自动噪声控制的制作方法

文档序号:11761611阅读:209来源:国知局
自动噪声控制的制作方法与工艺

本公开涉及一种用于自动噪声控制的系统和方法(通常称为“系统”)。



背景技术:

自动噪声控制(anc)技术已经应用到例如汽车工业中的产品中。目前在汽车工业中已使用的技术可基本上分为两类,一类是用于应对发动机噪声的窄带前馈控制系统,它被称为发动机顺序控制(eoc)系统,而另一类是用于减少道路噪声的宽带前馈控制系统,它被称为道路噪声控制(rnc)系统。然而,这两种类型的系统的稳健性可能存在问题,使得尤其对于汽车应用来说,通常需要提高anc系统的稳健性。



技术实现要素:

一种示例性有源噪声控制系统包括第一有源噪声控制子系统和第二有源噪声控制子系统,其中所述第一有源噪声控制子系统具有比所述第二有源噪声控制子系统更高的稳健性。

一种示例性有源噪声控制方法包括:利用第一子系统生成抗噪声,所述抗噪声被配置为减少或消除在收听位置处出现的噪声;以及利用第二子系统生成抗噪声,所述抗噪声被配置为减少或消除在所述收听位置处出现的噪声,其中所述第一有源噪声控制子系统具有比所述第二有源噪声控制子系统更高的稳健性。

在研究了以下的详述和附图之后,其它系统、方法、特征和优点对于本领域的技术人员来说将是或将变得显而易见。所有此类额外系统、方法、特征和优点旨在包括在本说明书内、在本发明的范围内,并由随附的权利要求书保护。

附图简述

参考以下的附图和描述,可更好地理解系统。附图中的部件不一定按比例绘制,相反,重点在于说明本发明的原理。此外,在附图中,相似参考数字在整个不同视图中标记对应部分。

图1是车辆内部中的系统扬声器的示例性设置的顶视图。

图2是具有额外(有源)头枕扬声器的图1中所示的设置的顶视图。

图3是示出具有两个子系统的示例性anc系统的信号流程图。

图4是安装在座椅的靠背中的扬声器麦克风设置的侧视图,其中扬声器在上翻位置处。

图5是图4中所示的扬声器设置的前视图。

图6是安装在座椅的靠背中的扬声器麦克风设置的侧视图,其中扬声器在倾斜位置处。

图7是图6中所示的扬声器设置的前视图。

具体实施方式

实际上,即使eoc系统和rnc系统也在稳健性方面稍显薄弱,并且甚至在依赖于来自非声学传感器(例如,每分钟转数(rpm)传感器或加速度(acc)传感器)的信号作为它们的anc算法的噪声参考输入信号时也是如此。通常,依赖于此类信号源可以消除与参考反馈路径相关的稳健性问题,因为没有发生从次级源到参考传感器的时变房间脉冲响应(rir)改变。然而,rir出现在次级源(例如,扬声器)与误差信号传感器(例如,麦克风)之间的称为“次级路径”的路径上,随时间而发生变化。当整个系统处于它的“正常操作状态”时,可仅(一次)测量次级路径参数,并且在假设它们在实际操作期间将不改变太多的情况下,使用这些(一次)测量到的“固定”参数。然而,情况并非总是如此,并且一旦在固定和实际的次级路径参数(尤其是它们的相位)之间的差值超过某个稳定性极限,整个系统就将开始振荡,并且因此将变得不稳定。为了避免此类反馈,可进行稳定性(稳健性)测量来可靠确定被调查的系统何时离开稳定操作状态而进入到不稳定状态。一旦已检测到不稳定状态,稳定性(稳健性)测量的任务或多或少是去激活anc系统,并且因此避免反馈。

参考图1,车辆(诸如汽车)中的示例性anc系统可以使用已存在的音频系统100的至少部分,例如,已安装在车辆中并覆盖相关频谱区域的扬声器,以评估什么使次级路径发生如此大的变化以致可能发生稳健性问题。示例性音频系统100可以包括两个前声道(例如,前左声道和前右声道),这两个前声道包括扬声器或扬声器组112和113,它们可安置在前门101、102中,并可包括低音扬声器、中音扬声器和高音扬声器中的至少一者。音频系统100还可包括两个后声道(例如,后左声道和后右声道),这两个后声道包括扬声器或扬声器组114和115,它们可安置在后门103、104中,并可包括低音扬声器、中音扬声器和高音扬声器中的至少一者。用于另一个前声道的扬声器或扬声器组116是安置在车辆内部中的仪表板105上或其中。两个扬声器或扬声器组117和118可安置在后搁架106中或其上。扬声器或扬声器组116、117和118可以包括低音扬声器、中音扬声器和高音扬声器中的至少一者。任选地,可将额外超低音扬声器119安置在车辆的后备箱107中。

