导向机构应使车轮外倾角、主销内倾角和后倾角等车轮的定位参数变化不大,车轮与导向 机构的运动协调,无摆振现象。转向时保证汽车具有不足转向特性。上述五条的具体内容请
参见刘惟信主编.汽车设计.北京清华大学出版社.2001年7月.过学迅,邓亚东 主编.汽车设计.北京人民交通出版社.2005年8月.1Madhusudan Raghavan, Number and Dimensional Synthesis of Independent Suspension Mechanisms, Mechanism and Machine Theory, Vol. 31, No. 8, November, 1996, pp. 1141-1153.
"高速、安全、环保、舒适"已成为二十一世纪汽车发展的必然趋势。"高速和安全" 要求汽车有良好的操纵稳定性;"舒适"则要求汽车有良好的行驶平顺性。虽然现代悬架结 构多种多样,但是悬架一般都由弹性元件、阻尼元件以及导向装置三个部分组成。其中,导 向装置具有传递除垂直力以外其它力和全部力矩的作用,保证车轮按最佳轨迹相对于车身运 动。常见的导向装置有斜置单臂式、单横臂式、双横臂式、单纵臂式、双纵臂式、烛式、 麦弗逊式以及多连杆式导向装置。
目前,悬架在机械结构上大致可分为两大类非独立悬架和独立悬架。随着汽车速度的 不断提高,非独立悬架已不能满足行驶平顺性和操纵稳定性方面的要求。因此独立悬架得到 了很大的发展。
独立悬架的结构特点是两侧的车轮单独地通过弹性悬架挂在车架(或车身)的下面。采 用独立悬架时,车桥都做成断开的。因此有以下优点①在悬架弹性元件一定的变形范围内, 两侧车轮可以独立运动,而互不影响,这样在不平道路上行驶时可以减少车架和车身的振动, 而且有助于消除转向轮不断偏摆的不良现象。②减少了汽车非簧载质量(即不由弹簧支承的 质量)。在非独立悬架情况下,整个车桥和车轮都属于非簧载质量部分。在独立悬架情况下,
对驱动桥而言,由于主减速器,差速器及其外壳都固定在车架上,成了簧载质量;对转向桥而言,它仅具有转向主销和转向节,而中部的整体梁不再存在。所以采用独立悬架时,非簧 载质量包括车轮质量和悬架系统中的一部分零件的全部或部分质量,显然比用非独立悬架时 非簧载质量要小得多。在道路条件和车速相同时非簧载质量愈小,则悬架所受到的冲击载荷 愈小。故采用独立悬架可以提高汽车的平均行驶速度。③采用断丌式车桥时,发动机总成的 位置便可以降低和前移使汽车重心下降,提高了汽车行驶稳定性。同时给予车轮较大的上下 运动空间,因而可以将悬架刚度设计得较小,使车身振动频率降低,以改善行驶平顺性。以 上优点使独立悬架被广泛地应用在现代汽车上,特别是轿车的转向轮都普遍采用了独立悬架。 独立悬架多采用螺旋弹簧或扭杆弹簧作为弹性元件,钢板弹簧和其它形式的弹簧用得较少。
而近二十年来发展起来的多连杆式悬架则不属于以上三种,其车轮作空间运动,而不能 归于以上任何一种。现阶段虽然以麦弗逊式悬架和双横臂式悬架应用较为广泛,但是多连杆 式悬架也获得了设计者的青睐,现在已用在了许多豪华轿车上。参见Madhusudan Raghavan, Number and Dimensional Synthesis of Independent Suspension Mechanisms, Mechanism and Machine Theory, Vol. 31, No. 8, November, 1996, pp. 1141—1153.
