用于混合动力车辆的EV模式换挡策略的制作方法

文档序号:11609044阅读:353来源:国知局
用于混合动力车辆的EV模式换挡策略的制造方法与工艺

本公开涉及混合动力车辆和用于混合动力车辆的变速器换挡策略。



背景技术:

当混合动力车辆在纯电动(ev)操作模式下操作时,混合动力车辆中的马达/发电机的可用输出功率可能会受到限制。这种功率限制可能是由于当车辆从ev操作模式转换到混合动力模式或纯发动机模式时保留启动内燃发动机所需的一定量的能量的需要而引起的。



技术实现要素:

一种车辆包括发电机、电池、变速器和控制器。发电机被构造为当发电机转速在阈值转速以上时,以最大输出功率对电池进行再充电。变速器被构造为在再生制动期间降挡,使得发电机转速保持在阈值转速以上。控制器被配置为响应于与保持最大输出功率所需的发电机转速的降低对应的电池温度的降低,而减小阈值转速。

一种车辆包括发电机、电池、变速器和控制器。发电机被构造为当发电机转速在阈值转速以上时以最大输出功率对电池进行再充电。变速器被构造为在再生制动期间降挡,使得发电机转速保持在阈值转速以上。控制器被配置为响应于与保持最大输出功率所需的发电机转速的增加对应的电池温度的增加,而增大阈值转速。

根据本发明的一个实施例,所述阈值转速在发电机的恒定最大输出功率区域内。

根据本发明的一个实施例,所述阈值转速在发电机的恒定最大输出扭矩区域内。

根据本发明的一个实施例,控制器还被配置为响应于变速器的期望的降挡与系统振动对应,保持变速器的当前挡位。

根据本发明的一个实施例,控制器还被配置为响应于变速器的期望的升挡与发电机的转速降低到操作变速器流体泵以保持最小变速器流体压力所需的最小转速以下对应,保持变速器的当前挡位。

一种车辆包括电机、电池、变速器和控制器。电机被构造为在再生制动期间对电池进行再充电。变速器被构造为在再生制动期间换挡以保持与最大输出功率区域的下阈值转速对应的最小电机转速。控制器被配置为响应于与保持最大输出功率所需的电机转速的降低对应的电池温度降低,而减小所述下阈值转速。

根据本发明的一个实施例,所述下阈值转速在电机的恒定最大输出扭矩区域内。

根据本发明的一个实施例,变速器被构造为在再生制动期间降挡,以使电机的转速增加,使得电机转速保持在所述下阈值转速以上。

根据本发明的一个实施例,控制器还被配置为响应于变速器的期望的降挡与系统振动对应,保持变速器的当前挡位。

根据本发明的一个实施例,变速器被构造为如果电机的转速超过所述下阈值转速一个可允许的偏差,则在再生制动期间升挡,以降低电机的转速,使得电机的转速和所述下阈值转速之差小于所述可允许的偏差,并且使电机的转速保持在所述下阈值转速以上。

根据本发明的一个实施例,控制器还被配置为响应于变速器的期望升挡与电机的转速降低到操作变速器流体泵以保持最小变速器流体压力所需的最小转速以下对应,保持变速器的当前挡位。

附图说明

图1是混合动力电动车辆的示例性动力传动系的示意图;

图2是示出了在第一电池温度下电机的最大输出扭矩和可用输出扭矩两者的示例性曲线图;

图3是示出了在第一电池温度下电机的最大输出功率和可用输出功率两者的示例性曲线图;

图4是示出了在第二电池温度下电机的最大输出扭矩和可用输出扭矩两者的示例性曲线图;

图5是示出了在第二电池温度下电机的最大输出功率和可用输出功率的示例性曲线图;

图6是示出了当混合动力车辆在ev模式下操作时混合动力车辆中的变速器换挡的方法的流程图;和

图7是示出了在再生制动事件期间变速器换挡的方法的流程图。

具体实施方式

在此描述本公开的实施例。然而,应理解,公开的实施例仅为示例,其它实施例可采取各种和替代的形式。附图无需按比例绘制;可夸大或最小化一些特征以显示特定部件的细节。因此,在此公开的具体结构和功能细节不应解释为限制,而仅作为用于教导本领域技术人员以多种形式利用本公开的代表性基础。如本领域的普通技术人员将理解的,参考任一附图示出和描述的各种特征可与一个或更多个其它附图中示出的特征结合,以产生未明确示出或描述的实施例。示出的特征的组合为典型应用提供代表性实施例。然而,与本公开的教导一致的特征的各种组合和变型可以期望用于特定应用或实施方式。

