混合动力车辆的控制装置制造方法

文档序号:3862346阅读:89来源:国知局
混合动力车辆的控制装置制造方法
【专利摘要】提供一种能够抑制冲击且实现发动机起动的混合动力车辆的控制装置。在本发明的混合动力车辆的控制装置中,在存在发动机起动要求时,使电动发电机和驱动轮之间的离合器接合,通过电动发电机进行发动机起动时,如果存在发动机起动要求,且电动发电机的输出扭矩绝对值小于或等于规定值,则允许发动机起动。
【专利说明】混合动力车辆的控制装置
【技术领域】
[0001]本发明涉及一种混合动力车辆的控制装置,其使发动机及电动机与驱动轮之间的接合要素接合,通过电动机使发动机起动。
【背景技术】
[0002]作为混合动力车辆的控制装置,已公开了在专利文献I中记载的技术。在该公报中公开了下述结构,即,在电动机行驶中减速的情况下,在存在发动机起动要求且判断为制动器制动力足够大时,通过电动发电机而允许发动机起动。
[0003]专利文献1:日本特许第3116685号说明书

【发明内容】

[0004]但是,即使确保了制动器制动力,如果在输入有蠕动扭矩的状态下进行发动机起动,则可能会产生与发动机起动相伴的扭矩变动而产生冲击。
[0005]本发明是着眼于上述问题而提出的,目的在于提供一种能够抑制冲击且实现发动机起动的混合动力车辆的控制装置。
[0006]为了实现上述目的,在本发明的混合动力车辆的控制装置中,在存在发动机起动要求时,使电动发电机和驱动轮之间的离合器接合,通过电动发电机进行发动机起动时,如果存在发动机起动要求且电动发电机扭矩的绝对值小于或等于规定值,则允许发动机起动。
[0007]发明的效果
[0008]由此,能够抑制与发动机起动相伴的扭矩变动,能够对驾驶员感到的不适感进行抑制。
【专利附图】

【附图说明】
[0009]图1是表示实施例1的后轮驱动混合动力车辆的整体系统图。
[0010]图2是表示实施例1的综合控制器中的运算处理程序的控制框图。
[0011]图3是表示在图2的目标驱动力运算部中用于目标驱动力运算的目标驱动力对应图的一个例子的图。
[0012]图4是表示在图2的模式选择部中用于目标模式选择的通常模式对应的图。
[0013]图5是表示在图2的目标充放电运算部中用于目标充放电电力运算的目标充放电量对应图的一个例子的图。
[0014]图6是表示实施例1的电动发电机的转速和扭矩的关系的特性图。
[0015]图7是表示实施例1的第2起动模式的发动机起动控制处理的流程图。
[0016]图8是表示实施例1的判断第2起动模式的发动机起动控制开始的处理的时序图。
[0017]图9是表示实施例1的第2起动模式下的发动机起动控制处理的时序图。[0018]标号的说明
[0019]E 发动机
[0020]CLl第I离合器
[0021]MG电动发电机
[0022]CL2第2离合器
[0023]AT自动变速机
[0024]I发动机控制器
[0025]2电动机控制器
[0026]3逆变器
[0027]4 电池
[0028]5第I离合器控制器
[0029]6 第I离合器油压单元
[0030]7 AT控制器
[0031]8 第2离合器油压单元
[0032]9 制动器控制器
[0033]10综合控制器
[0034]24制动器油压传感器
[0035]100目标驱动力运算部
[0036]200模式选择部
[0037]300目标充放电运算部
[0038]400动作点指令部
[0039]500变速控制部
【具体实施方式】
[0040][实施例1]
[0041]首先,对混合动力车辆的驱动系统结构进行说明。图1是表示使用了实施例1的发动机起动控制装置的由后轮驱动的混合动力车辆的整体系统图。实施例1中的混合动力车辆的驱动系统如图1所不,具有发动机E、第I离合器CL1、电动发电机MG、第2离合器CL2、自动变速机AT、传动轴PS、差动齿轮DF、左驱动轴DSL、右驱动轴DSR、左后轮RL (驱动轮)、和右后轮RR (驱动轮)。另外,FL是左前轮,FR是右前轮。