从理论上讲,为了满足运动学要求,使用三条连杆的悬架系统就足够了。但三连杆悬架 或者为保证轮胎导向精度选用足够大的连接刚度而使平顺性恶化,或者为满足平顺性采用足 够的连接弹性而使操纵性能恶化。因而,三连杆悬架系统很难既满足平顺性又能很好地满足 操纵稳定性的要求,所以多连杆悬架得到了广泛的应用。
五连杆悬架系统是由Daimler-Benz最先用在W201以及W124系列车型中,并最早命名为 多连杆悬架系统。参见P. A. Simionescu and D. Beale, Synthesis and Analysis of the Five-Link Rear Suspension System Used in Automobiles, Mechanism and Machine Theory, Vol. 37, No. 9, S印tember, 2002, pp. 815-832.。目前,已经有很多类型的高级轿车使 用了五连杆悬架系统;其基本结构形式如图1所示,其中40、l,2,…,5j为车身上的点, A(z、l,2,…,5)为车轮上的点,弹簧-减振器系统(^(^通过<^点连接杆件455,通过q点连 接车身。因此,五连杆悬架转向节的空间运动受到五条空间并联的连杆的约束,外部受力则 由弹簧-减振器吸收。如W201 (Mercedes 190/190E)和W124 (200D/300E)、 BMW的后悬架 系统、Nisan 240Sxey Volvo 760 GLE等都采用了五连杆独立悬架机构。尽管以上汽车开发 商开发出了五连杆悬架系统,但空间五连杆悬架系统的车轮定位参数对结构参数比较敏感。 这里,车轮的定位参数主要指车轮外倾角、主销内倾角和后倾角、左右轮距以及前后轴距。 空间五连杆悬架在提高汽车操纵稳定性和平顺性的同时并不能保证车轮定位参数不变,因而, 轮胎的磨损仍很严重,乘坐舒适性也受到了一定程度的影响。
虽然常规的悬架系统基本上能够满足上述悬架的五条功能要求,但在实际应用上,只要 当车轮跳动时,车轮的定位参数发生任何变化,都会导致轮胎的磨损和对车身的冲击。而这 一点是目前几乎所有悬架都共有的缺点。如何能够保证车轮跳动时车轮的定位参数不会发生 变化是独立悬架结构创新设计中的一个重点和难点。因此,发明人曾提出了一种可用于汽车悬架系统的竖向平移式空间多连杆前后独立悬架, 以实现车轮的定位参数保持不变,参见Jing-Shan Zhao, Fu-lei Chu and Zhi-Jing Feng, Synthesis of Rectilinear Motion Generating Spatial Mechanism with Application to Automotive Suspension[J], ASME Journal of Mechanical Design, Vol. 130, No. 6, June 2008, pp. 065001/1-065001/8.赵景山,褚福磊.竖向平移式空间多连杆独立悬架[P].中 国专利200610113114.2, 2007-2-28.。但由于结构中的连杆受到拉、弯、剪、扭的复杂载 荷,因此结构整体的强度和刚度较差。

发明内容
本发明的目的是提供一种具有良好强度和刚度的能保持车轮定位参数不变的多连杆后独 立悬架,以实现在保持车轮定位参数不变的同时,连杆的承载主要为弯、剪形式的简单载荷 或连杆具有有利于承受复杂载荷的结构形状,从而使后悬架整体结构具有良好的强度和刚度。
本发明的目的是通过如下技术方案实现的
