使用插电式电动车辆的动态电网负载的制作方法

文档序号:12443561阅读:226来源:国知局
使用插电式电动车辆的动态电网负载的制作方法与工艺

本申请总体上涉及匹配插电式电动车辆的电负载以满足来自电力供应设施的需求。



背景技术:

电动车辆包括插电式混合动力电动车辆(PHEV)和纯电动车辆(battery electric vehicle,BEV)。PHEV车辆和BEV车辆的一个特性是它们都可与充电器连接以供应能量至车载牵引电池。充电器与公用电力设施连接以供应车辆请求的电力。通过车辆以及充电设备中的控制器管理充电过程。可通过这些控制器严密管理车辆的电力汲取。典型的特征包括延迟充电直到电费为最便宜的时候。其它特征包括在牵引电池和加热/冷却装置之间按比例分配电能以预调节车辆的乘客车厢。因此充电特征很大程度上取决于车辆对能量的需求。在车辆对能量不存在需求时,没有能量被传输至车辆。



技术实现要素:

一种车辆包括配置为连接至由电网管理系统控制的电网的牵引电池。车辆进一步包括控制器,所述控制器被配置为:响应于当所述牵引电池的充电电力极限小于来自所述电网的电力量时来自所述电网管理系统的消耗所述电力量的请求,对所述牵引电池充电并且启动车辆负载以消耗电力。

控制器可被进一步配置为:以所述充电电力极限对所述牵引电池充电。控制器可被进一步配置为:以基于所述电力量与所述充电电力极限之间的差的电力级别来启动所述车辆负载。控制器可被进一步配置为:响应于当所述牵引电池的所述充电电力极限大于或等于来自所述电网的电力量时来自所述电网管理系统的消耗所述电力量的请求,以所述电力量对所述牵引电池充电。车辆负载可为加热元件、空调压缩机、辅助电池充电系统和风扇中的一个或更多个。控制器可被进一步配置为:响应于所述充电电力极限小于指示所述电池被充满电的预定阈值,启动所述车辆负载以消耗所述电力量。

一种车辆包括被配置为连接至由电网管理系统控制的电网的牵引电池。车辆进一步包括至少一个控制器,所述至少一个控制器被配置为:响应于当所述牵引电池被充满电时来自所述电网管理系统的消耗来自所述电网的一定电力量的请求,启动至少一个车辆负载以消耗来自所述电网的电力。

当所述牵引电池的荷电状态大于预定荷电状态时,所述牵引电池可为充满电的。当所述牵引电池的充电电力极限小于预定电力时,所述牵引电池可为充满电的。

所述至少一个控制器可被进一步配置为:基于环境温度选择所述至少一个车辆负载。所述至少一个车辆负载可为具有大于或等于所述电力量的电力消耗能力并且被启动以消耗所述电力量的第一车辆负载。所述至少一个车辆负载可包括第一车辆负载以及至少一个第二车辆负载,所述第一车辆负载具有小于所述电力量的电力消耗能力并且被启动以消耗所述电力消耗能力,所述至少一个第二车辆负载以基于所述电力量与所述第一车辆负载的所述电力消耗能力之间的差的电力级别被启动。

所述至少一个控制器可被进一步配置为:响应于当所述牵引电池的充电电力极限大于预定值时来自所述电网管理系统的所述请求,对所述牵引电池充电。所述至少一个控制器可被进一步配置为:响应于所述充电电力极限大于或等于所述电力量,以所述电力量对所述牵引电池充电。所述至少一个控制器可进一步配置为:响应于所述充电电力极限小于所述电力量,以所述充电电力极限对所述牵引电池充电。

所述至少一个控制器可被进一步配置为:基于所述电力量与所述充电电力极限之间的差来启动所述至少一个车辆负载。

一种方法包括:将车辆的牵引电池与由电网管理系统控制的电网连接。该方法进一步包括:通过控制器接收来自所述电网管理系统的消耗来自所述电网的一定的电力量的请求。该方法进一步包括:响应于所述电力量大于所述牵引电池的充电电力极限,通过所述控制器启动车辆负载。