[0042]发动机E例如是汽油发动机,基于来自后述的发动机控制器I的控制指令,对节流阀的阀开度等进行控制。另外,在发动机输出轴上设有飞轮FW。
[0043]第I离合器CLl是安装在发动机E和电动发电机MG之间的离合器,基于来自后述的第I离合器控制器5的控制指令,通过由第I离合器油压单元6产生的控制油压,控制包含滑动接合在内的接合/断开。
[0044]电动发电机MG是同步型电动发电机,是在转子上埋设永久磁铁、在定子上卷绕定子线圈而成的,基于来自后述的电动机控制器2的控制指令,通过施加由逆变器3产生的三相交流电而进行控制。该电动发电机MG能够作为接受来自电池4的电力供给而进行旋转驱动的电动机进行动作(以下将该状态称为“牵引”),并且,在转子受到外力而旋转的情况下,能够作为使定子线圈的两端产生电动势的发电机起作用,而对电池4进行充电(以下将该动作状态称为“再生”)。另外,该电动发电机MG的转子经由未图示的缓冲器而与自动变速机AT的输入轴连结。
[0045]第2离合器CL2是安装在电动发电机MG和左右后轮RL、RR之间的离合器,基于来自后述的AT控制器7的控制指令,通过由第2离合器油压单元8产生的控制油压,控制包含滑动接合在内的接合/断开。
[0046]自动变速机AT是对应于车速或加速器开度等,而自动地对前进5档倒退I档等的有级变速比进行切换的变速机,第2离合器CL2并不是作为专用离合器而新追加的装置,而是沿用了在自动变速机AT的各变速档中接合的多个摩擦接合要素中的几个摩擦接合要素。另外,其详细内容如后所述。
[0047]并且,自动变速机AT的输出轴经由作为车辆驱动轴的传动轴PS、差动齿轮DF、左驱动轴DSL、右驱动轴DSR而与左右后轮RL、RR连结。另外,作为所述第I离合器CLl和第2离合器CL2,例如使用能够由比例螺线管对油流量及油压进行连续控制的湿式多板离合器。
[0048]制动器单元900构成为,具有液压泵和多个电磁阀,能够实现所谓的制动器线控控制,即,通过泵增压确保与要求制动扭矩相当的液压,通过各车轮电磁阀的开闭控制而对制动轮缸压力进行控制。各车轮FR、FL、RR、RL具有制动器转子901和制动钳902,利用从制动器单元900供给的制动器液压而产生摩擦制动扭矩。另外,可以是设有储压器等作为液压源的类型,也可以是设有电动制动钳而取代液压制动器的结构。
[0049]在该混合动力驱动系统中,对应于第I离合器CLl的接合/断开状态而具有3种行驶模式。第I行驶模式是作为使用电动机行驶模式的电动车辆行驶模式,即,第I离合器CLl处于断开状态,仅以电动发电机MG的动力作为驱动源而进行行驶(以下简称为“EV行驶模式”)。第2行驶模式是使用发动机行驶模式,即,在第I离合器CLl接合的状态下,将发动机E包含在动力源中而进行行驶(以下简称为“HEV行驶模式”)。第3行驶模式是使用发动机滑动模式,即,在第I离合器CLl接合的状态下对第2离合器CL2进行滑动控制,将发动机E包含在动力源中而进行行驶(以下简称为“WSC行驶模式”)。特别是在电池SOC较低或发动机水温较低时,该模式是可实现蠕动行驶的模式。另外,在从EV行驶模式切换为HEV行驶模式时,使第I离合器CLl接合,使用电动发电机MG的扭矩而进行发动机起动。
[0050]上述“HEV行驶模式”具有“发动机行驶模式”、“电动机辅助行驶模式”、和“行驶发电模式”这3种行驶模式。
[0051]“发动机行驶模式”是仅以发动机E为驱动源而使驱动轮动作。“电动机辅助行驶模式”是以发动机E和电动发电机MG这二者为动力源而使驱动轮动作。“行驶发电模式”是以发动机E为动力源而使驱动轮RR、RL动作,同时使电动发电机MG作为发电机起作用。
[0052]在匀速运行时或加速运行时,使用发动机E的动力,使电动发电机MG作为发电机进行动作。另外,在减速运行时,对制动能量进行再生而通过电动发电机MG进行发电,以对电池4进行充电。另外,作为其它模式还具有发电模式,即,在车辆停止时,使用发动机E的动力,使电动发电机MG作为发电机而进行动作。