已存在的系统扬声器112-119可以递送足够的声压级(spl),尤其是处于较低频率时,其中要减小的噪声(例如,源自发动机和/或道路)具有其最高的能量含量。因此,可能需要耦合至大体积的具有大膜片或高偏移的扬声器。由于车辆中的空间有限,仅有某些位置能够满足这些要求。为此,可将低频扬声器(例如,低音扬声器)安装在该车辆的车门101-104中,并且可将最低频扬声器(例如,亚低音扬声器)安装在后搁架106或后备箱107处,或者可耦接到该车辆的底盘部分(在中心或在前部区域中)。替代地或另外地,可将亚低音扬声器安置在车辆内部外,并且声耦合到车辆内部。

测试已经表明,出于许多原因,尤其从如上所述定位的扬声器到可靠近于乘客的头部或耳部安装在车顶内衬处的麦克风的次级路径(如图1所绘)易于变化。例如,由于乘客的腿部的阴影效应,从安装在门101-104中的扬声器或扬声器组112-115到安装在车顶内衬中的误差麦克风的次级路径将根据乘客是否在特定座椅108-111中而变化。因此,稳定性可根据车辆承载情况而变化。在另一实例中,根据后备箱被填充的程度(大多数的时间,后备箱可以是空的或仅部分地填充,但是在某些时间上,例如当旅行时,后备箱107可能是完全填满的),亚低音扬声器安装在后备箱中,并且次级路径改变。在最坏情景下,后备箱盖在驾驶时可能未被关闭,而是保持打开。通向该车辆的内部100中的这种开口(例如,打开的后备箱107、打开的车窗或打开的天窗)导致次级路径中的最大改变,并且可以触发对如下效应的稳健性控制:只要保持这个状态,即,只要当前次级路径与所存储的次级路径参数相差过大,anc系统将去激活。

次级源和误差麦克风之间的距离越大,rir偏差风险越高,并且因此不稳定性风险越高。除此之外,还存在着频谱依赖性,其中频率越高,不稳定性风险越高。因此,以下也考虑到波长。

为了扩展anc系统的有用频谱范围,可以采用有源头枕,即,具有扬声器并最终具有麦克风的头枕,如图2所绘。安置在(四个)头枕201-204中的扬声器(在本文中称为与已存在的系统扬声器112-119组合的头枕扬声器205-212)能够将上限截止频率从先前f≈350[hz](当仅在使用系统扬声器112-119时)提升到f≈1500[hz](当使用系统扬声器112-119和头枕扬声器205-212的组合时)。这种组合提供若干优点。当误差麦克风213-220安装在头枕201-204中时,它们与乘客耳部之间的距离被最小化,不管座椅位置、人的体型等如何,因为乘客通常会根据他们的需要来调节他们的座椅以及因此调节头枕。

移动座椅108-111也不会对头枕扬声器205-212造成问题,因为它们连同误差麦克风213-220一起移动,从而产生头枕扬声器与在它们前面的误差麦克风之间的恒定rir。由于在不同座椅之间的、以及因此在不同有源头枕之间的串扰消除(ctc)远远超过预期anc性能范围,一个有源头枕对相邻有源头枕的影响可被忽略。鉴于系统扬声器,当误差麦克风213-220从顶篷移动到头枕201-204时,情况变得更糟,因为此时,座椅无论何时移动,它们的rir都会发生改变。然而,这些偏差应当完全保持在稳定性区域内,并且因此不应形成任何额外不稳定性来源。

在将有源头枕与系统扬声器组合的常见系统中,应用类似稳健性改进措施,即,一旦已检测到稳定性问题,整个系统因此就去激活。测试已经表明,由于次级源(即,次级扬声器)与安装在次级扬声器前面的对应误差麦克风之间的紧密距离,有源头枕的rir或多或少免受环境中的任何种类改变影响。无论头部是否接触头枕,实际上,相关频谱范围(低于f≈1000hz)中的偏差都不超过给定稳定性余量。因此,与基于系统扬声器的系统相反,仅基于主动头枕的anc系统可以被认为是本质上稳健的,并且无需任何稳健性改进措施。因此,两个系统可以彼此解耦,并且形成具有不同的稳健性的子系统。更一般地表示,如果在整个系统中存在表现出高得多或低得多的稳健性的部分,那么系统部分可基于其稳健性质被分离以形成独立系统或子系统。

