车辆的制作方法

文档序号:12149648阅读:140来源:国知局
车辆的制作方法与工艺

本发明涉及一种车辆的控制,该车辆搭载了具有在起动时被卡合而在动力切断时被释放的离合器的变速器、以及与变速器的输入轴连结的电动发电机。



背景技术:

例如,在日本特开2013-112335号公报(专利文献1)中公开了一种如下的混合动力车辆,即,在停车中对是否需要进行车载蓄电池的充电进行判断,并在判断为需要进行蓄电池的充电的情况下,将输入轴上连结有电动机的变速器设为动力切断状态。此外,在专利文献1中,还公开了如下技术,即,在将变速器设为动力切断状态之后,通过使设置在发动机与电动机之间的离合器卡合,从而使发动机起动,并通过发动机的动力而进行发电,并利用发电而产生的电力对车载蓄电池进行充电。

在先技术文献

专利文献

专利文献1:日本特开2013-112335号公报

专利文献2:日本特开2013-123964号公报

专利文献3:国际公开第2014/157183号

专利文献4:日本特开2009-012726号公报



技术实现要素:

发明所要解决的课题

然而,在具备发动机、第一电动发电机、第二电动发电机、和将发动机与第一电动发电机以及第二电动发电机连结在一起的差动装置的车辆中,在由于变速器的故障而使变速器的动力传递切断状态处于未确定的状态下利用第一电动发电机而使发动机起动的情况下,由于第二电动发电机的转矩也会增加与第一电动发电机的反作用力对应的量,因此存在该被增加的转矩经由变速器而被传递至驱动轮的情况。因此,存在车辆上产生振动或噪声等的情况。对此,虽然也考虑到利用对离合器的状态进行检测的传感器来对变速器的动力传递切断状态是否处于确定进行判断,但会存在部件数量增加、制作成本增加的情况。

本发明是为了解决上述的课题而完成的发明,其目的在于,提供一种在抑制成本的增加的同时、高精度地对变速器的动力传递切断状态是否处于确定进行判断的车辆。

用于解决课题的方法

该发明的一个方面所涉及的车辆具备:发动机;电动发电机,其被连结于所述发动机上;变速器,所述变速器的输入轴被连结于所述电动发电机的旋转轴上并且所述变速器的输出轴被连结于驱动轮上,并且,所述变速器具有将所述输入轴与所述输出轴之间设为动力传递状态以及动力传递切断状态中的任意一种状态的离合器;差动装置,其包括第一旋转元件、第二旋转元件以及第三旋转元件,所述第一旋转元件被连结于与所述电动发电机不同的第一电动发电机上,所述第二旋转元件被连结于作为所述电动发电机的第二电动发电机上,所述第三旋转元件被连结于所述发动机的输出轴上,并且所述差动装置被构成为,当所述第一旋转元件至第三旋转元件中的任意两个旋转元件的转速被确定时,剩余的一个旋转元件的转速被确定;控制装置,其对所述第一电动发电机的动作和所述第二电动发电机的动作以及所述变速器的动作进行控制,所述控制装置在对所述离合器进行控制以成为所述动力传递切断状态的情况下,当所述输入轴与所述输出轴的转速差小于所述动力传递切断状态处于确定时的所述转速差时,与所述动力传递切断状态处于确定时相比而抑制利用所述第一电动发电机的所述发动机的启动。

动力传递切断状态处于未确定的情况下的输入轴的滚动阻力与动力传递切断状态处于确定的情况下的输入轴的滚动阻力相比而变高。因此,在对离合器进行控制以成为动力传递切断状态的情况下,在转速差与动力传递切断状态处于确定时的转速差相比而较小时,称为动力传递切断状态处于未确定的状态。因此,通过对利用第一电动发电机的发动机的启动进行抑制,从而能够对因第一电动发电机的转矩经由变速器而被传递至驱动轮侧而引起的振动或噪声的产生进行抑制。由于无需为了高精度地实施动力传递切断状态是否处于确定的判断而设置对离合器的状态进行检测的传感器,因此能够抑制部件数量的增加,并抑制制造成本的增加。

优选为,控制装置在离合器的控制和电动发电机的控制的执行中,以产生与车辆的滚动阻力相比而较低的转矩的方式对电动发电机进行控制。

通过采用这种方式,在为了对动力传递切断状态是否处于确定进行判断从而使电动发电机进行动作时,即使在动力传递切断状态处于未确定的状态下,也能够对车辆的移动进行抑制。

进一步优选为,控制装置在执行离合器的控制和电动发电机的控制时,对电动发电机进行控制,使得在从开始对离合器进行控制以成为动力传递切断状态起,经过了根据离合器中所使用的工作油的温度而被设定的时间之后,使旋转轴进行旋转。

通过采用这种方式,通过在被推断为动力传递切断状态处于确定的时刻使电动发电机的旋转轴进行旋转,从而能够高精度地对动力传递切断状态是否处于确定进行判断。

进一步优选为,控制装置以使发动机的输出轴向正转方向旋转的方式使第二电动发电机输出转矩。

通过采用这种方式,由于只要发动机的输出轴为正转方向,则第二电动发电机的旋转方向也成为正转方向,因此能够不使第二电动发电机反转而实施发动机的启动。因此,能够对因第二电动发电机的反转而导致的撞齿声等的产生进行抑制。