[0053]下面,对于混合动力车辆的控制系统进行说明。如图1所示,实施例1中的混合动力车辆的控制系统构成为,具有发动机控制器1、电动机控制器2、逆变器3、电池4、第I离合器控制器5、第I离合器油压单元6、AT控制器7、第2离合器油压单元8、制动器控制器9、和综合控制器10。另外,发动机控制器1、电动机控制器2、第I离合器控制器5、AT控制器7、制动器控制器9、和综合控制器10经由可彼此进行信息交换的CAN通信线11连接。
[0054]发动机控制器I输入来自发动机转速传感器12的发动机转速信息,对应于来自综合控制器10的目标发动机扭矩指令等,将对发动机动作点(Ne:发动机转速,Te:发动机扭矩)进行控制的指令输出至例如未图示的节流阀致动器。更详细的发动机控制内容如后所述。另外,发动机转速Ne等信息经由CAN通信线11而供给至综合控制器10。
[0055]电动机控制器2输入来自对电动发电机MG的转子旋转位置进行检测的解析器13的信息,对应于来自综合控制器10的目标电动发电机扭矩指令等,将对电动发电机MG的电动机动作点(Nm:电动发电机转速,Tm:电动发电机扭矩)进行控制的指令输出至逆变器3。另外,在该电动机控制器2中,对表示电池4的充电状态的电池SOC进行监视,电池SOC信息作为电动发电机MG的控制信息而使用,并且,经由CAN通信线11供给至综合控制器10。
[0056]第I离合器控制器5输入来自第I离合器油压传感器14和第I离合器行程传感器15的传感器信息,对应于来自综合控制器10的第I离合器控制指令,将对第I离合器CLl的接合/断开进行控制的指令输出至第I离合器油压单元6。另外,第I离合器行程ClS的信息经由CAN通信线11供给至综合控制器10。
[0057]AT控制器7输入来自加速器开度传感器16、车速传感器17、第2离合器油压传感器18、和输出与驾驶员操作的变速杆的位置相对应的信号的断路开关的传感器信息,按照来自综合控制器10的第2离合器控制指令,将用于控制第2离合器CL2的接合/断开的指令输出至AT油压控制阀内的第2离合器油压单元8。第2离合器CL2的传递扭矩容量基本上设定为与要求驱动扭矩相对应的值,设定为可向驱动轮传递要求驱动扭矩的容量。在放开加速器踏板时,为可传递再生扭矩或蠕动扭矩的容量,在EV行驶模式下车辆停止且制动器踏板踏入大于或等于规定量时,蠕动扭矩设定为0,因此,第2离合器CL2的传递扭矩容量也被设定为O。另外,加速器踏板开度ΑΡ0、车速VSP、和断路开关的信息经由CAN通信线11而供给至综合控制器10。
[0058]制动器控制器9基于来自综合控制器10的再生协调控制指令进行再生协调制动控制,即,输入来自对4个车轮的各车轮速度进行检测的车轮速度传感器19、和制动器行程传感器20的传感器信息,例如在制动器踏入制动时,在仅利用再生制动扭矩无法满足根据制动器行程BS求出的驾驶员要求制动扭矩的情况下,以机械制动扭矩(摩擦制动产生的制动扭矩)补充该不足部分。另外,不限定于与驾驶员要求制动扭矩相对应的制动器液压,当然也可以根据其它控制要求而任意地产生制动器液压。
[0059]综合控制器10具有对车辆整体的消耗能量进行管理,使车辆以最高效率行驶的功能,其输入经由CAN通信线11得到的信息和来自以下传感器的信息,即:用于检测电动机转速Nm的电动机转速传感器21 ;用于检测第2离合器输出转速N2out的第2离合器输出转速传感器22 ;用于检测第2离合器传递扭矩容量TCL2的第2离合器扭矩传感器23 ;制动器油压传感器24 ;用于检测第2离合器CL2的温度的温度传感器IOa ;以及用于检测前后加速度的G传感器10b。
[0060]另外,综合控制器10基于对发动机控制器I的控制指令进行发动机E的动作控制,基于对电动机控制器2的控制指令进行电动发电机MG的动作控制,基于对第I离合器控制器5的控制指令进行第I离合器CLl的接合/断开控制,基于对AT控制器7的控制指令进行第2离合器CL2的接合/断开控制。
[0061]下面,使用图2所示的框图,对使用实施例1的综合控制器10进行运算的控制进行说明。例如,该运算由综合控制器10每隔控制周期IOmsec而进行。综合控制器10具有目标驱动力运算部100、模式选择部200、目标充放电运算部300、动作点指令部400、和变速控制部500。