一种保持车轮定位参数不变的多连杆后独立悬架,该多连杆后独立悬架包括车身或车架 1,上层前摇臂3,上层前摆臂4,车轮轴承壳体6,上层后摆臂7和上层后摇臂9构件;在 所述的车轮轴承壳体6上设有上层左吊耳16和上层右吊耳17;所述的上层左吊耳16和上层 右吊耳17位于车轮轴承壳体6上中间平板19的同侧,上层左吊耳16和上层右吊耳17所在 的两平面相交,上层左吊耳16和上层右吊耳17所在的两平面与车轮轴承壳体6分别相交且 两条交线相互平行;所述的车身或车架1和上层前摇臂3通过转动副^连接,上层前摇臂3 和上层前摆臂4通过转动副B连接,上层前摆臂4和车轮轴承壳体6通过转动副C连接,车 轮轴承壳体6和上层后摆臂7通过转动副i)连接,上层后摆臂7和上层后摇臂9通过转动副i 连接,上层后摇臂9和车身或车架1通过转动副F连接;运动链^^C和运动链i^D均为平 面运动链,所述的运动链^万C的三个转动副转动副^ 、转动副B和转动副C的轴线互相 平行且都垂直于转动副^、转动副S和转动副C决定的平面」5C,所述的运动链F五Z)的三 个转动副转动副F、转动副E和转动副D的轴线互相平行且都垂直于转动副F、转动副£和 转动副D决定的平面F五D;所述的平面」5C与平面F五i)之间的夹角与所述的上层左吊耳16 和上层右吊耳17所在的两平面之间的夹角相等,其特征在于该多连杆后独立悬架还包括下 层前摇臂2,下层前摆臂5,下层后摆臂8和下层后摇臂10构件;在所述的车轮轴承壳体6 下部设有下层左吊20和下层右吊耳18;所述的下层左吊耳20和下层右吊耳18位于车轮轴 承壳体6上中间平板19的同侧,下层左吊耳20和下层右吊耳18所在的两平面相交,下层左 吊耳20和下层右吊耳18所在的两平面与车轮轴承壳体6分别相交且两条交线相互平行;所 述的下层左吊耳20和下层右吊耳18各自的铰接中心点的距离,等于上层左侧吊耳16和上层 右侧吊耳17各自的铰接中心点的距离;所述的车身或车架1和下层前摇臂2通过转动副^'连 接,下层前摇臂2和下层前摆臂5通过转动副"连接,下层前摆臂5和车轮轴承壳体6通过 转动副C'连接,车轮轴承壳体6和下层后摆臂8通过转动副iT连接,下层后摆臂8和下层后 摇臂10通过转动副£'连接,下层后摇臂10和车身或车架1通过转动副F'连接;运动链^'5'C'和运动链,五'D'均为平面i ^ 运动链,所述的运动链J'5'C'的三个转动副转动副j'、转动副 6'和转动副C'的轴线互相平行且都垂直于转动副、转动副S'和转动副C'决定的平面 ,5'C',所述的运动链的三个转动副转动副,、转动副和转动副D'的轴线互相平
行且都垂直于转动副F'、转动副五'和转动副zr决定的平面F'五'zr;所述的平面,fi'c'与平
面F冗'Zr之间的夹角与所述的下层左吊耳20和下层右吊耳18所在的两平面之间的夹角相等。
在上述技术方案的基础上,为了提高悬架的构型稳定性和荷载能力,其优选技术方案是:
所述的上层左吊耳16和上层右吊耳17所在的平面相互垂直,且所述的下层左吊耳20和下 层右吊耳18所在的平面相互垂直。
本发明的又一优选方案是所述的上层左吊耳16、上层右吊耳17、下层左吊耳20或下 层右吊耳18所在的平面与中间平板19的夹角相同,均为135° ;所述的转动副^和转动副F 的轴线互相垂直,两轴线的交点与转动副^和转动副F构成一等腰直角三角形;所述的转动 副^'和转动副F'的轴线互相垂直,两轴线的交点与转动副^'和转动副F'构成一等腰直角三 角形。
本发明的另一技术方案是所述的上层前摇臂3、上层后摇臂9、下层前摇臂2和下层 后摇臂10均为铰接点不在轮心的偏心轮结构,所述的偏心轮结构由第一圆盘11、第二圆盘 12和设置在两圆盘之间的中间圆柱体13组成。
本发明与现有技术相比,具有以下优点及突出性效果本发明由于采用了在车身或车架
上设有上下两层左右铰接点、上下两层前摇臂、上下两层前摆臂、上下两层后摇臂、上下两 层后摆臂以及在车轮轴承壳体上设有上下两层左右吊耳的结构,这种按上下两层布置的结构 体系可以有效地降低单层摇臂和摆臂所要承受的载荷,而且这种按上下两层布置的结构体系 可以使得摆臂主要提供垂直于摆臂和吊耳接触面的法向力,反过来也即摆臂主要承受弯、剪 载荷,从而可以显著地降低摆臂承载的复杂程度,因此可以提高后悬架整体结构的强度和刚 度。同时,由于各摇臂均采用铰接点不在轮心的偏心轮结构,提高了摇臂的抗弯和抗扭能力,