参照图1,示出了根据本公开的实施例的混合动力电动车辆(hev)10的示意图。图1示出了部件之间的代表性关系。部件在车辆内的物理布局和方位可以变化。hev10包括动力传动系12。动力传动系12包括驱动传动装置16的发动机14,传动装置16可以被称为模块化混合动力传动装置(mht)。如将要在下面进一步详细描述的,传动装置16包括诸如电动马达/发电机(m/g)18的电机、关联的牵引电池(b)20、变矩器22以及多级阶梯传动比自动变速器或者齿轮箱24。

发动机14和m/g18都是hev10的驱动源。发动机14通常代表动力源,动力源可包括内燃发动机(诸如由汽油、柴油或天然气驱动的发动机)或者燃料电池。发动机14产生发动机功率和相应的发动机扭矩,当位于发动机14与m/g18之间的分离离合器26至少部分地接合时,发动机扭矩被供应到m/g18。m/g18可由多种类型的电机中的任何一种来实施。例如,m/g18可以是永磁同步电机。如将在下面描述的,电力电子器件将由电池20提供的直流(dc)电力调节至m/g18需求的电力。例如,电力电子器件可向m/g18提供三相交流电(ac)。

当分离离合器26至少部分地接合时,动力可从发动机14流到m/g18或从m/g18流到发动机14。例如,分离离合器26可接合并且m/g18可作为发电机运转,以将由曲轴28和m/g轴30提供的旋转能转换为电能存储在电池20中。分离离合器26还可分离,以使发动机14与动力传动系12的其余部分断开,从而m/g18可充当hev10的唯一的驱动源。轴30延伸穿过m/g18。m/g18持续可驱动地连接到轴30,然而仅在分离离合器26至少部分地接合时,发动机14才可驱动地连接到轴30。

m/g18经由轴30连接到变矩器22。当分离离合器26至少部分地接合时,变矩器22因而连接到发动机14。变矩器22包括固定到m/g轴30的泵轮和固定到变速器输入轴32的涡轮。因此变矩器22在轴30和变速器输入轴32之间提供液力耦合。当泵轮转速高于涡轮时,变矩器22将动力从泵轮传输至涡轮。涡轮扭矩和泵轮扭矩的大小通常取决于相对转速。当泵轮和涡轮的转速比足够高时,涡轮扭矩是泵轮扭矩的数倍。还可设置变矩器旁通离合器(也称为变矩器锁止离合器)34,在变矩器旁通离合器34接合时,变矩器旁通离合器34使变矩器22的泵轮和涡轮摩擦地或机械地结合,从而允许更有效地传递动力。变矩器旁通离合器34可作为起步离合器操作,以提供平稳的车辆起步。替代地或相结合地,对于不包括变矩器22或变矩器旁通离合器34的应用而言,可在m/g18与齿轮箱24之间设置与分离离合器26相似的起步离合器。在一些应用中,分离离合器26通常被称作上游离合器,而起步离合器34(可以是变矩器旁通离合器)通常被称作下游离合器。

齿轮箱24可包括齿轮组(未示出),该齿轮组通过诸如离合器和制动器(未示出)的摩擦元件的选择性接合而被选择性地置于不同的传动比,以建立期望的多个离散传动比或阶梯传动比。通过换挡计划能够控制摩擦元件,该换挡计划使齿轮组的某些元件连接和断开连接来控制变速器输出轴36与变速器输入轴32之间的传动比。相关联的控制器(例如,动力传动系控制单元(pcu))基于各种车辆操作状况和周围的操作条件使齿轮箱24从一个传动比自动地换挡到另一个传动比。然后,齿轮箱24向输出轴36提供动力传动系输出扭矩。

应理解的是,与变矩器22一起使用的液压控制的齿轮箱24仅仅是齿轮箱或变速器布置的一个示例;接收来自发动机和/或马达的输入扭矩然后以不同传动比将该扭矩提供至输出轴的任何多级传动比齿轮箱用于本公开的实施例都是可接受的。例如,齿轮箱24可由自动机械式(或手动)变速器(amt)实施,该amt包括一个或更多个伺服马达以沿拨叉导轨(shiftrail)平移/旋转换挡拨叉,从而选择期望的传动比。如本领域的普通技术人员通常理解的,amt可用在(例如)具有较高扭矩需求的应用中。