[0062]在目标驱动力运算部100中,使用图3所示的目标驱动力对应图,根据加速器踏板开度APO和车速VSP,运算目标驱动力tFoO (驾驶员要求扭矩)。
[0063]模式选择部200具有通常模式对应图。图4是实施例1的通常模式对应图。在通常模式对应图内,具有EV行驶模式、WSC行驶模式、HEV行驶模式,根据加速器踏板开度APO和车速VSP运算目标模式。但是,即使选择了 EV行驶模式,如果电池SOC小于或等于规定值,则强制将“HEV行驶模式”或“WSC行驶模式”设为目标模式。
[0064]在图4的通常模式对应图中,HEV — WSC切换线被设定为,在低于规定加速器开度APOl的区域中,在自动变速机AT在I档时,低于下限车速VSPl的区域设为WSC,其中,该下限车速VSPl成为比发动机E的怠速转速小的转速。另外,在大于或等于规定加速器开度APOl的区域,由于要求较大的驱动力,因此直至高于下限车速VSPl的车速VSP1’为止的区域设定为WSC行驶模式。另外,在电池SOC较低而无法实现EV行驶模式时,即使是起步等时也选择WSC模式。
[0065]在加速器踏板开度APO较大时,很难以与怠速转速附近的发动机转速相对应的发动机扭矩和电动发电机扭矩实现该要求。在这里,如果发动机转速上升,则能够输出更大的发动机扭矩。由此,如果提高发动机转速而输出更大的扭矩,则即使以例如高于下限车速VSPl的车速执行WSC行驶模式,也能够在短时间内从WSC行驶模式切换至HEV行驶模式。这种情况就是图4中所示的扩大至下限车速VSP1’的WSC区域。
[0066]在目标充放电运算部300中,使用图5所示的目标充放电量对应图,根据电池SOC运算目标充放电电力tP。另外,在目标充放电量对应图中,用于允许或禁止EV行驶模式的EVON 线(MWSCON 线)设定在 SOC = 50% 处,EVOFF 线(MWSC0FF)设定在 SOC = 35% 处。
[0067]在SOC ^ 50%时,在图4的通常模式对应图中出现EV行驶模式区域。如果在模式对应图内出现一次EV区域,则在SOC低于35%之前,该区域将持续出现。
[0068]在S0C〈35%时,在图4的通常模式对应图中EV行驶模式区域消失。如果EV行驶模式区域从模式对应图内消失,则在SOC达到50%之前,该区域持续消失。
[0069]在变速控制部500中,按照档位对应图所示的换挡计划而对自动变速机AT内的电磁阀进行驱动控制,以实现目标第2离合器传递扭矩容量TCL2*和目标变速档。另外,换挡对应图是基于车速VSP和加速器踏板开度APO而预先设定目标变速档的对应图。
[0070]在动作点指令部400中,根据加速器踏板开度ΑΡ0、目标驱动力tFoO (驾驶员要求扭矩)、目标模式、车速VSP、目标充放电电力tP,作为它们的动作点到达目标,运算过渡的目标发动机扭矩、目标电动发电机扭矩、目标第2离合器传递扭矩容量TCL2*、自动变速机AT的目标变速档、和第I离合器螺线管电流指令。另外,在动作点指令部400中设有发动机起动控制部,其在从EV行驶模式切换为HEV行驶模式时,使发动机E起动。
[0071]在实施例1的发动机起动控制中,将通过驾驶员进行加速器踏板操作的结果而使停止中的发动机起动的情况设为第I起动模式,将除了驾驶员进行加速器踏板操作以外的其它因素(系统要求起动)使停止中的发动机E起动的情况设为第2起动模式,分别以不同的起动模式进行发动机起动。
[0072]在这里,对于执行第2起动模式的处理进行说明。在发动机停止中,不论驾驶员的加速器踏板操作如何,例如以下列出的系统起动要求中的任一个成立的情况下,判断为是第2起动模式的发动机起动要求。
[0073](I)在自动变速机AT的油温达到预先设定的规定温度(例如大于或等于115°C)的情况下,以第2起动模式进行发动机起动。