进一步优选为,变速器包括第四旋转元件、第五旋转元件以及第六旋转元件,并且变速器被构成为,在第四旋转元件至第六旋转元件中的任意两个旋转元件的转速被确定时剩余的一个旋转元件的转速被确定。第四旋转元件经由离合器而被连结于电动发电机上。第五旋转元件被连结于输出轴上。第六旋转元件上连结有能够通过成为卡合状态而实施第六旋转元件的旋转的限制的制动器、以及将第六旋转元件的旋转方向限制在一个方向上的单向离合器。控制装置在对离合器进行控制以将动力传递切断的情况下,对制动器进行控制以成为卡合状态。

通过采用这种方式,变速器通过将制动器设为卡合状态,从而能够抑制在单向离合器向能够旋转的方向进行旋转的状态下计算出变速器的输入轴的转速与输出轴的转速之差的情况。因此,能够抑制变速器的动力传递切断状态是否处于确定的误检测。

发明效果

动力传递切断状态处于未确定的情况下的输入轴的滚动阻力与动力传递切断状态处于确定的情况下的输入轴的滚动阻力相比而变高。因此,在对离合器进行控制以成为动力传递切断状态的情况下,在转速差与动力传递切断状态处于确定时的转速差相比而较小时,称为动力传递切断状态处于未确定的状态。因此,能够通过对利用第一电动发电机的发动机的启动进行抑制,从而对因第一电动发电机的转矩经由变速器而被传递至驱动轮侧而导致产生振动或噪声进行抑制。由于无需为了高精度地对动力传递切断状态是否处于确定进行判断而设置对离合器的状态进行检测的传感器,因此能够抑制部件数量的增加并抑制制造成本的增加。因此,能够提供一种在抑制成本的增加的同时高精度地对变速器的动力传递切断状态是否处于确定进行判断的车辆。

附图说明

图1为车辆的动力传递系统及其控制系统的概要结构图。

图2为表示相对于控制装置而被输入输出的主要的信号及指令的图。

图3为表示差动部以及变速器的结构的图。

图4为表示变速器的卡合工作表的图。

图5为由差动部以及变速器而构成的变速部的列线图。

图6为控制装置的功能框图。

图7为表示由控制装置执行的控制处理的流程图。

图8为用于对离合器正常时的控制装置的动作进行说明的时序图。

图9为用于对离合器异常时的控制装置的动作进行说明的时序图。

具体实施方式

以下,参照附图对本发明的实施方式进行说明。在以下的说明中,对相同部件标注相同符号。这些部件的名称以及功能也相同。因此,不重复进行对于这些部件的详细的说明。

如图1所示,车辆10具备:发动机12、变速部15、差动齿轮装置42、以及驱动轮44。变速部15包括差动部20和变速器30。此外,车辆10还具有逆变器52、蓄电装置54、以及控制装置60。

发动机12为,通过将由燃料的燃烧而产生的热量转换为活塞或转子等运动件的动能从而产生动力的内燃机。差动部20与发动机12连结。差动部20包括电动发电机和动力分配装置,所述电动发电机通过逆变器52而被驱动,所述动力分配装置将发动机12的输出分配给向变速器30传递的传递部件及电动发电机。差动部20被构成为,通过对电动发电机的动作点进行适当控制从而能够对发动机12的输出轴的转速与被连接于变速器30上的传递部件的转速之比(变速比)连续地进行变更,进而作为无级变速器而发挥功能。关于差动部20的详细结构将在下文进行叙述。

变速器30与差动部20连结,并且被构成为,能够对被连接于差动部20的传递部件(变速器30的输入轴)的转速与被连接于差动齿轮装置42的驱动轴(变速器30的输出轴)的转速之比(变速比)进行变更。变速器30只要是能够通过使利用液压而进行工作的摩擦卡合要素(离合器)进行卡合从而以预定的方式实现动力传递的(变速器30变得都能够动作)自动变速器即可,例如,可以是通过使利用液压而进行工作的多个摩擦卡合元件(离合器或制动器)以预定的组合进行卡合或释放从而能够使变速比阶段性地变更的有级式自动变速器,也可以是能够使变速比连续地变更的具有起动离合器的无级式自动变速器。

而且,通过变速器30的变速比以及差动部20的变速比而决定变速部15的变速比(发动机12的输出轴与驱动轴之间的综合变速比)。另外,关于变速器30的详细的结构,与差动部20一起在下文进行叙述。差动齿轮装置42与变速器30的输出轴连结,并将从变速器30输出的动力向驱动轮44传递。

逆变器52通过控制装置60而被控制,并对差动部20中所包含的电动发电机的驱动进行控制。逆变器52例如由包括三相的电力用半导体开关元件的桥接电路而构成。另外,虽然未特别地进行图示,但也可以在逆变器52与蓄电装置54之间设置电压转换器。

蓄电装置54为能够进行再充电的直流电源,典型而言,其由锂离子电池或镍氢电池等二次电池而构成。另外,也可以取代二次电池而通过双电层电容器等蓄电元件而构成蓄电装置54。