如图1的代表性实施例所示,输出轴36连接到差速器40。差速器40经由连接到差速器40的各自的车轴44驱动一对车轮42。差速器在允许轻微的转速差异的同时(例如,在车辆转弯时)向每个车轮42传递大体上相等的扭矩。不同类型的差速器或类似的装置可用于将扭矩从动力传动系分配到一个或更多个车轮。在一些应用中,扭矩分配可根据(例如)特定的操作模式或条件而变化。

动力传动系12还包括关联的控制器(c)50(例如动力传动系控制单元(pcu))。虽然示出为一个控制器,但是控制器50可以是更大的控制系统的一部分并且可由遍布车辆10的各种其它控制器(例如,车辆系统控制器(vsc))来控制。因此,应理解的是,动力传动系控制单元50和一个或更多个其它的控制器能够统称作“控制器”,该“控制器”响应于来自各种传感器的信号而控制各种致动器,以控制多个功能,诸如启动/停止发动机14、运转m/g18以提供车轮扭矩或给电池20充电、选择或规划变速器换档等。控制器50可包括与各种类型的计算机可读存储装置或介质通信的微处理器或中央处理单元(cpu)。计算机可读存储装置或介质可包括例如只读存储器(rom)、随机存取存储器(ram)和保活存储器(kam,keepalivememory)形式的易失性存储器和非易失性存储器。kam是一种可用于在cpu断电时存储各种操作变量的持久性存储器或非易失性存储器。计算机可读存储装置或介质可采用若干种已知的存储装置(例如,prom(可编程只读存储器)、eprom(电可编程只读存储器)、eeprom(电可擦除可编程只读存储器)、闪速存储器或能够存储数据(这些数据中的一些代表由控制器在控制发动机或车辆时所使用的可执行指令)的任何其它电的、磁的、光学的或它们相结合的存储装置)中的任意存储装置来实现。

控制器经由输入/输出(i/o)接口与各种发动机/车辆传感器和致动器通信,该i/o接口可实现为提供各种原始数据或信号调节、处理和/或转换、短路保护等的单独集成接口。替代地,一个或更多个专用的硬件或固件芯片可用于在特定的信号被供应到cpu之前调节并处理所述特定的信号。如图1的代表性的实施例通常示出的,控制器50可将信号发送到发动机14、分离离合器26、m/g18、电池20、起步离合器34、变速器齿轮箱24和电力电子器件56和/或从上述部件接收信号。虽然没有明确地示出,但是本领域的普通技术人员将认识到位于以上标示的每个子系统中的由控制器50控制的各种功能或组件。可利用由控制器执行的控制逻辑直接或间接地致动的参数、系统和/或组件的代表性示例包括燃料喷射正时、速率、持续时间、节气门位置、火花塞点火正时(针对火花点火式发动机)、进气门/排气门正时和持续时间、前端附件驱动(fead)组件(诸如交流发电机)、空调压缩机、电池充电或放电(包括确定最大充电极限和放电极限)、再生制动、m/g操作、用于分离离合器26、起步离合器34以及变速器齿轮箱24的离合器压力等。经由i/o接口的传感器通信输入可用于指示(例如)涡轮增压器增压压力、曲轴位置(pip)、发动机转速(rpm)、车轮转速(ws1、ws2)、车速(vss)、冷却液温度(ect)、进气歧管压力(map)、加速踏板位置(pps)、点火开关位置(ign)、节气门位置(tp)、空气温度(tmp)、废气氧(ego)或其它废气组分浓度或存在性、进气流量(maf)、变速器挡位、变速器传动比或模式、变速器油温(tot)、变速器涡轮转速(ts)、变矩器旁通离合器34状态(tcc)、减速或换挡模式(mde)、电池温度、电压、电流或荷电状态(soc)。

由控制器50执行的控制逻辑或功能可通过流程表或类似的图表在一个或更多个图中表示。这些图提供可使用一个或更多个处理策略(例如,事件驱动、中断驱动、多任务、多线程等)实现的代表性控制策略和/或逻辑。如此,示出的一些步骤或功能可以以示出的顺序执行、并行执行或在一些情况下被省略。虽然不总是明确地示出,但是本领域的普通技术人员将意识到,一个或更多个示出的步骤或功能可根据正在使用的特定的处理策略而重复地执行。类似地,不一定需要所述的处理顺序来获得在此描述的特点和优势,提供这样的处理顺序是为了便于说明和描述。控制逻辑可以主要以软件实施,该软件由基于微处理器的车辆、发动机和/或动力传动系控制器(例如,控制器50)执行。当然,控制逻辑可根据特定的应用以一个或更多个控制器中的软件、硬件或软件与硬件的结合实施。当以软件实施时,控制逻辑可设置在一个或更多个计算机可读存储装置或介质中,该计算机可读存储装置或介质存储了代表由计算机执行以控制车辆或其子系统的指令或代码的数据。计算机可读存储装置或介质可包括若干已知的物理装置中一个或更多个,所述若干物理装置采用电的、磁的和/或光学的存储器来保存可执行的指令和相关的校准信息、操作变量等。