也更有利于后悬架整体结构强度和刚度的提高;在实现保持车轮定位参数不变的同时,连杆 的承载主要为弯、剪形式的简单载荷或连杆具有有利于承受复杂载荷的结构形状,从而使后 悬架整体结构具有良好的强度和刚度。


图1是本发明提供的具有良好强度和刚度的能保持车轮定位参数不变的多连杆后独立悬
架的结构示意图。
图2是本发明提供的多连杆后独立悬架的摇臂的结构示意图。
图3是本发明提供的多连杆后独立悬架的摆臂的结构示意图。
图4是本发明提供的多连杆后独立悬架的车轮轴承壳体的结构示意图。
图5是本发明提供的车架或车身、摇臂、摆臂及车轮轴承壳体的运动等效结构图。
图6是本发明提供的车架或车身、摇臂、摆臂及车轮轴承壳体的运动等效结构图运动的
水平位置和下极限位置。图7是本发明提供的多连杆后独立悬架俯视图。
图中l-车架或车身;2-下层前摇臂;3-上层前摇臂;4-上层前摆臂;5-下层前摆臂;
6-车轮轴承壳体;7-上层后摆臂;8-下层后摆臂;9-上层后摇臂;10-下层后摇臂;ll.-第一
圆盘;12-第二圆盘;13-中间圆柱体;14-连杆大头端;15-连杆小头端;16-上层左吊耳;17-
上层右吊耳;18-下层右吊耳;19-中间平板;20-下层左吊耳。
具体实施例方式
下面结合附图对本发明的结构、原理及具体实施方式
作进一歩的说明。
图1是本发明提供的能保持车轮定位参数不变的多连杆后独立悬架的结构简图;该多连 杆后独立悬架系统主要包括车身或车架1、下层前摇臂2、上层前摇臂3、上层前摆臂4、下 层前摆臂5、车轮轴承壳体6、上层后摆臂7、下层后摆臂8、上层后摇臂9、下层后摇臂IO 以及十二个转动副」、S、 C、 "、 £、 F、爿'、B'、 C'、 D'、 F与F'。图2是摇臂的结 构示意图;摇臂为铰接点不在轮心的偏心轮结构,摇臂是由位于其两端的两个直径较大的第 一圆盘11和第二圆盘12以及中间的一个直径较小的中间圆柱体13组成。图3是摆臂的结构 示意图;摆臂为连杆结构,连杆的大头端14的中间通孔套在摇臂的中间圆柱体13上,连杆 的小头端15通过吊耳与车轮轴承壳体6铰接。图4是车轮轴承壳体的结构简图;所述的车轮 轴承壳体6设有上层左吊耳16、上层右吊耳17、下层左吊耳20和下层右吊耳18,所述的上 层左吊耳16、上层右吊耳17、下层左吊耳20和下层右吊耳18均位于车轮轴承壳体6的中间 平板19的同侧方向,上层左吊耳16和上层右吊耳17所在的两平面相交且与中间平板19交 于两条相互平行的交线,下层左吊耳20和下层右吊耳18所在的两平面相交且与中间平板19 交于两条相互平行的交线,上层左吊耳16与下层左吊耳20所在的平面共面,上层右吊耳17 与下层右吊耳18所在的平面共面。所述的上层左吊耳16和上层右吊耳17分别通过运动链 JSC和F五D与车身或车架1相连接,所述的下层左吊耳20和下层右吊耳18分别通过运动 链^4力'C'和F'五'D'与车身或车架1相连接,这四条运动链均为平面i^i 运动链。所述的运动 链^4BC的三个转动副^、 B和C的轴线互相平行且都垂直于直线^万和BC决定的平面;所 述的运动链F五D的三个转动副F 、 E和D的轴线互相平行且都垂直于直线i巧和五D决定的 平面;所述的运动链』'B'C'的三个转动副J' 、 B'和C'的轴线互相平行且都垂直于直线,万'和 ^C'决定的平面;所述的运动链,FZ)'的三个转动副F'、五'和D'的轴线互相平行且都垂直 于直线F冗'和决定的平面;所述的直线和直线BC决定的平面与直线F五和直线££) 决定的平面之间的夹角,与所述的上层左吊耳16和上层右吊耳17所在的两平面之间的夹角 相等;所述的直线乂5'和直线万'C'决定的平面与直线和直线决定的平面之间的夹 角,与所述的下层左吊耳20和下层右吊耳18所在的两平面之间的夹角相等。