控制装置60包括:发动机ECU(Electronic Control Unit:电子控制单元)62、MG-ECU64、电池ECU66、ECT-ECU68以及HV-ECU70。这些各ECU包括CPU(Central Processing Unit:中央处理器)、存储装置、输入输出缓冲器等(均未图示),并执行预定的控制。关于由各ECU执行的控制,并不局限于由软件实施的处理,也能够利用专用的硬件(电子电路)而进行处理。各ECU与通信线(总线)71连接,并相互交换信号。

发动机ECU62基于从HV-ECU70接收的发动机转矩指令等而生成用于对发动机12进行驱动的控制信号,并将所生成的控制信号向发动机12输出。MG-ECU64生成用于对逆变器52进行驱动的控制信号,并将所生成的控制信号向逆变器52输出。

电池ECU66基于蓄电装置54的电压和/或电流而对蓄电装置54的充电状态(将相对于满充电状态的当前的蓄电量通过由百分比来表示的SOC(State Of Charge:充电状态)值来表示)进行推断,并将该推断值向HV-ECU70输出。ECT-ECU68基于从HV-ECU70接收的转矩电容指令等而生成用于对变速器30进行控制的液压指令,并将所生成的液压指令向变速器30输出。

HV-ECU70接收换档杆及其他各种传感器的信号,并生成用于对车辆10的各设备进行控制的各种指令。作为由HV-ECU70执行的代表性的控制,HV-ECU70基于加速踏板的操作量和车速等,执行将发动机12以及变速部15控制在所需的状态而进行行驶的行驶控制。此外,HV-ECU70基于车辆的行驶状态(加速器开度和车速等)、换档杆的位置等,而执行将差动部20以及变速器30控制在所需的变速状态的变速控制。关于该变速控制的详细内容,将在下文进行叙述。

图2为表示相对于图1所示的控制装置60而被输入输出的主要的信号及指令的图。参照图2,HV-ECU70接收来自对档位进行检测的档位传感器的信号以及来自对发动机12的转速进行检测的发动机转速传感器14(参照图3)的信号。档位包括例如前进行驶(D)档位、后退行驶(R)档位以及空档(N)档位。档位传感器例如可以是对换档杆的位置进行检测的传感器,或者,也可以是被设置在变速器30内,并且对移动至与根据换档杆的操作而被选择的档位对应的位置处的部件的位置进行检测的传感器(空档起动开关)。

并且,HV-ECU70还接收如下信号,即,来自用于对差动部20中所包含的电动发电机MG1(后述)的转速Nm1进行检测的MG1转速传感器27(图3参照)的信号、来自用于对差动部20中所包含的电动发电机MG2(后述)的转速Nm2进行检测的MG2转速传感器28(参照图3)的信号、以及来自用于对差动部20及变速器30的工作油的温度(油温)进行检测的油温传感器的信号。并且,HV-ECU70从电池ECU66接收表示蓄电装置54的SOC值的信号。

ECT-ECU68接收来自用于对变速器30的输出轴的转速(以下,记载为输出轴转速)No进行检测的输出轴转速传感器37(参照图3)的信号。

发动机ECU62生成用于对发动机12进行驱动的节气门信号和点火信号、燃料喷射信号等,并向发动机12输出。MG-ECU64生成用于通过逆变器52而对电动发电机MG1、MG2进行驱动的MG1电流指令值以及MG2电流指令值,并向逆变器52输出。ECT-ECU68以使变速器30具有相当于转矩电容指令Tcr的转矩电容的方式而生成液压指令,并向变速器30输出。

图3为表示图1所示的差动部20及变速器30的结构的图。另外,由于在该实施方式中,差动部20及变速器30以关于其轴心而对称的方式被构成,因此在图3中,以省略差动部20及变速器30的下侧的方式而进行了图示。

参照图3,差动部20包括电动发电机MG1、MG2以及动力分配装置24。电动发电机MG1、MG2各自为交流电动机,例如,通过具备埋设有永久磁铁的转子的永磁型同步电动机而构成。电动发电机MG1、MG2通过逆变器52而被驱动。

在电动发电机MG1上,设置有对电动发电机MG1的旋转轴的转速进行检测的MG1转速传感器27。在电动发电机MG2上,设置有对电动发电机MG2的转速Nm2进行检测的MG2转速传感器28。

动力分配装置24通过单小齿轮型的行星齿轮而构成,并包括太阳齿轮S0、小齿轮P0、行星齿轮架CA0以及内啮合齿轮R0。行星齿轮架CA0与输入轴22即发动机12的输出轴连结,并对小齿轮P0以能够进行自转及公转的方式而进行支承。在发动机12的输出轴上,设置有对发动机转速进行检测的发动机转速传感器14。

太阳齿轮S0与电动发电机MG1的旋转轴连结。内啮合齿轮R0被构成为,与传递部件26连结,并经由小齿轮P0而与太阳齿轮S0啮合。在传递部件26上连结有电动发电机MG2的旋转轴。即,内啮合齿轮R0也与电动发电机MG2的旋转轴连结。