所述方法可进一步包括:以所述充电电力极限对所述牵引电池充电。所述车辆负载消耗的所述电力可基于所述电力量与所述充电电力极限之间的差。所述方法可进一步包括:响应于所述电力量小于或等于所述充电电力极限,以所述电力量为所述牵引电池充电。

附图说明

图1为示出了典型的动力传动系统和能量管理部件的混合动力车辆的示意图。

图2为包括多个电池单体并且由电池能量管理控制模块监控和控制的可能的电池组装置的示意图。

图3为示出了车辆响应于消耗来自电网的电力的请求的可能的一系列运转的流程图。

具体实施方式

本说明书中描述了本申请的多个实施例。然而,应当理解,公开的实施例仅仅为示例并且其它实施例可采取各种和可替代的形式。附图不需要按比例绘制;一些特征可被放大或缩小以显示特定部件的细节。因此,本说明书中公开的具体结构和功能细节不应被认为是限制,而仅仅认为是用于教导本领域技术人员以多种形式利用这些实施例的代表性基础。如本领域技术人员将理解的,参考任一附图说明和描述的各种特征可与一幅或更多其它附图中说明的特征结合以形成未明确说明或描述的实施例。说明的特征的组合提供了用于典型应用的代表性实施例。然而,可能需要与本申请的教导一致的特征的各种组合和变型以用于特定应用或实施。

图1示出典型地被称为插电式混合动力电动车辆(PHEV)的电动车辆12。典型的插电式混合动力电动车辆12可包括与混合动力变速器16连接的一个或更多个电机14。电机14能够运转为马达或发电机。此外,混合动力变速器16机械连接到发动机18。混合动力变速器16还机械连接到与车轮22机械连接的驱动轴20。当发动机18打开时电机14可提供推进能力,并且当发动机18关闭时电机14可提供减速能力。电机14还用作发电机并且可通过回收通常会在摩擦制动系统中作为热量损失掉的能量来提供燃料经济收益。电机14还可通过允许发动机18以更有效的速度运转和在一些情况下允许混合动力电动车辆12在发动机18关闭的情况下以电动模式运转而来减少车辆排放。电动车辆12可包括纯电动车辆(BEV)。在BEV配置中,可不存在发动机18。

牵引电池或电池组24存储可由电机14使用的能量。车辆电池组24通常提供高压DC输出。牵引电池24电连接到一个或更多个电力电子模块。一个 或更多个接触器42可在断开时使牵引电池24与其他部件隔开,并且在闭合时使牵引电池24连接到其它部件。电力电子模块26还电连接到电机14,并且提供在牵引电池24与电机14之间双向传输能量的能力。例如,牵引电池24可提供DC电压,而电机14可用三相AC电流运转来起作用。电力电子模块26可将DC电压转换为三相AC电流以运转电机14。在再生模式下,电力电子模块26可将来自用作发电机的电机14的三相AC电流转换为与牵引电池24兼容的DC电压。

除了提供用于推进的能量之外,牵引电池24可为其它车辆电系统提供能量。车辆12可包括将牵引电池24的高压DC输出转换为与低压车辆负载兼容的低电压DC供应的DC/DC转换器模块28。DC/DC转换器模块28的输出可电连接至辅助电池30(例如,12V电池)用于对辅助电池30充电。低电压系统可电连接到辅助电池。其它高压负载46(比如压缩机和电加热器)可连接至牵引电池24的高压输出。

电动车辆12可配置为通过外部电源36对牵引电池24再次充电。外部电源36可以是与电插座的连接。外部电源36可电连接到充电器或电动车辆供电设备(EVSE)38。外部电源36可为公用电力公司提供的电力分布网络或网格。EVSE 38可提供调节和管理电源36与车辆12之间的能量传输的电路和控制。外部电源36可向EVSE 38提供DC电力或AC电力。EVSE 38可具有用于插入车辆12的充电接口34的EVSE连接器40。充电接口34可以是配置为将电力从EVSE 38传输到车辆12的任何类型的接口。充电接口34可电连接到充电器或车载电力转换模块32。电力转换模块32可调节从EVSE 38供应的电力以向牵引电池24提供适当的电压级别和电流级别。电力转换模块32可与EVSE 38进行交互以协调对车辆12的电力传送。EVSE连接器40可具有与充电接口34的对应凹槽匹配的管脚。可替代地,被描述为电耦合或连接的各种部件可使用无线电感耦合来传输电力。

