车辆制动和转向的组合系统的制作方法

文档序号:11121263阅读:748来源:国知局
车辆制动和转向的组合系统的制造方法与工艺

本发明涉及车辆领域,具体地,涉及一种车辆制动和转向的组合系统。



背景技术:

在现有的车辆中,尤其是电动车辆中,大多采用两台电机分别驱动空压机和转向油泵,空压机用于为整车制动系统提供气压,转向油泵为整车转向系统提供助力。通过这种方式,会较多地占用底盘上的布置空间,并且还会增加整车自重和制造成本。



技术实现要素:

本发明的目的是提供一种车辆制动和转向的组合系统,其能够解决现有技术中的相关问题。

为了实现上述目的,本发明提供一种车辆制动和转向的组合系统,包括空压机、电机、转向油泵、控制器、储气罐和转向器,其中,所述电机用于驱动所述转向油泵为所述转向器提供液压助力,并通过电磁离合器驱动所述空压机为所述储气罐提供压缩气体,所述空压机通过气路连接到所述储气罐,该气路上设置有单向阀并旁接有排气阀,所述储气罐上设置有压力传感器,所述转向器上设置有转角传感器,所述控制器根据所述压力传感器采集的所述储气罐中的气压值来控制所述排气阀打开或者关闭,并控制所述电磁离合器接合或者分离。

通过上述技术方案,采用一台电机驱动空压机和转向油泵,所以整个组合系统结构简单紧凑,并且传动效率和可靠性较高。在气路上旁接有排气阀,控制器根据压力传感器采集的储气罐中的气压值来控制排气阀打开或者关 闭,并控制电磁离合器接合或者分离,可以避免空压机突然加载或者卸载,而对转向器的工作造成冲击。

本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。

附图说明

附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:

图1是根据本发明一种实施方式的组合系统的原理示意图。

附图标记说明

10空压机 12单向阀

13排气阀 20电机

30转向油泵 40控制器

50电磁离合器 60储气罐

61压力传感器 70转向器

72转角传感器 80油箱

82过滤器 90散热器

91油温传感器

具体实施方式

以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

本发明公开了一种车辆制动和转向的组合系统,主要包括空压机10、电 机20、转向油泵30、控制器40、储气罐60和转向器70。电机20用于驱动转向油泵30为转向器70提供液压助力,并通过电磁离合器50驱动空压机10为储气罐60提供压缩气体。空压机10通过气路连接到储气罐60,该气路上设置有单向阀12并旁接有排气阀13。储气罐60)上设置有压力传感器61,转向器70上设置有转角传感器72。控制器40根据压力传感器61采集的储气罐60中的气压值来控制排气阀13打开或者关闭,并控制电磁离合器40接合或者分离。

如图1所示,作为一种具体实施方式,电机20具有两端输出的电机轴,该电机轴的一端连接到转向油泵30,另一端通过电磁离合器50连接到空压机10,控制器40用于控制所述电磁离合器50接合或者分离。具体地,电机轴的一端连接到转向油泵30,用于驱动该转向油泵30工作,以向转向器70提供液压助力;另一端通过电磁离合器50连接到空压机10,通过控制器40控制该电磁离合器50接合或者分离,可以选择性地驱动空压机10工作,并根据需要向储气罐60提供气压。当然,电机20也可以通过其他方式驱动空压机10和转向油泵30,例如通过各种减速箱等。另外,电机20通常也可以通过控制器40来控制。当然,电机20的运行也可以通过其他控制方式或者起停开关来控制。控制器40可以是本发明的组合系统专用的控制器,也可以采用整车控制器。

通过上述技术方案,采用一台电机20驱动空压机10和转向油泵30,所以整个组合系统结构简单紧凑,并且传动效率和可靠性较高。在气路上旁接有排气阀13,控制器40根据压力传感器61采集的储气罐60中的气压值来控制排气阀13打开或者关闭,并控制电磁离合器50接合或者分离,可以避免空压机10突然加载或者卸载,而对转向器70的工作造成冲击。

通常,储气罐60具有第一设定气压值和第二设定气压值,第一设定气压值大于所述第二设定气压值。

当压力传感器61采集的气压值小于第二设定气压值时,控制器40控制电磁离合器50从分离状态切换到接合状态,电机20驱动空压机10工作,通过气路上的单向阀12向储气罐60中提供气压,以保证车辆的制动系统能够正常工作。

当压力传感器61采集的气压值达到所述第一设定气压值时,控制器40控制电磁离合器50从接合状态切换到分离状态,空压机10不再运转,停止向储气罐60继续提供气压。

在本发明中,在空压机10和单向阀12之间的气路上还旁接有排气阀13,控制器40用于控制排气阀13打开或者闭合。通过该排气阀13,可以对电磁离合器50的突然接合或者分离进行缓冲,不仅可以减小电磁离合器50的磨损,还能够缓冲由于空压机10突然工作或者停止而对转向器70的转向操作造成的冲击。

具体地,作为一种优选的实施方式,当压力传感器61采集的气压值小于第二设定气压值时,控制器40首先控制所述电磁离合器50从分离状态切换到接合状态,然后再控制排气阀13从打开状态切换到闭合状态。在电磁离合器50接合之前,排气阀13处于打开状态,因此电磁离合器50可以实现空载接合,从而可以减少对电磁离合器50的磨损。同时,在电磁离合器50接合之后,虽然空压机10开始运转,但是空压机10产生的气体会通过气路上旁接的排气阀13排出,因而基本上并无负载,所以也不会对转向器70的转向操作造成明显的冲击。

进一步优选地,在电磁离合器50接合之后,所述控制器40控制所述排气阀13从打开状态缓慢地逐渐切换到闭合状态,即实现空压机10的缓慢加载,而不是突然加载,从而可以更好地缓冲对转向器70的转向操作造成的冲击,尽可能地减少对驾驶员转向操作过程中手感的不利影响。