动力分配装置24通过太阳齿轮S0、行星齿轮架CA0以及内啮合齿轮R0进行相对旋转,从而作为差动装置而发挥功能。太阳齿轮S0、行星齿轮架CA0以及内啮合齿轮R0的各转速,如下文所述(图5)那样成为在列线图中由直线连结的关系。即,成为在行星齿轮中的三个旋转元件(太阳齿轮S0、行星齿轮架CA0以及内啮合齿轮R0)中的任意两个旋转元件的转速被确定时剩余的一个旋转元件的转速被确定的关系。通过动力分配装置24的差动功能,而使从发动机12输出的动力被分配到太阳齿轮S0和内啮合齿轮R0。通过被分配到太阳齿轮S0的动力而使电动发电机MG1作为发电机而进行工作,由电动发电机MG1实施发电而产生的电力被供给至电动发电机MG2,或者被存储于蓄电装置54(图1)中。利用由动力分配装置24所分配的动力而使电动发电机MG1发电,或者利用由电动发电机MG1实施发电而产生的电力而对电动发电机MG2进行驱动,从而差动部20能够实现变速功能。

变速器30包括:单小齿轮型的行星齿轮32、34、离合器C1、C2、制动器B1、B2、以及单向离合器F1。行星齿轮32包括太阳齿轮S1、小齿轮P1、行星齿轮架CA1以及内啮合齿轮R1。行星齿轮34包括太阳齿轮S2、小齿轮P2、行星齿轮架CA2以及内啮合齿轮R2。

离合器C1、C2以及制动器B1、B2各自均为通过液压而进行工作的摩擦卡合装置,并且由被重叠的多张摩擦板通过液压而被按压的湿式多板型、或被卷绕在进行旋转的轮鼓的外周面上的制动带的一端通过液压而被拉紧的带式制动器等而构成。单向离合器F1以相互连结的行星齿轮架CA1以及内啮合齿轮R2能够向一个方向进行旋转、而无法向另一个方向进行旋转的方式,对行星齿轮架CA1以及内啮合齿轮R2进行支承。

在该变速器30中,通过离合器C1、C2和制动器B1、B2以及单向离合器F1的各卡合装置按照图4所示的卡合工作表而进行卡合,从而以择一的方式形成1档齿轮级~4档齿轮级以及后退齿轮级。另外,在图4中,“○”表示处于卡合状态,“△”表示仅在驱动时卡合的情况,空白表示处于释放状态。此外,在本实施方式中,作为档位而选择了N档,且在未实施蓄电装置54的充电的情况下,在变速器30中,与1档齿轮级同样地,离合器C1以及制动器B1被设为卡合状态,并且电动发电机MG1、MG2的转矩输出成为被停止的状态。通过使电动发电机MG1、MG2的转矩输出成为停止的状态,从而形成了空档状态(动力切断状态)。

另一方面,在作为档位而选择了N档、且实施了蓄电装置54的充电的情况下,在变速器30中,通过将离合器C1设为释放状态,从而形成了空档状态(动力传递切断状态)。在实施蓄电装置54的充电的情况下,发动机12成为工作状态,并且通过在电动发电机MG1、MG2中产生负转矩而执行发电动作。另外,此时,维持制动器B2的卡合状态。

再次参照图3,差动部20和变速器30通过传递部件26而被连结。而且,与行星齿轮34的行星齿轮架CA2连结的输出轴36被连结于差动齿轮装置42(图1)。在变速器30的输出轴36上,设置有对输出轴转速No进行检测的输出轴转速传感器37。

图5为由差动部20以及变速器30构成的变速部15的列线图。在参照图5的同时参照图3,与差动部20对应的列线图的纵线Y1表示动力分配装置24的太阳齿轮S0的转速,即表示电动发电机MG1的转速。纵线Y2表示动力分配装置24的行星齿轮架CA0的转速,即表示发动机12的转速。纵线Y3表示动力分配装置24的内啮合齿轮R0的转速,即表示电动发电机MG2的转速。另外,纵线Y1~Y3的间隔根据动力分配装置24的齿轮比而被决定。

此外,与变速器30对应的列线图的纵线Y4表示行星齿轮34的太阳齿轮S2的转速,纵线Y5表示相互连结的行星齿轮34的行星齿轮架CA2与行星齿轮32的内啮合齿轮R1的转速。此外,纵线Y6表示相互连结的行星齿轮34的内啮合齿轮R2与行星齿轮32的行星齿轮架CA1的转速,纵线Y7表示行星齿轮32的太阳齿轮S1的转速。而且,纵线Y4~Y7的间隔根据行星齿轮32、34的齿轮比而被决定。

当离合器C1卡合时,行星齿轮34的太阳齿轮S2被连结于差动部20的内啮合齿轮R0,从而太阳齿轮S2以与内啮合齿轮R0相同的速度进行旋转。当离合器C2卡合时,行星齿轮32的行星齿轮架CA1以及行星齿轮34的内啮合齿轮R2被连结于内啮合齿轮R0,从而行星齿轮架CA1以及内啮合齿轮R2以与内啮合齿轮R0相同的速度进行旋转。当制动器B1卡合时,太阳齿轮S1的旋转停止,当制动器B2卡合时,行星齿轮架CA1以及内啮合齿轮R2的旋转停止。