图3中所示的示例性anc系统包括(更加)稳健的子系统(参见具有索引hr的块)和不太稳健的子系统(参见具有索引sy的块),(更加)稳健的子系统是连接在头枕扬声器上游,不太稳健的子系统易于变为不稳定的,并对稳健性测量具有特定需要并连接在系统扬声器上游。可例如通过在本文中称为“稳定性控制块301”的处理块来观察不太稳健的子系统。不太稳健的子系统可以包括具有传递函数psy(z)的初级路径302,该传递函数从(噪声)参考输入信号x(n)生成供应到至少一个误差麦克风303的m个干扰信号dsy(n)(噪声),(噪声)参考输入信号可以是来自结合rpm传感器的参考麦克风、加速度计或电机声音合成器的信号。代表要消除的噪声的参考信号x(n)还供应到具有可控传递函数wsy(z)的可控滤波器304和具有传递函数的次级路径估计滤波器305。次级路径估计滤波器305对具有传递函数ssy(z)的次级路径306建模。通过信号传输,次级路径306从由可控滤波器304提供的k≥1个输入抗噪声信号ysy(n)生成m≥1个输出抗噪声信号y’sy(n),并且将m个输出抗噪声信号y'sy(n)供应到至少一个麦克风303。k个输入抗噪声信号ysy(n)还供应到稳定性控制块301。

至少一个误差麦克风303在声域中,从m个干扰信号dsy(n)中减去m个输出抗噪声信号y'sy(n),并且在电域中,从其将m个误差信号esy(n)提供到稳定性控制块301并提供到滤波器控制块307,滤波器控制块可采用多误差最小均方(melms)算法来控制可控滤波器304。初级路径302和次级路径306在声域中操作,并且次级路径306是由将来自先前块的电信号变换为声信号的扬声器(图3中未示出)(诸如以上结合图1和图2描述的系统扬声器)提供声信号。不太稳健的子系统中的所有其它块在电域中操作。稳定性控制块301和滤波器控制块307还接收来自至少一个误差麦克风303的m个误差信号esy(n)和来自次级路径估计滤波器305的k·m个输出信号。

稳健的子系统可以包括具有传递函数phr(z)的初级路径308,该传递函数从参考信号x(n)生成供应到至少一个麦克风309的m个干扰信号dhr(n)(噪声)。在一些示例性子系统中,麦克风306和309可以是相同的。参考信号x(n)还供应到具有可控传递函数whr(z)的可控滤波器310和具有传递函数的次级路径估计滤波器311。次级路径估计滤波器311对具有传递函数shr(z)的次级路径312建模。次级路径312从由可控滤波器310提供的k≥1个输入抗噪声信号yhr(n)生成m≥1个输出抗噪声信号y'hr(n),并且将m个输出抗噪声信号y'hr(n)供应到至少一个麦克风309。

至少一个误差麦克风309在声域中,从m个干扰信号dhr(n)中减去m个输出抗噪声信号y'hr(n),并且在电域中,从其将m个误差信号ehr(n)提供到滤波器控制块313,滤波器控制块可采用多误差最小均方(melms)算法来控制可控滤波器310。初级路径308和次级路径312在声域中操作,并且是由将来自先前块的电信号变换为声信号的扬声器(图3中未示出)(诸如以上结合图2描述的头枕扬声器)提供声信号。稳健的子系统中的所有其它块在电域中操作。滤波器控制块313还接收来自至少一个麦克风309的m个误差信号ehr(n)和来自次级路径估计滤波器311的k·m个输出信号。

另外,这个子系统组合可进行调节以使得采用系统扬声器的不太稳健的子系统仅涵盖无法被头枕扬声器覆盖的(非常)低频谱的部分。因此,系统扬声器子系统的稳健性将增加,因为频率越低,稳健性变得越大。作为仅处理较低频率的进一步的结果,可使采样速率减小,从而允许节省处理负载以及存储器消耗。此外,通过以相同的频率(速度)操作两个系统,就减小了由于次级源距误差麦克风的距离较大而影响系统扬声器子系统的延迟问题。

具有有源头枕的本质上稳健的子系统可以尽可能宽带地使用,并且如果它本身提供了足够的稳健性和频谱范围,那么就可用作独立系统。总体结果如下:如果没有出现稳定性问题,则是基本上仅包括稳健的子系统(作为独立系统)或具有不同的稳健性的两个anc子系统的组合的系统,从而产生仍覆盖整个频谱范围的整个系统,或者如果由于不稳定性而仅稳健的子系统在操作中,则是可能不覆盖整个频谱范围(例如,可将最低频谱区域排除)的系统。因此,保持本质上稳健的子系统尽可能宽带的理想地允许切断不稳定子系统,或不使用所有对应扬声器(例如,系统扬声器),即,可产生稳健性问题的次级路径。