可提供一个或更多个车轮制动器44用于使车辆12减速并且防止车辆12移动。车轮制动器44可为液压驱动的、电驱动的或是它们的一些组合。车轮制动器44可为制动系统50的一部分。制动系统50可包括运转车轮制动器44的其它部件。出于简要的目的,附图示出了制动系统50与多个车轮制动器44中的一个之间的单个连接。隐含了制动系统50与其它车轮制动器44之间的连接。制动系统50可包括监控并且协调制动系统50的控制器。制动系 统50可监控制动部件并且控制车轮制动器44用于使车辆减速。制动系统50可响应驾驶员指令并且还可自主运转以实现诸如稳定性控制的特征。当被另一控制器或子功能请求时,制动系统50的控制器可实施应用请求的制动力的方法。

一个或更多个电负载46可连接到高压总线。电负载46可具有当合适时运转和控制电负载46的相关联的控制器。电负载46的示例可为风扇、加热元件和/或空调压缩机。

车辆12中的电子模块可通过一个或更多个车辆网络通信。车辆网络可包括多个用于通信的信道。车辆网络的一个信道可为串行总线,比如控制器局域网(CAN)。车辆网络的多个信道中的一个可包括电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802标准族限定的以太网。车辆网络的额外信道可包括多个模块之间的离散连接并且可包括来自辅助电池30的电力信号。可通过车辆网络的不同信道来传输不同信号。例如,可通过高速信道(例如,以太网)传输视频信号而通过CAN或离散信号传输控制信号。车辆网络可包括辅助在多个模块之间传输信号和数据的任何硬件部件和软件部件。图1中未示出车辆网络,但是隐含了车辆网络可连接至车辆12中存在的任何电子模块。可存在车辆控制器(VSC)48以协调多个部件的运转。

车辆12可包括无线通信模块54以与远离车辆12的装置和系统通信。无线通信模块54可包括具有天线以与车外装置或系统通信的车载调制解调器。无线通信模块54可为能够通过蜂窝数据网络通信的蜂窝通信装置。无线通信模块54可为与IEEE 802.11标准族(比如,WiFi)或WiMax网络兼容的无线局域网(LAN)装置。无线通信模块54可包括基于车辆的无线路由器以允许连接至本地路由器范围内的远程网络。无线通信模块54可与车辆12中的一个或更多个控制器交互以提供数据。

车辆通信网络可延伸到EVSE 38。车辆通信网络可包括多条导线,这些导线被导引通过充电连接器40和充电接口34。在一些配置中,可实现经由无线通信模块54的无线通信协议。EVSE 38可配置为与控制和管理电源36的电网管理系统52通信。其中电动车辆12与电网管理系统52通信的通信系统可被称为车辆-电网(V2G)通信系统。

牵引电池24可由多种化学配方构成。典型的电池组化学组成可为铅酸、 镍-金属氢化物(NIMH)或裡离子。图2示出了具有N个电池单体72的简单串联配置的典型的牵引电池组24。然而,其它电池组24可由串联或并联或者它们的一些组合连接的任何数量的单独的电池单体组成。电池管理系统可具有一个或更多个控制器,比如监控和控制牵引电池24的性能的电池能量控制模块(BECM)76。电池组24可包括测量多种电池组级别特性的传感器。电池组24可包括一个或更多个电池组电流测量传感器78、电池组电压测量传感器80和电池组温度测量传感器82。BECM 76可包括与电池组电流传感器78、电池组电压传感器80和电池组温度传感器82交互的电路。BECM 76可具有非易失性存储器,使得当BECM 76处于关闭状态时数据可被保留。保留的数据可在下一个钥匙循环时被使用。