车辆的驾驶员可使用加速踏板52来提供需要的扭矩、动力或驱动命令以推进车辆。通常,踩下和释放踏板52产生分别可被控制器50解读成需要增大或减小动力的加速踏板位置信号。至少基于来自踏板的输入,控制器50命令来自发动机14和/或m/g18的扭矩。控制器50还控制齿轮箱24中的换挡正时以及分离离合器26与变矩器旁通离合器34的接合或分离。与分离离合器26一样,变矩器旁通离合器34能够在接合位置与分离位置之间的范围内调节。除了由泵轮与涡轮之间的液力耦合产生可变打滑之外,上述调节在变矩器22中也产生可变打滑。替代地,根据特定的应用,变矩器旁通离合器34可操作为锁止或分离,而不使用调节的操作模式。

为了利用发动机14驱动车辆,分离离合器26至少部分地接合,以通过分离离合器26将发动机扭矩的至少一部分传递给m/g18,然后从m/g18经过变矩器22和齿轮箱24继续传递。m/g18可通过提供额外的动力使轴30转动来辅助发动机14。这种操作模式可被称作“混合动力模式”或“电动辅助模式”。

为了利用m/g18作为唯一动力源驱动车辆,除了分离离合器26使发动机14与动力传动系12的其余部分断开以外,功率流保持不变。在此期间,发动机14中的燃烧可被禁止或者以其他方式关闭发动机以节省燃料。牵引电池20通过线路54向可包括(例如)逆变器的电力电子器件56传递所存储的电能。电力电子器件56将来自电池20的dc电压转换为供m/g18使用的ac电压。控制器50命令电力电子器件56将来自电池20的电压转换为提供到m/g18的ac电压,以向轴30提供正扭矩或负扭矩。这种操作模式被称作“纯电动”或“ev”操作模式。

在任何操作模式中,m/g18可作为马达并提供用于动力传动系12的驱动力。或者,m/g18可作为发电机并将来自动力传动系12的动能转换为电能存储在电池20中。m/g18可在(例如)发动机14提供用于车辆10的推进动力时作为发电机。此外,在再生制动期间m/g18可用作发电机,在再生制动中,来自旋转车轮42的旋转(或运动)能量或功率经由齿轮箱24回传并被转换成电能而储存在电池20中。

应理解的是,图1中示出的示意图仅仅是示例性的而并未意图限制。可考虑采用发动机与马达两者的选择性接合来通过变速器传递动力的其它构造。例如,m/g18可相对于曲轴28偏置,可设置额外的马达来启动发动机14,和/或m/g18可设置在变矩器22与齿轮箱24之间。在不脱离本公开的范围的情况下,可考虑其它构造。

图2至图5表示基于电池20在不同温度下的放电极限,相对于m/g18的转速而言的m/g18的扭矩产生能力和功率容量。图2和图3分别表示在第一电池温度下m/g18的扭矩产生能力和功率容量。图4和5分别表示在第二电池温度下m/g18的扭矩产生能力和功率容量。当电池温度在某一温度范围内时,m/g18的扭矩产生能力和功率容量将朝向最大值增加。为了证实这种关系,图2和图3中示出的电池温度落在这样的电池温度区域内,即,该电池温度区域与相对于图4和图5中示出的第二电池温度而言m/g18的扭矩产生能力和功率容量的增加了的值对应。图2和图3中示出的第一电池温度的温度值可大于图4和图5中示出的电池温度的温度值。具体地,图2和图3中的电池温度可以是大约70°f,而图4和图5中的电池温度可以是大约20°f。然而,应当理解,图2至图5中的曲线图仅用于示例性目的,以表明m/g18的扭矩产生能力和功率容量将根据电池温度而改变。

