混合动力车辆中车轮扭矩反向期间的发动机和马达控制的制作方法

文档序号:13974952阅读:321来源:国知局
混合动力车辆中车轮扭矩反向期间的发动机和马达控制的制作方法

本公开涉及在车轮扭矩反向期间对混合动力车辆进行控制。



背景技术:

如果控制不当,车辆可能经历动力传动系振荡,动力传动系振荡干扰平稳的操作并导致令人不快的操控性。在混合动力电动车辆(hev)中,通常期望从车轮上的推进力非常快速地转变为车轮上的再生制动力。类似地,如果驾驶员踩下加速器,那么车辆可以从大的再生力转变为推进力。当扭矩改变方向时,归因于与变速器齿轮传动、变速驱动桥、传动系接头(joint)、车轮等相关联的各个传动系部件内或之间的游隙(slack)或空隙导致的空程(lostmotion),可能产生传动系间隙或齿隙。当从推进力转变为再生力或相反时,传动系将穿越零扭矩点,在该点处,啮合的齿轮齿或以其它方式结合的部件是浮动的或者是不接触的。如果太快地穿越该区域(有时称为间隙区域),则可能触发传动系产生闷响(clunk)和振荡。



技术实现要素:

在各个实施例中,一种用于控制混合动力车辆的系统和方法(所述混合动力车辆具有通过上游离合器选择性地结合到电机的发动机,所述电机通过下游离合器选择性地结合到阶梯传动比变速器)包括至少一个控制器,所述至少一个控制器被配置为:响应于进入间隙区域并预期车轮扭矩反向而控制发动机和电机,以调节施加到主动式马达阻尼扭矩控制器的增益,从而减小传动系振荡和反冲。

实施例可包括一种用于控制具有发动机、电机和变速器的车辆的方法,包括:响应于驾驶员需求扭矩的变化和变速器的输入扭矩正在接近零,调节电机扭矩反馈控制器的至少一个增益,以控制电机的扭矩通过与传动系或车轮扭矩反向相关联的间隙区域。调节至少一个增益可包括将所述至少一个增益减小至零。调节至少一个增益可响应于变速器的扭矩比在特定的范围内而执行。

附图说明

图1是示出根据本公开的实施例的具有与车轮扭矩反向相关联的发动机和马达控制的代表性混合动力车辆的框图;

图2示出了代表性混合动力车辆中的车轮扭矩反向和相对应的间隙区域;

图3示出了根据本公开的实施例的用于发动机和马达控制的识别或预期车轮扭矩反向或间隙区域的代表性策略;

图4和图5示出了根据本公开的实施例在发动机和马达的控制期间使用可调节的增益对传动系振荡进行阻尼的主动式马达阻尼控制系统;

图6是示出了根据本公开的实施例的用于混合动力车辆的发动机和马达控制系统的代表性控制架构的操作的框图;

图7示出了在车轮扭矩反向期间不具有本公开的实施例所提供的发动机和马达控制的现有技术的混合动力车辆的操作;

图8示出了根据本公开的实施例在车轮扭矩反向期间具有发动机和马达控制的混合动力车辆的操作;以及

图9示出了根据本公开的实施例的在车轮扭矩反向期间用于发动机和马达控制的系统或方法的操作。

具体实施方式

根据需要,在此公开详细实施例;然而,将理解的是,所公开的实施例仅为代表性的并且可以以各种可替代形式实施。附图不一定按比例绘制;可夸大或最小化一些特征以示出特定部件的细节。因此,在此公开的具体结构和功能细节不被解释为具有限制性,而仅作为用于教导本领域技术人员以各种形式利用所要求保护的主题的代表性基础。

图1示出了一个或更多个实施例的混合动力车辆10的示意图。车辆10包括发动机12和电机,在图1所示的实施例中,电机是马达发电机(m/g)14,并且可选地可以是牵引马达。m/g14被构造为向发动机12或车轮16传递扭矩。

m/g14使用第一离合器18(也称为分离离合器或上游离合器)来连接到发动机12。第二离合器22(也称为起步离合器或下游离合器)将m/g14连接到变速器24,并且变速器24所有的输入扭矩都流动通过起步离合器22。尽管离合器18、22被描述和示出为液压式离合器,但是也可使用其它类型的离合器(诸如机电式离合器)。离合器18、22可以是湿式离合器或干式离合器。可选地,如下面进一步地描述,可使用具有旁通离合器的变矩器来代替离合器22。在不同的实施例中,下游离合器22指的是用于车辆10的各种结合装置(包括传统的离合器、具有旁通(锁止)离合器的变矩器)。这种构造可使用具有变矩器的其它传统的自动阶梯传动比变速器,并且有时被称为模块化混合动力变速器构造。尽管未具体地示出或描述,但是各种其他的构造也可适合用于所公开的发动机和马达控制。