在上述技术方案的基础上,为了提高悬架的构型稳定性和荷载能力,其优选技术方案是: 所述的上层左吊耳16和上层右吊耳17所在的平面相互垂直,且所述的下层左吊耳20和下 层右吊耳18所在的平面相互垂直。所述的上层左吊耳16、上层右吊耳17、下层左吊耳20或下层右吊耳18所在的平面与中间平板19的夹角相同,均为135° ;所述的转动副J和转动 副F的轴线互相垂直,两轴线的交点与转动副^和转动副F构成一等腰直角三角形;所述的 转动副和转动副,的轴线互相垂直,两轴线的交点与转动副和转动副F'构成一等腰直 角三角形。
本发明的车身或车架l、摇臂、摆臂以及车轮轴承壳体6,从运动等效的角度來讲,等效 于如图5所示的曲柄滑块机构。其中O点表示车身或车架1上的铰链,OP代表摇臂,g点 表示车轮轴承壳体6的吊耳上的铰链,户0代表摆臂,滑块代表车轮轴承壳体6。设计O尸与尸g 能水平交叠共线,则车轮轴承壳体相对于水平位置上下能移动的最大距离相同,记为/z.由于 车轮轴承壳体上下运动的极限位置都为(9/>与/>g展开共线,所以有 /z2 =(0尸+尸0)2 —(户G —O尸)2 =4<9P.Pg,即/ 2 =4(9尸.尸2,如图6所示。以OP + i^的长 度最小为准,则可根据所需悬架上下跳动的范围/2及0尸=户2 =力/2来确定0尸和尸2的长度。
本发明车身或车架1上的上层左铰接点与上层右铰接点的水平距离由上层前摇臂3的尺 寸、上层前摆臂4的尺寸、上层后摇臂9的尺寸、上层后摆臂7的尺寸以及上层左吊耳16的 铰接中心和上层右吊耳17的铰接中心之间的距离所决定。如图7所示,记/、 J分别为上层 左吊耳16、上层右吊耳17的铰接中心,《、丄分别为车身或车架1上的上层左铰接点和上 层右铰接点,当Z/与《i:共面时,记/《与J丄相交于点/Z.由车轮轴承壳体6的设计尺寸可得 H/的长度;按照结构的设计方案,Z/与《丄共面时,曲柄与摇杆交叠共线,于是可得/《的 长度为摇杆与曲柄的长度之差;按照结构设计的优化方案,Z//^L = Z/a《=45° , ZLffiC = 9(r,于是便可得/^ = 2乂(/// + /《)><(^45°。车身或车架1上的下层左铰接点与 下层右铰接点的水平距离由下层前摇臂2的尺寸、下层前摆臂5的尺寸、下层后摇臂10的尺 寸、下层后摆臂8的尺寸以及下层左吊耳20的铰接中心和下层右吊耳18的铰接中心之间的 距离所决定。设计时,使上层左吊耳16和下层左吊耳20竖直共面,上层右吊耳17和下层右 吊耳18竖直共面,因此,车身或车架1上的下层左铰接点与下层右铰接点的水平距离等于车 身或车架1上的上层左铰接点与上层右铰接点的水平距离。
车身或车架1上下两层左铰接点的竖直距离与车轮轴承壳体6上下两层左吊耳铰接中心 的竖直距离相等;车身或车架1上下两层右铰接点的竖直距离与车轮轴承壳体6上下两层右 吊耳铰接中心的竖直距离相等。
如图7所示,记上层前摆臂4对上层左吊耳16的法向力为i^,上层后摆臂7对上层右 吊耳17的法向力为W3 ,下层前摆臂5对下层左吊耳20的法向力为iV,,下层后摆臂8对下层 右吊耳18的法向力为M。记/'、 J'分别为下层左吊耳20、下层右吊耳18的铰接中心,X'、 丄'分别为车身或车架l上的下层左铰接点和下层右铰接点,建立右手空间直角坐标系o-x^, 原点位于车轮轴承壳体6中间通孔的中心,x轴方向垂直于车轮轴承壳体6上的中间平板19 指向车身外侧,y轴方向指向车身前侧。考虑上层两吊耳关于平面o-xz对称,下层吊耳关于 平面o-xz对称,上下两层的左侧吊耳共面,上下两层的右侧吊耳共面,则每个摆臂对车轮轴承壳体提供的绕z轴的转矩约束均为M- 。写出四个吊耳铰接中心点的坐标分别为 /'(x, 乂 z,), /(x2 y2 z2), j(x3少3 z3), j'(x4 }4 z4)。由于车辆竖直方向上的力 由弹簧承受,所以由车轮轴承壳体6传递给四条运动链的载荷有5个,分别是x方向的外力 《,y方向的外力《,绕;c轴的转矩7kC,绕y轴的转矩M;:和绕z轴的转矩il^。记下层左 右两吊耳的夹角为",,上层左右两吊耳的夹角为"2,则根据静力平衡条件有