参照图2,示出了描述当hev10以ev模式操作时在第一电池温度下m/g18的最大输出扭矩和可用输出扭矩的示例性曲线图。曲线图的横轴表示m/g18的转速,而曲线图的纵轴表示m/g18的扭矩。相对于m/g18的转速的m/g18的最大输出扭矩由线60表示。相对于m/g18的转速的m/g18的可用输出扭矩由线62表示。可用输出扭矩62是最大输出扭矩60与当hev10从ev模式转换到纯发动机模式或混合动力模式时利用m/g18重启发动机14所需的保留扭矩之间的差。m/g18的扭矩可以在m/g18的较低转速的范围内保持相对恒定。该范围可以称为m/g18的恒定输出扭矩区域或恒定最大输出扭矩区域64。一旦m/g18的转速超过恒定最大输出扭矩区域64的阈值,扭矩便随着m/g18的转速增加而逐渐减小。该范围可以称为非恒定输出扭矩区域66。

参照图3,示出了描述当hev10以ev模式操作时在第一电池温度下m/g18的最大输出功率和可用输出功率的示例性曲线图。曲线图的横轴表示m/g18的转速,而曲线图的纵轴表示m/g18的输出功率。相对于m/g18的转速而言的m/g18的最大输出功率由线68表示。m/g18的最大输出功率是m/g18的功率极限、电池20的功率限制以及混合动力电气系统的其它部件(例如,电力电子器件56)的功率极限的函数。相对于m/g18的转速而言的m/g18的可用输出功率由线70表示。可用输出功率70是最大输出功率68与当hev10从ev模式转换到纯发动机模式或混合动力模式时利用m/g18重启发动机14所需的保留功率之间的差。

m/g18的最大输出功率68可以在m/g18的较高转速的范围内保持相对恒定。该范围可以称为m/g18的恒定最大输出功率区域72。在m/g18的转速进入恒定最大输出功率区域72之前,m/g18的最大输出功率68随着m/g18的转速增加而逐渐增加,直到达到阈值转速,所述阈值转速对应于进入恒定最大输出功率区域72时的转速。这种范围可以称为非恒定输出功率区域74。

m/g18的可用输出功率70随着m/g18的转速从零增加到峰值76而逐渐增加。在m/g18的转速峰值76处,可用输出功率70达到最大值。随着m/g18的转速在峰值76之上增加,m/g18的可用输出功率70开始逐渐减小。m/g18的在峰值76附近并且包括峰值76的转速范围可以对应于m/g18的可用输出功率的峰值范围78。当m/g18在ev模式下操作时,峰值范围78可以对应于m/g18的期望的转速范围,以增加m/g18的输出功率。图3中示出的峰值范围78可以扩大或变窄,但应包括可用输出功率70的最大值。

参照图4,示出了描述当hev10以ev模式操作时在第二电池温度下m/g18的最大输出扭矩和可用输出扭矩二者的示例性曲线图。曲线图的横轴表示m/g18的转速,而曲线图的纵轴表示m/g18的扭矩。相对于m/g18的转速而言的m/g18的最大输出扭矩由线80表示。相对于m/g18的转速而言的m/g18的可用输出扭矩由线82表示。可用输出扭矩82是最大输出扭矩80与当hev10从ev模式转换到纯发动机模式或混合动力模式时利用m/g18重启发动机14所需的保留扭矩之间的差。m/g18的扭矩可以在m/g18的较低转速范围内保持相对恒定。该范围可以被称为m/g18的恒定输出扭矩区域或恒定最大输出扭矩区域84。一旦m/g18的转速超过恒定最大输出扭矩区域84的阈值,扭矩则随着m/g18的转速增加而逐渐减小。该范围可以称为非恒定输出扭矩区域86。

应当注意,图4中示出的恒定最大输出扭矩区域84小于图2中示出的恒定最大输出扭矩区域64。这表明m/g18的扭矩产生能力随着电池温度变化而变化。在图2和图4的具体示例中,随着m/g18的转速增加,m/g18在第二温度(较低温度)下的扭矩产生能力比第一温度下的扭矩产生能力小。