[0074](2)在自动变速机AT的油温小于或等于预先设定的规定温度(例如小于或等于15°C)的情况下,以第2起动模式进行发动机起动。例如,这是为了在混合动力车辆在交叉路口等执行所谓的怠速停止的情况下,防止长时间的怠速停止导致自动变速机AT的油温降得过低。
[0075](3)在发动机E的冷却水温大于或等于预先设定的规定温度(例如大于或等于120°C)的情况下,以第2起动模式进行发动机起动。
[0076](4)在发动机E的冷却水温小于或等于预先设定的规定温度(例如小于或等于40°C)的情况下,以第2起动模式进行发动机E的起动。例如,这是为了在混合动力车辆在交叉路口等执行所谓的怠速停止的情况下,防止长时间的怠速停止导致发动机E变为冷机状态。
[0077](5)在电动发电机MG的可输出扭矩小于或等于预先设定的规定扭矩(例如小于或等于IOONm)的情况下,以第2起动模式进行发动机E的起动。这是由于,如果电动发电机MG过热而使得可从电动发电机MG输出的电动机扭矩低于所述规定扭矩,则之后可能无法通过电动发电机MG起动发动机E。
[0078](6)在电池4的可输出电力小于或等于预先设定的规定电力(例如小于或等于20kw)的情况下,以第2起动模式进行发动机起动。图6是表示实施例1的电动发电机的转速和扭矩的关系的特性图。如果由于电池4的温度上升或电池4的温度降低而使电池4可输出的电力降低,则如图6所示,转速越大,电动发电机MG可输出的电动机扭矩越低。因此,在电池4可输出的电力降低至小于或等于所述规定电力的情况下,电动发电机MG的可使用的扭矩区域减小,之后可能无法通过电动发电机MG起动发动机E,因此,进行第2起动模式的发动机起动。在这里,图6中的实线a表示电池4的输出为50kw的情况,虚线b表示电池4的输出为54kw的情况,点划线c表示电池4的输出为60kw的情况。
[0079](7)在电池4的电池SOC小于或等于预先设定的规定值(例如电池SOC小于或等于35%)的情况下,以第2起动模式进行发动机E起动。这是为了在例如由于塞车等长时间以EV模式行驶的情况下,对电池4进行充电。
[0080](8)在车速大于或等于预先设定的规定速度(例如大于或等于100km/h)的情况下,以第2起动模式进行发动机E的起动。这是为了在电动发电机MG的转速成为高转速之前起动发动机。
[0081](9)在由于负压泵的负压降低而存在发动机起动要求的情况下,以第2起动模式进行发动机E的起动。这是为了使发动机E运行而确保负压。
[0082](10)在混合动力车辆在交叉路口等执行所谓的怠速停止的情况下,在怠速停止中规定的怠速停止禁止条件成立的情况下,以第2起动模式进行发动机E的起动。[0083](11)在下坡路行驶中,在电池9的电池SOC大于或等于预先设定的规定值(例如电池SOC大于或等于65%)的情况下,以第2起动模式进行发动机E的起动。这是为了在下坡路行驶中电池4被充满电而再生扭矩受到限制之前,使用发动机制动。
[0084]另外,上述(I)至(11)的条件是判定为第2起动模式的发动机起动要求条件的一个例子,判定为第2起动模式的发动机起动要求条件并不限定于上述(I)至(11)的条件。
[0085]在驾驶员进行加速器操作而进行发动机起动的情况下,由于驾驶员存在发动机起动意图,因此,与伴随第I离合器CLl的接合的扭矩变动相比,在从驾驶员进行加速器操作至发动机起动为止的时间较长时,驾驶员容易产生不适感。即,在驾驶员进行加速器操作而导致起动发动机的情况下,优选对第I离合器CLl的传递扭矩容量进行可变控制,以快速起动发动机。
[0086]另一方面,在除了驾驶员进行加速器操作以外的因素起动发动机的情况下,由于驾驶员没有起动发动机的意图,因此,与直至发动机起动为止的时间相比,驾驶员更容易对与第I离合器CLl的接合相伴的扭矩变动感到不适。即,在驾驶员进行加速器操作以外的因素起动发动机的情况下,优选对第I离合器CLl的传递扭矩容量进行可变控制,以抑制与第I离合器CLl的接合相伴的扭矩变动。