<formula>formula see original document page 10</formula>
只要det(j)^0,就可以获得一组唯一的解7V。进一歩考虑车轮轴承壳体6的上层吊耳 和下层吊耳关于平面o-x少对称,则可设四个吊耳铰接中心点的坐标分别为/'(" v -w), /(k v w), /(w _v w)禾口j'(w —v _w),从而有det(v4) = 16w2 sina' sin"2 因为w* 0 ,所以只要在设计中避免,"2 = 0禾na,,a2 = ;r ,就可保证det* 0 ,从而得
到唯一解iV :
_F__ csc」一F,, sec J--
2 ' 2 w
a2 "2 1
—esc J —尺sec J + — " 2 ^ 2 w
CSC J + F S6C J--
" 2 ^ 2 w
csc+sec+丄
x 2 ^ 2 w
,,e a, a, 风sec J _ M csc J
2
2
sec J —M, csc J
、 2 少 2 _
M sec~^ + M, csc J x 2 少 2
sec, + csc
1
w——
2
a, 7 tan」+ tan~^" 2 2
2w
2
tan^" — tan」 2 2

2
为简化起见,可取"1="2=工,贝U:
2
4 =
i
i
1 1
1
_1
1
_1
—w
0 0 0 0
4V^
易得 解得
det(+16w2 #0
F;-e+丄(M;:+M;)
一2^
如果设计时进一步令^ =",贝UM:--丄M;,而M:通常很小,因此M;'很小,所以摆臂
4
对车轮轴承壳体主要提供的是四个法向力M, 7V2, A^和iV4。根据作用力和反作用力的关系,
1可知摆臂主要受作用在其和吊耳接触面上的法向力,因而摆臂主要受弯、剪载荷,这相比于 只有上面一层的悬架结构而言,显著降低了连杆承载的复杂程度,使得连杆由原来承受复杂 的拉、弯、扭、剪载荷变为主要承受弯、剪载荷,从而可以使后悬架整体结构具有更好的刚 度和强度。
由于摇臂不可避免地受到弯、剪、扭的复杂载荷,因此将摇臂设计为偏心轮结构,使其 具有有利于承受复杂载荷的结构形状,这也进一步提高了后悬架整体结构的刚度和强度。
权利要求
1. 一种保持车轮定位参数不变的多连杆后独立悬架,该多连杆后独立悬架包括车身或车架(1),上层前摇臂(3),上层前摆臂(4),车轮轴承壳体(6),上层后摆臂(7)和上层后摇臂(9)构件;在所述的车轮轴承壳体(6)上设有上层左吊耳(16)和上层右吊耳(17);所述的上层左吊耳(16)和上层右吊耳(17)位于车轮轴承壳体(6)上中间平板(19)的同侧,上层左吊耳(16)和上层右吊耳(17)所在的两平面相交,上层左吊耳(16)和上层右吊耳(17)所在的两平面与车轮轴承壳体(6)分别相交且两条交线相互平行;所述的车身或车架(1)和上层前摇臂(3)通过转动副A连接,上层前摇臂(3)和上层前摆臂(4)通过转动副B连接,上层前摆臂(4)和车轮轴承壳体(6)通过转动副C连接,车轮轴承壳体(6)和上层后摆臂(7)通过转动副D连接,上层后摆臂(7)和上层后摇臂(9)通过转动副E连接,上层后摇臂(9)和车身或车架(1)通过转动副F连接;运动链ABC和运动链FED均为平面RRR运动链,所述的运动链ABC的三个转动副转动副A、转动副B和转动副C的轴线互相平行且都垂直于转动副A、转动副B和转动副C决定的平面ABC,所述的运动链FED的三个转动副转动副F、转动副E和转动副D的轴线互相平行且都垂直于转动副F、转动副E和转动副D决定的平面FED;所述的平面ABC与平面FED之间的夹角与所述的上层左