由于头枕通常并不提供大量可用声学体积,因此扩大本质上稳健的子系统的有用anc带宽的可能性是有限的。可选择将扬声器集成到例如座椅的靠背的肩部区域中,如图4和图5所绘,因为座椅靠背为扬声器提供了大得多的可用体积,并且由于其尺寸而允许选择安装具有更大尺寸(更大膜片直径)的扬声器,从而也有可能覆盖更低频谱范围。参考图4和图5,各自分别安装在(气密)罩壳402和502中的两个扬声器401和501安置在乘客座椅405的靠背404的左上方和右上方部分中的上翻位置(例如,指向车辆内部顶篷)处,并且位于头枕406下方。此外,可将麦克风403和503(例如,指向车辆内部顶篷)安置在扬声器401和501上方的靠背404中或其上。麦克风403和503可与anc系统(例如,如图3所示)结合使用(例如,作为至少一个误差麦克风303和/或309)。可将麦克风403和503安置在头枕406中最靠近收听者的耳部的位置。

不是通过将扬声器水平地安装到该靠背的肩部区域中,而是通过将它们稍倾斜地放入靠背中,可进一步增加靠背扬声器的可用膜片直径,如图6和图7所示。此外,可将一种预定的断裂点插入到扬声器的壳体(罩壳)中,这出于安全原因而可能是重要的或甚至是所需要的,因为在冲击情况下,水平地安装的扬声器将不容易屈服。参考图6和图7,各自分别安装在(气密)罩壳601和701中的两个扬声器602和702安置在乘客座椅604的靠背605的左上方和右上方部分中的倾斜位置(例如,在倾斜角度下指向座椅的上前侧)处,并且位于头枕606下方。此外,可将麦克风603和703(它们可在倾斜角度下指向座椅的上前侧)安置在靠背604上,处于扬声器601和701前面。罩壳602和702可以包括预定的断裂点,诸如凹部和锥部607和707。

通过将大至足以覆盖整个相关频谱区域的扬声器放入靠背中,就可扩大本质上稳健的anc系统的带宽。这将产生anc问题的单一、本质上稳健的宽带解决方案,而将无需额外扬声器(例如,系统扬声器)。这些扬声器的尺寸可以增加,并且因此如果它们是以倾斜位置安装到座椅靠背中,那么有用频谱范围朝向较低频率扩展。同时,预定的断裂点也可集成到扬声器的壳体中,从而产生具有将满足汽车工业的严格安全标准的更高安全等级的系统。虽然以上所概述的实例涉及车辆、具体地是汽车,但是示例性系统和方法可结合具有稳定性问题的所有种类的anc系统和方法来应用。以上结合图3描述的子系统采用前馈结构,但是其它结构、诸如唯一反馈结构或前馈和反馈结构的组合(也称混合结构)同样适用。此外,安置在靠背中的扬声器和头枕中的扬声器可组合以形成在稳健的宽带(子)系统中采用的特定扬声器组。

出于说明和描述的目的,已呈现了对实施方案的描述。各实施方案的合适的修改和变化可根据以上描述来执行,或者可通过实践方法来获得。例如,除非另外指出,否则所述方法中的一种或多种可由合适装置和/或装置组合执行。上述方法以及相关联的动作还可以除了本申请中描述的顺序之外的各种顺序并行地和/或同时地执行。所述系统本质上是示例性的,并且可以包括额外要素和/或省略要素。

如本申请中所用,以单数陈述并加以字词“一个”或“一种”来修饰的要素或步骤应理解为并不排除多个所述要素或步骤,除非表明这样排除。此外,参考本公开的“一个实施方案”或“一个实例”并不旨在被解释为排除也并入有所陈述的特征的额外实施方案的存在。术语“第一”、“第二”和“第三”等仅用作为标记,而不旨在对它们的对象强加数字要求或特定的位置顺序。

虽然已描述了本发明的各种实施方案,但是对本领域的普通技术人员将显而易见的是,在本发明的范围内,可有更多的实施方案和实现方式。具体来说,技术人员将认识到来自不同实施方案的各种特征的可互换性。虽然在某些实施方案和实例的上下文中已公开了这些技术和系统,但是应当理解,这些技术和系统可超出具体地公开的实施方案扩展到其它实施方案和/或用途及其明显修改。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1