[0087]因此,在实施例1中,在发动机起动时对第I离合器CLl的传递扭矩容量进行可变控制时,控制使得第2起动模式的传递扭矩容量低于第I起动模式。因此,在第2起动模式中,能够抑制与第I离合器CLl的接合引起的扭矩变动相伴的冲击。即,在非驾驶员意图的行驶中发动机起动时,能够抑制第I离合器接合时的扭矩变动,能够抑制与扭矩变动相伴的冲击给驾驶员造成的不适感。
[0088]图9是表示实施例1的第2起动模式中的发动机起动控制处理的时序图。
[0089]如果在时刻t4存在发动机起动要求,则由于第2离合器CL2的目标传递扭矩容量是对应于要求驱动扭矩而确定的,因此,在该情况下使其降低至零,使第I离合器CLl的目标传递扭矩容量从O增加至曲轴起动时的目标值。并且,在时刻t2,如果发动机转速和电动发电机转速同步,则使第I离合器CLl的目标传递扭矩容量朝向完全接合的值增加,而第2离合器CL2的目标传递扭矩容量因车辆继续停止而保持为O。
[0090]另外,电动发电机MG从开始发动机曲轴起动的时刻t4开始进行转速控制,以使得实际转速达到目标转速。该转速控制从时刻t4开始实施至时刻t6为止。另外,从时刻t6开始,电动发电机MG以达到要求驱动扭矩的方式进行扭矩控制。另外,第2起动模式下的曲轴起动中的第I离合器CLl的传递扭矩容量,设定为比第I起动模式的情况下低。因此,与第I起动模式的曲轴起动相比,第2起动模式下的曲轴起动时间长,扭矩变动小。
[0091]在这里,假定驾驶员将制动器踏板踏入而进行制动的情况。如上所述,如果上述
(I)至(11)的规定条件中的任一个成立,则以第2起动模式进行发动机起动。在EV行驶模式下的行驶中,如果驾驶员将制动器踏板踏入,则在大于或等于规定车速时为了再现滑行扭矩而使电动发电机MG产生再生扭矩。在这种状态下,如果车速逐渐降低而低于规定车速,则再生扭矩减小,取而代之是通过制动器单元900的摩擦制动力实现与驾驶员操作制动器踏板相对应的制动力。
[0092]然后,电动发电机MG为了再现通常的发动机车辆的行驶状态而产生蠕动扭矩。即,电动发电机MG产生的扭矩从负侧的再生扭矩向正侧的再生扭矩切换。由此,与通常的发动机车辆同样地,能够得到蠕动扭矩,例如,驾驶员仅操作制动器踏板就能够实现车辆入库或缓慢的行驶状态。
[0093]在这里,在由电动发电机MG产生蠕动扭矩的状态下要求第2起动模式时,如果进行发动机起动,则保持产生蠕动扭矩的状态而进行发动机起动。这时,存在为了确保可传递蠕动扭矩的第2离合器CL2的传递扭矩容量,容易给驾驶员造成扭矩变动引起的不适感的问题。在这里,在判断为车速降低至一定程度时,即使是完全停车之前也判断为车辆停止,以此为触发而使蠕动扭矩朝向O减小。在以该蠕动扭矩开始减小的定时为触发而开始发动机起动的情况下,会在蠕动扭矩较高的状态下进行发动机起动,第2离合器CL2的传递扭矩也较高,因此容易给驾驶员造成不适感。
[0094]因此,在实施例1中,不是以车速为触发,而是在电动发电机MG产生的扭矩小于或等于足够小的值时,开始允许第2起动模式的发动机起动。图7是表示实施例1的第2起动模式的发动机起动控制处理的流程图。
[0095]在步骤SlOl中,判断是否存在第2起动模式的发动机起动要求,在存在发动机起动要求时跳转至步骤S102,在除此以外时重复本步骤。
[0096]在步骤S102中,对于制动器制动力是否比规定制动力BI大且停车判定是否设为ON进行判断,在条件成立时跳转至步骤S103,在除此以外时跳转至步骤S105。在这里,所谓停车判定,是指在车速小于或等于规定值的情况持续大于或等于规定时间的情况下,判定为大致接近车辆停止状态。由此,并不限定于车辆完全停止。另外,不使用车轮速度传感器检测车速,而使用对电动发电机转速进行检测的解析器13进行检测。这是由于,与车轮速度传感器等相比,解析器13的分辨率非常高,即使是车速非常低的区域也能够高精度地进行车速检测。在电动发电机侧的控制处理中,如果该停车判定设为0N,则控制使得施加在电动发电机MG上的蠕动扭矩朝向ONm逐渐减小。如果制动器制动力即制动器单元900的摩擦制动力比规定制动力BI大,则认为驾驶员有制动意图,且能够一定程度上抑制作用在车轮上的扭矩变动。