除了电池组级别特性之外,被测量和监控的还有电池单体72级别特性。例如,可测量每个电池单体72的端电压、电流和温度。系统可使用传感器模块74测量电池单体72的特性。取决于性能,传感器模块74可测量一个或更多个电池单体72的特性。电池组24可利用多达Nc个传感器模块74来测量所有电池单体72的特性。每个传感器模块74可将测量传输到BECM 76用于进一步处理和协调。传感器模块74可将模拟形式或数字形式的信号传输到BECM 76。在一些配置中,可将传感器模块74的功能并到BECM 76内部。即,可将传感器模块74硬件集成为BECM 76中的电路的一部分,并且BECM76可进行原始信号的处理。BECM 76还可包括与一个或更多个接触器42交互的电路以断开和闭合这些接触器42。

计算电池组的多种特性可能是有用的。比如电池电力容量和电池荷电状态的量对控制电池组以及接收来自电池组的电力的任何电负载的运转可能是有用的。电池电力容量为电池可提供的最大量的电力或电池可接收的最大量的电力的测量。知道电池电力容量允许管理电负载,使得请求的电力在电池可处理的极限内。

电池组荷电状态(SOC)给出了电池组中剩余多少电荷的指示。SOC可被表示为电池组中剩余的总电荷的百分数。可输出电池组SOC以向驾驶员指示电池组中剩余多少电荷,类似于燃料量表。电池组SOC还可用于控制电动车辆或混合动力电动车辆的运转。电池组SOC的计算还可通过多种方法实现。一种可能的计算电池SOC的方法为执行电池组电流对时间的积分。该积分在本领域内熟知为安培-小时积分。

电池电力容量可建立牵引电池24的充电极限和放电极限。BECM 76可基于电池参数和测量而周期性地计算电池充电极限和电池放电极限。当牵引电池24不能被充电时,电池充电极限可为零。当牵引电池24充满电时,电池充电极限可为零。当荷电状态大于预定荷电状态时,牵引电池24可为充满电的。预定荷电状态可为接近百分之百的荷电状态。

插电式混合动力车辆和纯电动车辆可被称为电动车辆。电动车辆12可配置为使用车辆12外部的电源36对牵引电池24充电。电源36可为公用电力网络或网格的一部分。电网可为发电机与负载的复杂互连。电网包括将电力传送到多个位置(包括家用住宅和商业场所)的传送线路。

主要电力生产者可为运转电力产生设施的公用电力公司。然而,现代技术可对额外的次级电力生产者提供机会。例如,消费者可安装太阳能板以产生电力用于家用。在一些情况下,消费者可将电力卖给电力公司并且通过电网提供电力。这样的配置可使电力公司能够通过从次级生产者处购买电力而满足峰值电力需求的阶段。

电网管理系统52可监控电网并且管理可控的负载。电网管理系统52可确定来自与电网连接的负载的电力需求并且试图匹配供应给该电力需求的电力。电网管理系统52可指令连接的负载汲取电力或停止汲取电力。电网管理系统52可指令连接的供电器提供电力或停止提供电力。电网管理系统52可试图将电力供应与电力需求相匹配以使成本最小化或使系统效率最大化。电网管理系统52可配置为通过启动离电力需求最近的供电器来使传送损失最小化。

电网管理系统52可包括一个或更多个控制器。这些控制器可通过网络通信。电网管理系统52可与多个供电装置和与电网连接的电动车辆12通信。可建立多个通信协议以通过网络促进信息传输。EVSE 38可包括与网络连接的控制器。电网管理系统52可与EVSE 38通信以交换数据。例如,EVSE 38可发送车辆12连接至电网的信息。电网管理系统52可将电力消耗请求通信至EVSE 38,然后该电力消耗请求可被通信到车辆12。在一些配置中,电动车辆12可通过无线通信模块54与电网管理系统52无线地通信。

关于具有V2G通信能力的车辆12,可描述几种应用。可描述两种不同的能量传输模式。在双向能量传输模式下,电动车辆配置为耗费(例如,消耗)和供应(例如,提供)电力。在单向能量传输模式下,电动车辆配置为 仅耗费电力。V2G通信可通过在电力需求低(典型地为晚上)时对车辆充电来改善公用负载的均衡。电动车辆12和电网可交换关于充电的适当时间的信息。