排气阀13从打开状态缓慢切换到闭合状态的时间可以根据具体情况进 行调试,例如,空压机功率较大时,时间可以适当长一些,反之,空压机功率较小时,时间可以适当短一些。只要排气阀13的切换过程适当的缓慢一些,空压机10就可以逐渐加载,转向油泵60的运转情况不会突然发生变化,油路中的油压亦不会突然变化,从而不会对转向器70的转向操作造成明显冲击而影响转向操作手感。

上面对空压机10加载的控制过程进行了描述。同样地,在空压机10卸载时,也可以通过对排气阀13和离合器的合理控制来减小对转向器70的转向操作的冲击。

具体地,当压力传感器61采集的气压值达到第一设定气压值时,控制器40首先控制排气阀13从闭合状态切换到打开状态,然后再控制电磁离合器50从接合状态切换到分离状态。

由于在电磁离合器50分离之前,排气阀13已经打开,所以空压机10的载荷将通过排气阀13而得到释放,从而可以缓冲对转向器70的转向操作的冲击。之后,电磁离合器50在空压机10空载的情况下分离。

同样优选地,在电磁离合器50分离之前,控制器40也是优选控制排气阀13从闭合状态缓慢地逐渐切换到打开状态,即实现空压机10的缓慢卸载,而不是突然卸载,从而可以更好地缓冲对转向器70的转向操作的冲击,尽可能地减少对驾驶员转向操作过程中手感的不利影响。

因为排气阀13是从闭合状态逐渐切换到打开状态,从而空压机10可以逐渐卸载,转向油泵30的运转情况不会突然发生变化,油路中的油压亦不会突然变化,从而不会对转向器70的转向操作造成明显冲击而影响转向操作手感。

在本发明中,排气阀13可以使用换向阀、比例阀、开关阀、阻尼孔等形式,只要能实现上述功能即可,本发明对此不作限制。另外,排气阀13的排气口一般可以直接通向大气。作为选择方案,排气阀13的排气口也可 以通向另外的储气罐或者其他需要的场所。

如图1所示,所述转向油泵30通过油路连接到转向器70,为转向器70的转向操作提供助力。转向器70上设置有转角传感器72,用来检测转向器70的转角信号,以判断转向器70是否处于转向状态。

作为一种优选实施方式,当压力传感器61采集的气压值达到第一设定气压值时,空压机10需要停止对储气罐60继续提供气压,在此之前,首先判断转向器70是否处于转向状态。

具体地,当通过转角传感器72检测到转向器70处于非转向状态时,控制器40可以控制排气阀13从闭合状态切换到打开状态,然后再控制电磁离合器50从接合状态切换到分离状态。此过程可以与上文描述的过程相同,不再赘述。

当通过转角传感器72检测到转向器70处于转向状态时,控制器40可以控制排气阀13从闭合状态切换到打开状态,然后等待转向器70回位到非转向状态之后,再控制电磁离合器50从接合状态切换到分离状态。通过这种控制方式,在转向器70处于转向状态时,电磁离合器50暂时并不分离,避免空压机10停止工作而影响转向操作手感。

另外需要说明的是,在此实施方式中,排气阀13的打开和闭合方式可以与上文中描述的情况相同,即缓慢地逐渐切换,以尽可能地减小对油路的冲击。

在本发明的另一种优选的实施方式中,储气罐60具有设定的最高气压值、次高气压值和最低气压值,次高气压值小于最高气压值并大于最低气压值。根据不同的情形,上文中的第一设定气压值可以选择最高气压值或者次高气压值。优选地,次高气压值可以选择为最高气压值的75%-85%。

具体地,当通过转角传感器72检测到转向器70处于非转向状态时,第一设定气压值为最高气压值,第二设定气压值为最低气压值;当通过转角传 感器72检测到转向器70处于转向状态时,第一设定气压值为次高气压值,第二设定气压值为最低气压值。

换言之,在转向器70处于非转向状态时,利用最高气压值和最低气压值来判断空压机10是否需要工作。而在转向器70处于转向状态时,则利用次高气压值和最低气压值来判断空压机10是否需要工作。

储气罐60中的气压越高,空压机10工作所需的功率也就越高,即载荷越大;另外,转向器70工作时转向速度越快、转角越大,所需的油路中的油压也就越高,即转向油泵30所需的功率也就越高。通过上述方案,可以使转向器70和空压机10彼此错开峰值功率进行工作,从而可以选择设计功率相对较小的电机20,从而可以降低成本。另外,在转向器70处于转向状态时,空压机10为储气罐60提供气压的条件是储气罐60中的次高气压值,而不是最高气压值,因此空压机10的负载变化也会更小一些,从而空压机的起停对油路中油压的冲击也会更小,可以最大限度的减小甚至消除对转向操作手感的不利影响。

附图中的附图标记80表示油箱,为转向油泵30供油。附图标记82表示过滤器。附图标记90表示散热器,91表示油温传感器,从转向器70中流出的油液可以经过散热器91散热后为控制器40和电机20提供散热,油温传感器91用于检测油温以通过控制器40来控制散热器90的工作。

上文中对组合系统的控制方案进行了详细说明。另外,对于电机20而言,其同样也可以通过本发明的控制器40进行控制,即,在优选的实施方式中,根据储气罐60中的气压值和转向器70的工作状态,控制器40不仅可以对排气阀13和电磁离合器50进行控制,还可以对电机20进行相应的控制,以通过一个控制器和一台电机实现车辆制动和转向的二合一,使得整个组合系统结构紧凑且设计灵活。

以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限 于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1