例如,如图4的卡合工作表所示,在将离合器C1和制动器B1卡合并将其他的离合器以及制动器释放时,变速器30的列线图成为由“2nd”表示的直线。表示行星齿轮34的行星齿轮架CA2的转速的纵线Y5表示变速器30的输出转速(输出轴36的转速)。如此,在变速器30中,通过根据图4的卡合工作表而使离合器C1、C2以及制动器B1、B2进行卡合或释放,从而能够形成1档齿轮级~4档齿轮级、后退齿轮级、以及空档状态。

另一方面,在差动部20中,通过对电动发电机MG1、MG2进行适当旋转控制,从而实现能够使内啮合齿轮R0的转速即传递部件26的转速相对于与行星齿轮架CA0连结的发动机12的转速而连续地变更的无级变速。通过将能够对传递部件26与输出轴36之间的变速比进行变更的变速器30连结于这种的差动部20,从而具有由差动部20实现的无级变速器功能,并能够减小差动部20的变速比,且能够减小电动发电机MG1、MG2的损失。

在具有以上这种结构的车辆10中,例如,设想一种处于N档时且实施蓄电装置54的充电的情况。此时,在因变速器30的故障(具体而言,离合器C1的故障)而使变速器30的空档状态处于未确定的状态下,利用电动发电机MG1、MG2而使发动机12起动的情况下,存在电机转矩经由变速器30而向驱动轮44传递的情况。因此,会在车辆10上产生振动或噪声等。与此相对,虽然也考虑到了利用对离合器C1的状态进行检测的传感器来对变速器30的空档状态是否处于确定进行判断的方法,但部件数量会增加,从而会使制作成本增加。

因此,在本实施方式中,其特征在于,在控制装置60对离合器C1以成为空档状态的方式进行控制、并进行使电动发电机MG2输出转矩的控制的情况下,当变速器30的输入轴(传递部件26)与输出轴36的转速差与空档状态处于确定时的转速差相比而较小时,抑制利用电动发电机MG1、MG2而进行的发动机12的启动。另外,在本实施方式中,控制装置60在处于N档且实施蓄电装置54的充电的情况下实施这种控制。此外,空档状态处于确定的状态是指,通过使离合器C1为释放状态从而在变速器30的输入轴(传递部件26)与输出轴36之间动力传递被切断的状态。此外,空档状态处于未确定的状态是指,由于离合器C1未处于释放状态(半卡合状态或卡合状态)从而动力在变速器30的输入轴(传递部件26)与输出轴36之间能够被传递的状态。

通过采用这种方式,能够对因在离合器C1异常时将发动机12启动从而引起电动发电机MG1、MG2的转矩向变速器30的输出轴传递的情况进行抑制。并且,由于无需设置为了高精度地实施空档状态是否处于确定的判断而对离合器C1的状态进行检测的传感器,因此能够抑制部件数量的增加,进而抑制制作成本的增加。

图6中图示了被搭载于本实施方式所涉及的车辆10上的控制装置60的功能框图。控制装置60包括:N档判断部100、充电判断部102、离合器控制部104、MG控制部106、转速差判断部108、发动机起动控制部110、以及充电控制部112。另外,这些结构既可以通过程序等软件来实现,也可以通过硬件来实现。

N档判断部100基于来自档位传感器的信号而对档位是否处于N档进行判断。

在通过N档判断部100而判断为档位处于N档的情况下,充电判断部102对是否需要蓄电装置54的充电进行判断。具体而言,在蓄电装置54的SOC小于阈值SOC(0)的情况下,充电判断部102判断为需要蓄电装置54的充电。阈值SOC(0)为与蓄电装置54的SOC的下限值相比而较高的值,并被设定为,即使执行后述的使电动发电机MG2工作的控制以及使发动机12起动的控制,也不会达到SOC的下限值。

在通过充电判断部102而判断为需要蓄电装置54的充电的情况下,离合器控制部104以使离合器C1为释放状态的方式对离合器C1进行控制。具体而言,离合器控制部104生成将离合器C1的液压设为零的C1液压指令并向变速器30的液压回路输出。

在通过离合器控制部104而开始进行离合器C1的控制之后,MG控制部106执行使电动发电机MG2中产生预先规定的转矩的控制处理。预先规定的转矩为,例如即使在离合器C1未处于释放状态的情况下也小于车辆10的滚动阻力的转矩。预先规定的转矩只要是至少抑制车辆10的移动的程度的转矩即可。MG控制部106在从开始离合器C1的控制起经过了待机时间Δt之后,开始实施电动发电机MG2的控制。待机时间Δt为,例如从开始离合器C1的控制至离合器C1的实际液压成为零的时间或者与该时间相比而较长的时间,其例如基于油温而被设定。油温较低的情况下的被供给至离合器C1的工作油的粘度,与油温较高的情况下的粘度相比而较大。因此,例如,油温较低的情况下的待机时间成为,与油温较高的情况下的待机时间相比而较长的时间。

在由MG控制部106进行的控制处理的执行中,转速差判断部108对变速器30的输入轴转速与变速器30的输出轴转速No的转速差的大小(绝对值)是否大于阈值α进行判断。