在配置为双向传输能量的车辆中,可请求车辆将车辆12中存储或产生的能量传输给电网。例如,在从发动机18和电机14的运转开始的驾驶循环期间,牵引电池24可被充满电。电网可将电力请求发给车辆12。车辆12可通过将请求的级别的电力提供给电网来进行响应。对于提供电力,公用电力公司可补偿车主。这样的系统允许电网响应峰值需求的阶段而无需更新电力产生设施。

对于电动车辆12,通常基于牵引电池24充电和/或运行用于车厢或部件预调节的附件负载46来确定电力需求。这样的电力需求基于电动车辆12的需求。电动车辆12确定何时将对牵引电池24充电以及将以什么级别对牵引电池24充电。电动车辆12还确定何时将运转附件负载46。可将EVSE 38的最大充电电力发送至电动车辆12或将其存储为一个或更多个控制器(例如,76)中的值。然后可将最大充电电力在电池充电与附件负载之间如控制器(例如,76)确定地分配。

在单向能量传输模式下,电动车辆车主可从电网获得价值。在第一情景中,公用电力公司可直接或通过减少电费来向电动车辆车主提供报酬以在一些情况下降低电力汲取。这样的配置可类似于由公用电力公司控制的可中断电线并且在峰值需求阶段期间可被中断。可中断电线的用户可从降低的电费中获益,因为其使公用电力公司具有提高的灵活性。在第二情景中,公用电力公司可对电动车辆车主消耗来自电网的电力进行补偿以辅助电网的整体负载管理。电动车辆12可通过对牵引电池24充电来完成这个任务。当牵引电池24被充满电(例如,100%的荷电状态)时,可发生问题。随着牵引电池24的荷电状态的增加,牵引电池消耗的电力量可减少。随着荷电状态增加,牵引电池24可能不能达到电网请求的电力需求。

电动车辆12可利用额外的电负载46以达到电网的电力需求。例如,电负载46中的一个可为电加热器。当牵引电池24的电力需求不能满足电力需求时,可启动电负载46中的一个或更多个以满足电力需求。电网管理系统52可将电力需求请求输出至车辆12。车辆12中的控制器48可接收电力需求并且确定怎样在车辆12的电子装置之间分配电力需求。可优先考虑对牵引电 池24充电。牵引电池控制器76可计算和输出充电电力容量。当充电电力容量大于电网需求时,可通过对牵引电池24充电来满足电力需求。

当充电电力容量小于电网电力需求时,可以以基于电网电力需求与充电电力容量之间的差的电力级别来启动一个或更多个电负载46。该配置允许车辆12满足电网电力需求以辅助单向V2G服务。

示出的电负载46描述了与牵引电池24的输出连接的那些负载并且可被称为高压负载。额外的负载可与辅助电池30以及DC/DC转换模块28的输出连接并且可被称为低压负载。在一些配置中,可启动低压负载以消耗DC/DC转换器模块28提供的电力。

多个电负载46可配置为待启动的。电负载电力消耗级别可被计算为电网电力需求与牵引电池充电电力容量之间的差。电负载46可包括风扇、空调压缩机和加热元件。每个电负载46可具有电力消耗能力,电力消耗能力为负载目前可消耗的电力量。控制器48可试图使电负载电力消耗级别与具有大于该电负载电力消耗级别的电力消耗能力的电负载46匹配。在这种情况下,可仅启动一个车辆负载46来满足需求。

在一些情况下,电负载电力消耗级别可大于任何一个电负载46的电力消耗能力。在这种情况下,可以以相关联的电力消耗能力启动第一车辆负载并且可以以基于电负载电力消耗级别与第一车辆负载的电力消耗能力之间的差的电力级别来启动第二车辆负载。

控制器48可基于其它标准来选择启动适当的车辆负载46。车辆12可包括提供指示环境温度的信号的环境温度传感器。控制器48可接收环境温度作为输入。待启动的车辆负载46可基于环境温度。例如,当环境温度大于指示热的气候的预定温度时,启动的车辆负载46可为与空调系统相关的那些负载(例如,空调压缩机、风扇)。当环境温度小于指示冷的气候的预定温度时,启动的车辆负载46可为与加热系统相关的那些负载(例如,用于车厢/座椅的加热元件、风扇)。