[0097]在步骤S103中,判断输入扭矩(即,电动发电机MG的输出扭矩)的绝对值小于或等于O的状态是否已经过大于或等于规定时间Tl,在判断为已经过时,跳转至步骤S106,在除此以外时跳转至步骤S104。这是由于,如果输入扭矩绝对值小于或等于O的状态经过了大于或等于规定时间Tl,则认为是蠕动扭矩施加完全结束的状态,能够对与发动机起动相伴的扭矩变动进行抑制。
[0098]在这里,在实施例1中,输入扭矩使用针对电动发电机MG的指令扭矩进行判断,但也可以基于供给至电动发电机MG的电流值而推定扭矩,或者可以构成为,使用扭矩传感器等对输入扭矩进行检测。
[0099]在步骤S104中,使发动机起动待机。即,即使上述(I)至(11)的规定条件中的任一个成立而要求第2起动模式的发动机起动,也禁止发动机起动。由此,通过在可能存在扭矩变动的情况下避免发动机起动,而能够避免给驾驶员造成不适感。
[0100]在步骤S105中,判断档位位置是否为P档或加速器踏板是否设为0N,在上述条件成立时跳转至步骤S106,在除此以外时返回步骤S102。如果档位位置是P档,则通过停车锁止机构的动作而强制使车轮固定,因此,即使产生了输入扭矩,也能够抑制扭矩变动的影响。另外,在加速器踏板被设为ON的情况下,由于驾驶员有起步意图,因此仍是第I起动模式的发动机起动较为合适。
[0101]在步骤S106中,开始进行发动机起动控制处理。另外,发动机起动控制处理执行在上述图9中说明的处理。
[0102]图8是表示对实施例1的第2起动模式的发动机起动控制开始进行判断的处理的时序图。时序图的初始行驶状态,是在驾驶员将制动器踏板踏入的减速中使车速减小至规定车速为止的状态。此外,是对应于车速减小而使再生扭矩从电动发电机MG的再生扭矩输出状态开始减小,逐渐切换为制动器单元900的摩擦制动力的状态。该再生扭矩的减小,是对再生扭矩进行控制以使得在达到规定车速时其减小为O。另外,已经要求第2起动模式的发动机起动。
[0103]在时刻tl,如果再生扭矩变为0,则车辆停止判定用定时器开始计数。另外,这时是车速降低至规定车速后的状态。车辆停止判定用定时器是在车速小于或等于规定车速的状态持续时持续进行递增,而在车速上升的情况下重置的计时器。在车辆停止判定用定时器进行递增的同时,电动发电机MG开始产生蠕动扭矩,并使扭矩逐渐增大。
[0104]在时刻t2,如果车辆停止判定用定时器的计数值经过了规定时间,则判断为已达到车速足够低的状态,将车辆停止判定标志设为0N。由此,电动发电机MG使扭矩从输出蠕动扭矩的状态开始逐渐减小至O。另外,如果在该定时允许第2起动模式的发动机起动,则在输出蠕动扭矩的状态下使第I离合器CLl接合。在输出蠕动扭矩时,第2离合器CL2也具有传递扭矩容量,即使追加例如被第I离合器CLl牵引的量相对应的扭矩而进行控制,也由于第I离合器CLl的传递扭矩容量的波动或发动机曲轴起动扭矩的波动,而很难得到稳定的电动发电机扭矩。
[0105]另外,要对传递至第2离合器CL2侧的扭矩进行控制,则必须进行反馈控制,从而电动发电机MG所输出的扭矩仍会产生变动。另外,即使对第2离合器CL2进行滑动控制,由于输入侧转速变化而仍可能使得滑动量变化。在这种情况下,摩擦系数发生变化等而使传递至驱动轮上的扭矩产生变化,可能给驾驶员造成不适感。因此,在实施例1中,其构成为,在电动发电机MG输出扭矩的状态(即,第2离合器CL2具有传递扭矩容量的状态)下,不允许发动机起动。
[0106]在时刻t3,如果电动发电机MG输出的蠕动扭矩为ONm,则定时器开始递增。这时,第2离合器CL2的传递扭矩容量也被设定为ONm。并且,在时刻t4,如果判断为定时器的计数值经过了大于或等于预先设定的规定时间Tl,则发动机起动许可标志变为0N,开始第2起动模式的发动机起动。这时,由于车辆处于车速足够低的状态,且制动器踏板被踏入,因此可确保稳定的车辆停止状态。由此,即使将电动发电机扭矩输出用于发动机起动,也由于仅将扭矩用于发动机起动,因此不会给驾驶员造成不适感,能够进行发动机起动。
[0107]如上所述,在实施例1的混合动力车辆中,能够得到下述列举的效果。