吊耳(16)和上层右吊耳(17)所在的两平面之间的夹角相等,其特征在于该多连杆后独立悬架还包括下层前摇臂(2),下层前摆臂(5),下层后摆臂(8)和下层后摇臂(10)构件;在所述的车轮轴承壳体(6)下部设有下层左吊耳(20)和下层右吊耳(18);所述的下层左吊耳(20)和下层右吊耳(18)位于车轮轴承壳体(6)上中间平板(19)的同侧,下层左吊耳(20)和下层右吊耳(18)所在的两平面相交,下层左吊耳(20)和下层右吊耳(18)所在的两平面与车轮轴承壳体(6)分别相交且两条交线相互平行;所述的下层左吊耳(20)和下层右吊耳(18)各自的铰接中心点的距离,等于上层左侧吊耳(16)和上层右侧吊耳(17)各自的铰接中心点的距离;所述的车身或车架(1)和下层前摇臂(2)通过转动副A'连接,下层前摇臂(2)和下层前摆臂(5)通过转动副B'连接,下层前摆臂(5)和车轮轴承壳体(6)通过转动副C'连接,车轮轴承壳体(6)和下层后摆臂(8)通过转动副D'连接,下层后摆臂(8)和下层后摇臂(10)通过转动副E'连接,下层后摇臂(10)和车身或车架(1)通过转动副F'连接;运动链A'B'C'和运动链F'E'D'均为平面RRR运动链,所述的运动链A'B'C'的三个转动副转动副A'、转动副B'和转动副C'的轴线互相平行且都垂直于转动副A'、转动副B'和转动副C'决定的平面A'B'C',所述的运动链F'E'D'的三个转动副转动副F'、转动副E'和转动副D'的轴线互相平行且都垂直于转动副F'、转动副E'和转动副D'决定的平面F'E'D';所述的平面A'B'C'与平面F'E'D'之间的夹角与所述的下层左吊耳(20)和下层右吊耳(18)所在的两平面之间的夹角相等。
2. 按照权利要求1所述的能保持车轮定位参数不变的多连杆后独立悬架,其特征在于所述的上层左吊耳(16)和上层右吊耳(17)所在的平面相互垂直,且所述的下层左吊耳(20)和下层右吊耳(18)所在的平面相互垂直。
3. 按照权利要求2所述的能保持车轮定位参数不变的多连杆后独立悬架,其特征在于所述的上层左吊耳(16)、上层右吊耳(17)、下层左吊耳(20)或下层右吊耳(18)所在的 平面与中间平板(19)的夹角相同,均为135° ;所述的转动副^和转动副F的轴线互相垂直,两轴线的交点与转动副^和转动副F构成一等腰直角三角形;所述的转动副^'和转动副F的轴线互相垂直,两轴线的交点与转动副乂和转动副F'构成一等腰直角三角形。
4. 按照权利要求l所述的能保持车轮定位参数不变的多连杆后独立悬架,其特征在于所述的上层前摇臂(3)、上层后摇臂(9)、下层前摇臂(2)和下层后摇臂(10)均为铰接点 不在轮心的偏心轮结构,所述的偏心轮结构由第一圆盘(11)、第二圆盘(12)和设置在两圆 盘之间的中间圆柱体(13)组成。
全文摘要
一种保持车轮定位参数不变的多连杆后独立悬架,包括车身或车架、上下两层前摇臂、上下两层前摆臂、车轮轴承壳体、上下两层后摇臂以及上下两层后摆臂。车身或车架上布置有上下两层铰接点;上下层的同侧铰接点竖直共面。各摇臂均为铰接点不在轮心的偏心轮结构。各摆臂均为连杆结构。车轮轴承壳体同侧设有上下两层左右吊耳;上下层的同侧吊耳竖直共面;上下两层吊耳关于过轴承孔中心的水平平面上下对称。车身或车架、摇臂、摆臂和车轮轴承壳体之间均通过铰链连接。本发明能在保持车轮定位参数不变的情况下,连杆的承载主要为弯、剪形式的简单载荷或连杆具有有利于承受复杂载荷的结构形状,从而使后悬架整体结构具有良好的强度和刚度。
文档编号B60G3/18GK101474951SQ20091000109
公开日2009年7月8日 申请日期2009年1月22日 优先权日2009年1月22日
发明者冯之敬, 褚福磊, 盛 赵, 赵景山 申请人:清华大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1