另外,如图3所示,变速器30的输入轴转速与电动发电机MG2的转速Nm2相同。因此,转速差判断部108将通过MG2转速传感器28而被检测出的电动发电机MG2的转速Nm2与通过输出轴转速传感器37而被检测出的输出轴转速No之差作为转速差而进行计算。转速差判断部108对计算出的转速差的大小是否大于阈值α进行判断。

阈值α被设定为,在空档状态处于确定的状态下(即,离合器C1被释放的状态下)实施上述控制处理时所产生的转速差以下的值。此外,阈值α被设定为,与在空档状态处于未确定的状态下(即,离合器C1未被释放的状态下)实施上述控制处理时的转速差的最大值相比而较大的值。

即,阈值α为,用于对被计算出的转速差是否小于空档状态处于确定且执行了上述控制处理时的转速差进行判断的阈值。

在通过转速差判断部108而判断为被计算出的转速差的大小与阈值α相比而较大的情况下,发动机起动控制部110执行发动机起动控制。

具体而言,发动机起动控制部110通过利用电动发电机MG1的正转方向的转矩而使发动机12的输出轴旋转,从而实施发动机12启动。在该情况下,需要使相对于电动发电机MG1的转矩的反作用力作用于内啮合齿轮R0上。因此,发动机起动控制部110使电动发电机MG1中产生正转方向的转矩,并且使电动发电机MG2中产生正转方向的转矩。

发动机起动控制部110例如以维持电动发电机MG2的转速Nm2的方式使电动发电机MG2中产生转矩。发动机起动控制部110通过利用电动发电机MG1的转矩来提升太阳齿轮S0的转速从而使发动机12的转速增加(即,实施发动机12的启动)。发动机起动控制部110通过在发动机12的转速上升到能够初爆的转速范围内时执行燃料喷射控制和点火控制从而使发动机12起动。

另一方面,在通过转速差判断部108而判断为被计算出的转速差的大小为阈值α以下的情况下,发动机起动控制部110禁止发动机12的起动。发动机起动控制部110例如通过将起动禁止标识设为开启状态,从而针对于之后的发动机12的起动要求而抑制发动机12的起动。

充电控制部112在通过发动机起动控制部110的动作而发动机12起动之后,以使电动发电机MG1、MG2中产生反转方向的转矩(负转矩)的方式对电动发电机MG1、MG2进行控制。由此,在电动发电机MG1、MG2中实施发电动作。通过发电动作而产生的发电电力经由逆变器52被供给至蓄电装置54。由此,实施蓄电装置54的充电。

参照图7,而对由被搭载于本实施方式所涉及的车辆10上的控制装置60所执行的控制处理进行说明。

在步骤(以下,将步骤记载为S)100中,控制装置60对档位是否处于N档进行判断。在判断为档位处于N档的情况下(在S100中为是),处理向S102转移。否则(在S100中为否),结束该处理。

在S102中,控制装置60对是否需要蓄电装置54的充电进行判断。在判断为需要蓄电装置54的充电的情况下(在S102中为是),处理向S104转移。否则(在S102中为否),结束该处理。

在S104中,控制装置60输出将液压设为零的C1液压指令以使离合器C1成为释放状态。

在S106中,控制装置60对开始C1液压指令的输出之后是否经过了待机时间Δt进行判断。在判断为从开始C1液压指令的输出之后经过了待机时间Δt的情况下(在S106中为是),处理向S108转移。否则(在S106中为否),处理返回到S106。

在S108中,控制装置60以产生预先规定的转矩的方式对电动发电机MG2进行控制。

在S110中,控制装置60对变速器30的输入轴转速与变速器30的输出轴转速的转速差的大小是否大于阈值α进行判断。在判断为转速差的大小大于阈值α的情况下(在S110中为是),处理向S112转移。否则(在S110中为否),处理向S114转移。

在S112中,控制装置60在执行使发动机12起动的发动机起动控制以使发动机12起动之后,执行对蓄电装置54进行充电的充电控制。在S114中,控制装置60禁止发动机12的起动。

参照图8及图9,对基于以上这种结构及流程图的被搭载于本实施方式所涉及的车辆10上的控制装置60的动作进行说明。

图8及图9的横轴均表示时间。图8及图9的纵轴分别表示档位、SOC、发动机转速、电动发电机MG2的转速Nm2、变速器30的输出轴转速No、转速差、电动发电机MG2的转矩、电动发电机MG1的转矩、离合器C1的液压指令值、离合器C1的实际液压、以及制动器B2的实际液压。另外,在图8及图9中,未图示电动发电机MG1的转速Nm1。

<离合器C1正常时>

参照图8,设想了档位为D档的情况。并且设想了SOC大于阈值SOC(0)、且发动机12为工作中的情况。并且,设为如下情况,即,车辆10通过发动机12以及电动发电机MG2的动力而处于行驶中,并且通过使离合器C1及制动器B2均处于卡合状态,从而在变速器30中形成1速档。