[0108](I)混合动力车辆的控制装置具有:第2离合器CL2,其设置在电动发电机MG和驱动轮之间;以及综合控制器10 (发动机起动控制单元),其在存在发动机起动要求时,将第2离合器CL2接合,通过电动发电机MG进行发动机起动,在该混合动力车辆的控制装置中,在步骤S103中,如果存在第2起动模式的发动机起动要求,且电动发电机MG的输出扭矩的绝对值小于或等于规定值,则允许发动机曲轴起动。
[0109]由此,能够抑制与发动机起动相伴的扭矩变动,能够抑制给驾驶员造成不适感。[0110](2)规定值为零,在步骤S103中,在电动发电机扭矩变为零之后,在经过预先设定的规定时间后,允许发动机曲轴起动。
[0111]即,能够通过时间经过而排除由车辆的惯性力等引起的低速行驶条件,能够抑制给驾驶员造成不适感。另外,能够排除因路面状况变化或驾驶员的制动器操作变化的影响。
[0112](3)设有解析器13 (车速检测单元)和步骤S102 (车辆停止判断单元),其中,该解析器13用于检测车速,该步骤102基于该检测出的车速,判断车辆是否停止,在步骤S102中,在判断为车辆停止之后,允许发动机曲轴起动。
[0113]由此,与仅根据电动发电机扭矩和摩擦制动力进行判断的情况相比,能够高精度地进行车辆状态检测,能够可靠地抑制与发动机起动相伴的扭矩变动。这是由于,如果仅根据电动发电机扭矩和摩擦制动力进行判断,则即使是还残留有蠕动扭矩的状态,如果摩擦制动力较高,也可能判断为车辆停止,从而由于与发动机起动相伴的扭矩变动而给驾驶员造成不适感。
[0114](4)车速检测单元基于对电动发电机的转速进行检测的解析器13 (旋转角传感器),对车速进行检测。
[0115]由此,由于使用与车轮速度传感器等相比分辨率非常高的传感器,因此能够在非常低的车速区域高精度地判定车辆停止状态。
[0116]以上基于实施例1对本发明进行了说明,但具体结构也可以是其它结构。例如,在实施例1中是将本发明用于混合动力车辆,但即使是仅设有发动机或电动机的车辆,也同样地能够应用。
[0117]另外,在实施例1中,作为发动机起动许可条件,使电动发电机MG的输出扭矩为O的状态持续大于或等于规定时间,但也可以构成为,只要制动器制动力大于或等于电动发电机扭矩加上规定值后的值,则允许发动机起动。这是由于,如果驱动轮被可靠地固定而电动发电机扭矩很小,则即使扭矩发生了变化也很小,不会给驾驶员造成不适感。
[0118]另外,在实施例1中,对于FR型的混合动力车辆进行了说明,但也可以是FF型混合动力车辆。
【权利要求】
1.一种混合动力车辆的控制装置,其具有: 离合器,其设置在电动发电机和驱动轮之间;以及 发动机起动控制单元,其在存在发动机起动要求时,将所述离合器接合,通过所述电动发电机进行发动机起动, 该混合动力车的控制装置的特征在于, 如果存在发动机起动要求,且所述电动发电机的输出扭矩绝对值小于或等于规定值,则所述发动机起动控制单元允许发动机起动。
2.根据权利要求1所述的混合动力车辆的控制装置,其特征在于, 所述规定值为零, 所述发动机起动控制单元在所述电动发电机的输出扭矩为零的状态经过预先设定的规定时间后,允许发动机起动。
3.根据权利要求1或2所述的混合动力车辆的控制装置,其特征在于,设有: 车速检测单元,其检测车速;以及 车辆停止判断单元,其基于该检测出的车速,判断车辆是否停止, 在判断为车辆停止后,所述发动机起动控制单元允许发动机起动。
4.根据权利要求3所述的混合动力车辆的控制装置,其特征在于, 所述车速检测单元基于对电动发电机的转速进行检测的旋转角传感器,对车速进行检测。
【文档编号】B60W10/08GK103534156SQ201280023233
【公开日】2014年1月22日 申请日期:2012年6月19日 优先权日:2011年6月30日
【发明者】谷岛香织, 川村弘明, 军司宪一郎 申请人:日产自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1