参照图5,示出了描绘当hev10以ev模式操作时在第二电池温度下的m/g18的最大输出功率和可用输出功率的示例性曲线图。曲线图的横轴表示m/g18的转速,而曲线图的纵轴表示m/g18的输出功率。相对于m/g18的转速而言的m/g18的最大输出功率由线88表示。相对于m/g18的转速而言的m/g18的可用输出功率由线90表示。可用输出功率90是最大输出功率88与当hev10从ev模式转换到纯发动机模式或混合动力模式时利用m/g18重启发动机14所需的保留功率之间的差。

m/g18的最大输出功率88可以在m/g18的较高转速的范围内保持相对恒定。该范围可以称为m/g18的恒定最大输出功率区域92。在m/g18的转速进入恒定最大输出功率区域92之前,m/g18的最大输出功率88随着m/g18的转速增加而逐渐增加,直到达到阈值转速,所述阈值转速对应于进入恒定最大输出功率区域92时的转速。这种范围可以称为非恒定输出功率区域94。

m/g18的可用输出功率90随着m/g18的转速从零增加到峰值96而逐渐增加。在m/g18的转速峰值96处,可用输出功率90达到最大值。随着m/g18的转速在峰值96之上增加,m/g18的可用输出功率90开始逐渐减小。m/g18的在峰值96附近并且包括峰值96的转速范围可对应于m/g18的可用输出功率的峰值范围98。当m/g18以ev模式操作时,峰值范围98可对应于m/g18的期望的转速范围,以增加m/g18的输出功率。图5中示出的峰值范围98可以扩大或变窄,但应包括可用输出功率90的最大值。

应当注意,图5示出的m/g18的最大输出功率88和可用输出功率90分别小于图3示出的最大输出功率68和可用输出功率70。这表明m/g18的功率容量随着电池温度的变化而变化。在图3和图5的具体示例中,在m/g18的相应转速处,m/g18在第二温度(较低温度)下的功率容量比第一温度下的功率容量小。

参照图6,描绘了示出当hev10在ev模式下操作时使hev10的变速器(即,齿轮箱24)换挡的方法100的流程图。控制器50可向齿轮箱24发出指令以执行换挡方法100,该换挡方法100可作为控制逻辑或算法存储在控制器50的存储器内。方法100包括调整齿轮箱24的换挡计划以使m/g18的转速朝向与m/g18的可用输出功率的峰值范围(例如上文讨论的峰值范围78、98)相对应的范围移动。调整换挡计划以使m/g18的转速朝向与可用输出功率的峰值范围相对应的范围移动可包括:响应于所需要的m/g18的功率超过m/g18的可用输出功率而使齿轮箱24换挡以增加m/g18的可用输出功率。

方法100在开始框102处开始。方法100可在hev10进入ev模式时开始。方法100在开始框102开始后,在步骤104处确定驾驶员需求功率。接下来,在步骤106处确定m/g18的可用输出功率。在步骤106处,m/g18的可用输出功率可利用如上所述的作为最大输出功率与使用m/g18重启发动机14所需的保留功率之差的m/g18的可用输出功率来确定。m/g18的可用输出功率和最大输出功率均可以是如上参照图3和图5所述的电池20的温度的函数。然而,应当理解,图3和图5仅用于示例性目的,并且m/g18的可用输出功率和最大输出功率可以是更宽阵列的操作温度的函数。

一旦确定了m/g18的可用输出功率和驾驶员需求功率,该方法便前进到步骤108,在步骤108处确定驾驶员需求功率是否超过m/g18的可用输出功率。如果驾驶员需求功率没有超过m/g18的可用输出功率,则方法100前进到命令齿轮箱24保持在当前挡位的步骤110。

如果驾驶员需求功率超过m/g18的可用输出功率,则方法100前进到步骤112,在步骤112处确定齿轮箱24降挡是否会使m/g18的转速增大到导致m/g18的转速超过阈值转速,所述阈值转速与m/g18的落在阈值以下的可用输出功率对应(例如,在步骤112处确定降挡是否会使m/g18的转速超过上阈值进而导致可用输出功率降低并落在峰值范围之外)。

如果在步骤112处确定齿轮箱24降挡不会使m/g18的转速增大到导致m/g18的转速超过阈值转速而导致m/g18的可用输出功率落在阈值以下,则方法100前进到步骤114,在步骤114处确定使齿轮箱24降挡是否会引起任何噪声、振动或声振粗糙度(nvh)问题。如果确定使齿轮箱24降挡会引起nvh问题,则方法100前进到命令齿轮箱24保持在当前挡位的步骤110。如果确定使齿轮箱24降挡不会引起任何nvh问题,则方法100前进到命令齿轮箱24降挡的步骤116。