在这种情况下,由于当在时间T(0)处,档位从D档向N档被切换时(在S100中为是),电动发电机MG1、MG2的转矩输出被停止,并且发动机12的工作被停止,因此电动发电机MG1、MG2的转速Nm1、Nm2以及发动机12的转速均在时间T(0)以后随着时间的经过而降低。车辆10成为惯性行驶,并通过行驶阻力或者驾驶员的制动操作等而使车速(输出轴转速No)随时间的经过而降低。

在时间T(1)处,变速器30的输出轴转速No成为零,车辆10成为停止状态。

当在时间T(2)处,由于蓄电装置54的SOC与阈值SOC(0)相比而降低,从而判断为需要蓄电装置54的充电时(在S102中为是),输出将液压设为零的C1液压指令(S104)。在输出C1液压指令之后,离合器C1的实际液压随着时间的经过而降低。

在从输出C1液压指令之后经过了待机时间Δt之后的时间T(3)处(在S106中为是),使电动发电机MG2以预先规定的转矩进行旋转(S108)。通过使电动发电机MG2以预先规定的转矩进行旋转,从而使电动发电机MG2的转速Nm2在时间T(3)之后随着时间的经过而增加。

在时间T(4)处,当判断为变速器30的输入轴转速与输出轴转速的转速差的大小与阈值α相比而较大时(在S110中为是),由于变速器30中的动力传递切断状态处于确定,因此执行发动机12的起动控制(S112)。即,使电动发电机MG1、MG2的双方的转矩增加,并通过利用电动发电机MG2而使内啮合齿轮R0中产生反作用力转矩,并利用电动发电机MG1而使转矩作用于太阳齿轮S0,从而发动机12的转速上升

在时间T(5)处,当动机12的转速上升到能够初爆的转速时,执行点火控制以及燃料喷射控制,从而使发动机12起动。在发动机12起动的同时,通过使电动发电机MG1、MG2中产生负转矩从而执行发电动作,以使得在电动发电机MG1、MG2中产生的发电电力被供给至蓄电装置54。由此实施蓄电装置54的充电。通过开始实施蓄电装置54的充电,从而蓄电装置54的SOC随着时间的经过而增加。

<离合器C1异常时>

参照图9,设想了换档杆处于D档的情况。并设想了SOC大于阈值SOC(0)且发动机12处于工作中的情况。并且,设为如下情况,即,车辆10通过发动机12以及电动发电机MG2的动力而处于行驶中,且通过使离合器C1及制动器B2均处于卡合状态,从而在变速器30中形成了1速档。

在这种情况下,在时间T(10)处,由于在档位从D档向N档被切换时(在S100中为是),电动发电机MG1、MG2的转矩输出被停止,并且发动机12的工作被停止,因此电动发电机MG1、MG2的转速Nm1、Nm2以及发动机12的转速均在时间T(10)以后随着时间的经过而降低。车辆10成为惯性行驶,并且通过行驶阻力或者驾驶员的制动操作等而车速(输出轴转速No)随着时间的经过而降低。

在时间T(11)处,变速器30的输出轴转速成为零,从而车辆10成为停止状态。

在时间T(12)处,当由于蓄电装置54的SOC与阈值SOC(0)相比而降低从而判断为需要蓄电装置54的充电时(在S102中为是),输出将液压设为零的C1液压指令(S104)。在输出C1液压指令之后,在离合器C1异常时,即使在输出C1液压指令之后,离合器C1的实际液压也会被维持。

从输出C1液压指令起经过了待机时间Δt之后的时间T(13)处(在S106中为是),使电动发电机MG2的旋转轴中产生预先规定的转矩(S108)。

在因异常而导致离合器C1的实际液压未降低的情况下,离合器C1的卡合状态被维持。因此,变速器30的输入轴的滚动阻力变得与离合器C1正常时(即,离合器C1处于释放状态的情况下)的输入轴的滚动阻力相比而较大。此外,在使电动发电机MG2中产生转矩的情况下,动力被传递到变速器30的输出轴。在电动发电机MG2中产生的转矩为,在离合器C1处于卡合状态的情况下也限制车辆10的移动的程度的转矩,并且与离合器C1异常时(即,离合器C1处于卡合状态的情况下)的变速器30的输入轴的滚动阻力相比而较小。因此,即使电动发电机MG2的转矩被传递到变速器30的输出轴上,变速器30的输出轴转速No以及电动发电机MG2的转速Nm2也均会成为零。

在时间T(14)处,当判断为变速器30的输入轴转速与输出轴转速的转速差的大小为阈值α以下时(在S110在为否),发动机12的起动(S114)被禁止。因此,电动发电机MG2的转矩输出被停止。而且,在时间T(15)处,基于离合器C1为异常的判断结果而使车辆10的系统被停止。其结果为,由于使产生液压的电动油泵等设备停止,因此离合器C1及制动器B1的实际液压会降低。

如以上所述,根据本实施方式所涉及的车辆10,在以成为释放状态的方式对离合器C1进行控制的情况下,当使电动发电机MG2旋转时的变速器30的输入轴与输出轴的转速差的大小为阈值α以下时,由于在变速器30中空档状态处于未确定,因此抑制使用电动发电机MG1、MG2而实施的发动机12的启动。由此,能够抑制通过实施发动机12的启动而使电动发电机MG1、MG2的转矩被传递至变速器30的输出轴的情况。其结果为,能够抑制振动或噪声的产生。并且,能够在不另外设置对离合器C1状态进行检测的传感器的状态下,高精度地对是否处于空档状态进行判断。因此,能够抑制成本的增加,并且能够提供一种高精度地对变速器的动力传递切断状态是否处于确定进行判断的车辆。