可监控电负载46以确保不会超过温度极限或其它运转极限。如果超过部件的运转极限,则可停用电负载46。假如停用电负载46,则可启动另一电负载46。控制器48可为电负载46的启动安排优先顺序。另外,电负载46的启动可取决于待供应的电力需求。控制器48可基于待提供的电力需求而存储预定计划。

图3示出了可在电动车辆12中实施的控制策略的流程图。可在车辆12中的一个或更多个控制器(例如,48)中实施这些操作。在运转200处,控制器可确定与电源36的连接是否已被建立。例如,控制器48可检测到EVSE连接器40连接至充电接口34。如果没有检测到连接,则可周期地重复运转200。如果检测到与电源36的连接,则执行可转到运转202。

在运转202处,控制器48可确定电网管理系统52是否已发送车辆消耗电力的请求。如果没有检测到请求,则执行可转到运转204。在运转204处,控制器48可根据车辆需求来实施指令以汲取来自电源的电力。例如,可根据操作者设置的充电计划来对牵引电池24充电。如果检测到消耗电力的请求,则执行可转到运转206。

在运转206处,控制器48可比较电力请求与电池充电电力极限。如果请求的电力量小于或等于电池充电电力极限,则执行可转移到运转208,运转208可根据电网管理系统52请求的电力来指令对牵引电池24充电。如果请求的电力量大于电池充电电力极限,则运转可转到运转210。在运转210处,将电池充电电力极限与充电不可行时的阈值进行比较。该阈值可指示充满电的牵引电池24。如果电池充电电力极限大于或等于该阈值,则可执行运转212,在运转212中以充电池充电电力极限对牵引电池24充电,接下来进行运转214。如果电池充电极限低于该阈值,则可执行运转214,在运转214中启动车辆12中的一个或更多个电负载46。可以以电力请求与电池充电电力极限之间的差限定的电力级别来运转电负载46。当车辆12与电源36连接时,可周期地重复这些运转。当车辆12与电源36断开时,可停止电池充电并且可停用电负载46。

本申请中公开的过程、方法或算法可传输到处理装置、控制器或计算机/由处理装置、控制器或计算机实施,处理装置、控制器或计算机可包括任何现存的可编程电子控制单元或专用电子控制单元。类似地,所述过程、方法或算法可被存储为可能以多种形式由控制器或计算机执行的数据和指令,该数据和指令包括但是不限于永久地存储在不可写入存储介质(比如ROM装置)上的信息、可变地存储在可写入存储介质(比如软盘、磁带、CD、RAM装置、和其它磁性介质和光学介质)上的信息。所述过程、方法或算法还可在软件可执行对象中实现。可替代地,所述过程、方法或算法可利用合适的硬件组件(比如特定用途集成电路(ASIC)、现场可编程门阵列(FPGA)、 状态机、控制器或其它硬件组件或装置)或者硬件、软件和固件组件的组合而整体或部分地实现。

虽然上文描述了示例性实施例,但是并不意味着这些实施例描述了权利要求包含的所有可能的形式。说明书中使用的词语为描述性而非限定的词语,并且应理解,在不脱离本申请的精神和范围的情况下可作出各种改变。如之前描述的,可组合多个实施例的特征以形成可能没有明确描述或说明的本发明的进一步的实施例。虽然关于一个或更多个期望特性,多个实施例可被描述为提供优点或优于其它实施例或现有技术的实施方式,但是本领域普通技术人员认识到,可以折中一个或更多个特征或特性以实现期望的整体系统属性,这取决于具体应用和实施方式。这些属性可包括但不限于:成本、强度、耐用性、生命周期成本、市场性、外观、包装、尺寸、可维修性、重量、可制造性、装配的便利性等。这样,关于一个或更多个特性被描述为比其它实施例或现有技术实施方式更不令人期望的实施例并不在本申请的范围之外并且可能期望用于特定应用。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1