可选地,关于降挡,可响应于m/g18的转速降低到阈值以下进而导致m/g18的可用输出功率落在峰值范围之外,使齿轮箱24降挡以增加m/g18的转速。在该替代的实施例中,当hev10进入ev模式时调整换挡计划,以包括:响应于m/g18的转速降低到阈值以下导致可用输出功率落在峰值范围之外,而使齿轮箱24降挡以增加m/g18的转速(因此增加m/g18的可用输出功率,使m/g18的可用输出功率朝向峰值范围移动)。如上面图2和图4所述,在降挡发生之前m/g18需要降低到的阈值转速可在m/g18的恒定最大输出扭矩区域内或接近该恒定最大输出扭矩区域。

返回到步骤112,如果确定齿轮箱24降挡会使m/g18的转速增大到导致m/g18的转速超过阈值转速而导致m/g18的可用输出功率降低到阈值以下,则方法100前进到步骤118。在步骤118处,确定齿轮箱24升挡是否会使m/g18的转速降低到导致m/g18的转速将低于阈值转速,所述阈值转速对应于m/g18的降低到阈值以下的可用输出功率(例如,在步骤118处确定升挡是否会使m/g18的转速降低到下阈值以下进而导致可用输出功率降低并落在峰值范围之外)。

如果在步骤118处确定使齿轮箱24升挡不会使m/g18的转速降低到导致m/g18的转速降低到阈值转速以下,其中所述阈值转速对应于m/g18的降低到阈值以下的可用输出功率,则方法100前进到步骤120,在步骤120处确定基于期望的升挡的齿轮箱24升挡是否会导致变速器流体泵降低到最小转速以下,该最小转速是保持用以操作齿轮箱24内的离合器、活塞和其它液压操作部件的最小变速器流体压力所需的转速。如果确定齿轮箱24升挡会导致变速器流体泵降低到最小转速以下,则方法100前进到命令齿轮箱24保持在当前挡位的步骤110。如果确定齿轮箱24升挡不会使变速器流体泵降低到最小转速以下,则方法100前进到命令齿轮箱24升挡的步骤122。

返回到步骤118,如果确定齿轮箱24升挡会使m/g18的转速降低到导致m/g18的转速将降低到阈值以下进而导致m/g18的可用输出功率降低到阈值以下,则方法100前进到命令齿轮箱24保持在当前挡位的步骤110。

可选地,关于升挡,可响应于m/g18的转速超过阈值进而导致m/g18的可用输出功率落在峰值范围之外,而使齿轮箱24升挡以降低m/g18的转速。在该替代的实施例中,当hev10进入ev模式时调整换挡计划,以包括:响应于m/g18的转速超过阈值导致可用输出功率落在峰值范围之外,而使齿轮箱24升挡以降低m/g18的转速(因此增加m/g18的可用输出功率以使m/g18的可用输出功率朝向峰值范围移动)。如上根据图3和图5所述,m/g18在升挡发生之前需要超过的阈值转速可在m/g18的恒定最大输出功率区域内或接近恒定最大输出功率区域。

只要hev10在ev模式下操作,方法100便可如上所述继续操作。一旦hev10转变到混合动力操作模式或纯发动机操作模式,则方法100结束。

图6示出的方法100仅用于示出的目的。本公开应当被解释为包括一些步骤可重新排列或省略的方法100的实施例。

参照图7,示出了在再生制动事件期间使hev10的变速器(即,齿轮箱24)换挡的方法200的流程图。控制器50可向齿轮箱24发出执行换挡方法200的指令,换挡方法200可作为控制逻辑或算法存储在控制器50的存储器内。方法200包括在再生制动事件期间调整齿轮箱24的换挡计划以使m/g18的转速朝向最大输出功率区域(比如,上述最大输出功率区域72、92)移动。

方法200在开始框202开始。方法200可在hev10开始制动(包括再生制动)时开始。在方法200在开始框202开始后,在步骤204处确定需要的制动功率。然后,方法200前进到步骤206,在步骤206处确定m/g18(在再生制动期间,m/g18可用于对电池200进行再充电)的最大输出功率。m/g18的最大输出功率可基于电池20的温度。如上所述的最大输出功率区域将随着电池温度的变化而变化。例如,图3中示出的处于第一温度的最大输出功率区域高于图5中处于第二温度的最大输出功率区域。然而,应当理解,图3和图5仅仅是出于示例性目的,最大输出功率区域可以是更宽阵列的操作温度的函数。一旦确定m/g18的需要的制动功率和最大输出功率,方法200便前进到步骤208,在步骤208处确定是否存在任何nvh或其它损失/约束问题。如果没有nvh或其它损失/约束问题,则方法200前进到步骤210。