并且,在对空档状态是否处于确定进行判断时,以产生与车辆10的滚动阻力相比而较低的转矩的方式对电动发电机MG2进行控制。因此,即使在电动发电机MG2的控制时,空档状态处于未确定,也能够抑制车辆10的移动,并且抑制振动或噪声的产生。

并且,以使发动机12的输出轴向正转方向旋转的方式对电动发电机MG2的工作进行控制。因此,由于在发动机的启动时,无需使电动发电机MG2反向旋转,因此能够抑制由于反向旋转而导致的撞齿声等的产生。

并在从以成为释放状态的方式开始进行离合器C1的控制起经过了根据油温而设定的待机时间Δt之后,开始进行电动发电机MG2的控制。因此,通过在被推断为空档状态处于确定时的时刻使电动发电机MG2的旋转轴旋转,从而能够高精度地对空档状态是否处于确定进行判断。

并且,通过维持制动器B2的卡合状态,从而能够抑制在单向离合器F1向能够旋转的方向旋转的状态下计算出变速器的输入轴的转速与输出轴的转速之差。因此,能够抑制空档状态是否处于确定的误检测。

下面对本实施方式的改变例进行说明。虽然在本实施方式中,作为在处于N档时且车辆10停止时将离合器C1切断时,在蓄电装置54的充电前利用电动发电机MG2而使变速器30的输入轴旋转的情况而进行了说明,但也可以在车辆10的行驶中将离合器C1切断,其并不特别限定于在N档或车辆10停止时执行。

虽然在本实施方式中,作为基于变速器30的油温而对待机时间Δt进行计算的情况而进行了说明,但是,例如也可以基于电动发电机MG1、MG2的温度而计算出待机时间Δt。

虽然在本实施方式中,作为在控制装置60中执行上述的一系列的控制处理的情况而进行了说明,但是,例如也可以在控制装置60中的HV-ECU70中执行上述的一系列控制处理,也可以由其他的ECU来执行,还可以以使多个ECU协同工作的方式来执行。

虽然在本实施方式中,作为在变速器30的输入轴的转速与输出轴的转速的转速差的大小为阈值α以下时禁止发动机12的起动的情况而进行了说明,但是,例如也可以采用如下方式,即,相对于以将离合器C1设为切断状态的情况为前提的发动机12的起动的要求,而对发动机12的起动进行抑制,并且在之后接受以将离合器C1设为卡合状态的情况为前提的发动机12的起动的要求的情况下,实施发动机12的起动。

并且,虽然在本实施方式中,作为一个示例而对如下的结构进行了说明,但并不特别地限定于这种结构,所述结构为,在变速器30的输入轴上连结有差动部20,且在差动部20中电动发电机MG1、MG2以及发动机12各自经由动力分配装置24而被连结的结构。例如,可以是如下结构,即,在变速器30的输入轴上连结一个电动发电机的旋转轴,并在电动发电机的旋转轴上经由离合器而连结发动机的输出轴的结构。

并且,虽然在本实施方式中,作为一个示例而对如下结构进行了说明,但并不特别地限定于这种结构,所述结构为,电动发电机MG1的旋转轴被连接于构成动力分配装置24的行星齿轮的太阳齿轮S0,发动机12的输出轴被连接于行星齿轮架CA0,电动发电机MG2被连接于内啮合齿轮R0的结构。

例如,只要是如下结构即可,即,发动机12的输出轴被连接于太阳齿轮S0、行星齿轮架CA0以及内啮合齿轮R0中的任意一个上,电动发电机MG2的旋转轴被连接于太阳齿轮S0、行星齿轮架CA0以及内啮合齿轮R0中的任意一个上。

例如,可以是如下结构,即,电动发电机MG2被连接于太阳齿轮S0上,发动机12和电动发电机MG1被连接于内啮合齿轮R0上,变速器30的输入轴被连接于行星齿轮架CA0上。

另外,上述的改变例也可以对其全部或一部分进行组合而实施。应了解在此次公开的实施方式的所有的点为例示,而不是进行限制的内容。本发明的范围并不是通过上述的说明而是通过权利要求书来表示,并且包括与权利要求均等的意思以及范围内的全部的变更。

符号说明

10车辆;12发动机;14发动机转速传感器;15变速部;20差动部;22输入轴;24动力分配装置;26传递部件;27MG1转速传感器;28MG2转速传感器;30变速器;32、34行星齿轮;36输出轴;37输出轴转速传感器;42差动齿轮装置;44驱动轮;52逆变器;54蓄电装置;60控制装置;62发动机ECU;64MG-ECU;66电池ECU;68ECT-ECU;71通信线;100档位判断部;102充电判断部;104离合器控制部;106MG控制部;108转速差判断部;110发动机起动控制部;112充电控制部。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1