在步骤210处,方法200确定m/g18的最大输出功率是否小于需要的制动功率。如果m/g18的最大输出功率不小于需要的制动功率,则方法200前进到命令齿轮箱24保持在当前挡位的步骤212。如果m/g18的最大输出功率小于需要的制动功率,则方法前进到步骤214,在步骤214处确定使齿轮箱24降挡是否会由于m/g18的转速太高而引起任何噪声、振动或声振粗糙度(nvh)问题。如果确定使齿轮箱24降挡会引起nvh问题,则方法200前进到命令齿轮箱24保持在当前挡位的步骤212。如果确定齿轮箱24降挡不会引起任何nvh问题,则方法200前进到命令齿轮箱24降挡的步骤216。

可选地,关于再生制动期间的降挡,由于m/g18的转速降低到阈值以下进而导致最大输出功率降低到恒定最大输出功率区域之外,则可使齿轮箱24降挡。在该可选的实施例中,换挡计划包括:响应于m/g18的转速降低到阈值以下导致m/g18的最大输出功率降低到阈值以下并且落在恒定最大输出功率区域之外,而使齿轮箱24降挡以增加m/g18的转速(因此增加m/g18的最大输出功率)。如上根据图2和图4所述,在降挡发生前m/g18需要降低到的阈值转速可在m/g18的恒定最大输出扭矩区域内或者在m/g18的恒定最大输出扭矩区域以下的范围内。

返回到步骤208,如果确定存在nvh或其它损失/约束问题,则方法200前进到步骤218,在步骤218处确定齿轮箱24升挡是否会使m/g18的最大输出功率小于需要的制动功率。如果在步骤218处确定齿轮箱24升挡会使m/g18的最大输出功率小于需要的制动功率,则方法200返回到步骤210,然后遵循如上所述的从步骤210开始的过程。

如果在步骤218处确定齿轮箱24升挡不会使m/g18的最大输出功率小于需要的制动功率,则方法200前进到步骤220,在步骤220处确定齿轮箱24升挡是否会使变速器流体泵降低到最小转速以下,该最小转速是保持用以操作离合器、活塞和齿轮箱24内的其它液压操作部件的最小变速器流体压力所需的转速。如果确定齿轮箱24升挡会使变速器流体泵降低到最小转速以下,则方法200返回到步骤210,然后遵循如上所述的从步骤210开始的过程。如果确定齿轮箱24升挡不会使变速器流体泵降低到最小转速以下,则方法200前进到命令齿轮箱24升挡的步骤222。

在步骤218、220和222之后发生升挡之前,m/g18的转速和保持m/g18的最大输出功率所需的阈值转速之间的差必须在可能发生升挡(这将使m/g18的转速下降)之前超过可允许的偏差。此外,一旦发生升挡,m/g18的转速应保持在保持m/g18的最大输出功率所需的阈值转速以上。

只要hev10通过再生制动进行制动,方法200便可如上所述继续操作。一旦再生制动停止,方法200将结束。

图7中所描述的方法200仅出于示出的目的。本公开应被解释为包括一些步骤可被重新排列或省略的方法200的实施例。

应当理解,图1中的混合动力车辆配置只是示例性的,并非意图限制。在此所描述的公开内容可适用于电动车辆以及包括为车辆提供驱动动力并向多阶梯传动比自动变速器提供输入功率的电机的其它混合动力车辆配置。应被解释为在此公开的其它混合动力车辆配置和电动车辆配置包括串联式混合动力车辆、并联式混合动力车辆、串-并联式混合动力车辆、功率分流式混合动力车辆、插电式混合动力电动车辆(phev)、燃料电池式混合动力车辆、电池供电式电动车辆(bev)或本领域技术人员已知的任何其它混合动力或电动车辆配置。

在说明书中使用的词语是描述性词语而非限制性词语,应该理解,在不脱离本公开的精神和范围的情况下能够进行各种变化。如前所述,各个实施例的特征可组合,以形成本发明可能没有明确描述或说明的进一步的实施例。虽然各个实施例能被描述为在一个或更多个期望特性方面优于其它实施例或现有技术实施方式,但是本领域的普通技术人员认识到,根据具体应用和实施方式,一个或更多个特点或特性可被折衷,以实现期望的总体系统属性。这样,在此讨论的被描述为在一个或更多个特性方面不如其它实施例或现有技术实施方式合意的实施例不再本公开的范围之外,且可期望用于特定应用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1