发动机12的输出轴连接到分离离合器18,分离离合器18继而连接到m/g14的输入轴。m/g14的输出轴连接到起步离合器22,起步离合器22继而连接到变速器24。车辆10的各个部件顺序地设置或彼此串联地设置。起步离合器22将车辆原动机连接到包括传动系26,传动系26包括变速器24、差速器28、车轮16及其相互连接的部件。

在车辆10的另一实施例中,下游离合器22是变矩器旁通离合器。来自m/g14的输入是变矩器的泵轮侧,从变矩器至变速器24的输出是涡轮侧。变矩器使用液力耦合来传递扭矩,并且扭矩倍增可根据泵轮侧和涡轮侧之间的打滑量而发生。变矩器的旁通离合器或锁止离合器可选择性地接合,以在泵轮侧和涡轮侧之间产生机械连接或摩擦连接用于直接的扭矩传递。可使旁通离合器打滑和/或断开,以控制传递通过变矩器的扭矩量。变矩器还可包括机械式锁止离合器。

在车辆10中,起步离合器22或变矩器的旁通离合器可被锁止以增加燃料效率,并且可根据特定的应用和实施方式而在接近或穿越车轮扭矩反向或间隙区域时被锁止。操控性和对传动系内间隙穿越的影响的控制取决于对来自发动机12和/或电机14的动力传动系统扭矩的控制。m/g14扭矩可以被控制为比来自发动机12的扭矩具有更佳的准确性和更快的响应时间。在车辆10的纯电动运行模式期间,在穿越间隙区域时可控制m/g14扭矩。在车辆的混合动力运行模式(发动机12和m/g14两者都运行)期间,来自m/g14的扭矩和来自发动机12的扭矩可被一起控制,以改善车辆10的操控性并减小间隙区域穿越对传动系振荡的影响和传动系产生闷响的可能性。

在示出的代表性实施例中,发动机12是直接喷射式发动机。可选地,发动机12可以是其它类型的发动机或原动机(诸如,进气道(port)喷射式发动机或燃料电池),或者使用诸如柴油、生物燃料、天然气、氢气等的各种燃料源。在一些实施例中,车辆10还包括(例如)通过带或齿轮传动来可操作地连接到发动机12的起动马达30。起动马达30可用于在没有来自m/g14的附加扭矩的情况下提供扭矩以启动发动机12(诸如,用于冷启动或某些高速启动事件)。

m/g14与电池32通信。电池32可以是高电压电池。m/g14可被配置为在(例如)车辆功率输出超过驾驶员需求时在再生模式下通过再生制动等来给电池32充电。m/g14还可以以发电机构造设置,以调节提供到传动系26的发动机12扭矩的量。在一个示例中,电池32被构造为连接到外部电网(诸如,用于具有从电力网来给电池再充电的能力的插电式混合动力电动车辆(phev)),电力网向位于充电站处的电插座(poweroutlet)供应能量。还可存在低电压电池以向起动马达或其他车辆部件供电,或者可通过连接到电池32的dc-dc转换器提供低电压电力。

在一些实施例中,变速器24是自动变速器并且以传统的方式连接到驱动轮16,并可包括差速器28。变速器24可以是齿轮传动式变速器,并且可以是阶梯传动比变速器或无级变速器。车辆10还设置有一对非驱动轮,但是,在可选实施例中,可利用分动箱和另一个差速器来正向驱动所有的车轮。

m/g14和离合器18、22可位于马达发电机壳体34内,马达发电机壳体34可被包含到变速器24壳体内,或者可选地是车辆10内单独的壳体。变速器24具有为车辆10提供多个传动比的齿轮箱。变速器24齿轮箱可包括离合器和行星齿轮组或者如本领域公知的离合器和齿轮系的其它布置。在可选实施例中,变速器24是无级变速器或机械式自动变速器。变速器24可以是六速自动变速器、其他速自动变速器或如本领域公知的其它齿轮箱。

变速器24是使用变速器控制单元(tcu)36等来控制的,以按照诸如作业过程(production)换挡计划的换挡计划来运行,换挡计划连接和断开连接齿轮箱内的元件以控制变速器输出和变速器输入之间的传动比。tcu36也用作控制m/g14、离合器18、22以及马达发电机壳体34内的任何其他部件。

发动机控制单元(ecu)38被配置为控制发动机12的运行。车辆系统控制器(vsc)40在tcu36和ecu38之间传输数据并且还与各种车辆传感器直接地和/或经由车辆网络进行通信。用于车辆10的控制系统42可包括任意数量的控制器,并且可集成到单个控制器中或者具有多个模块。一些控制器或所有控制器可通过控制器局域网(can)或其他系统来连接。控制系统42可被配置为在若干不同状况中的任何状况下(包括在踩下加速踏板或松开加速踏板事件期间按照使传动系26中的间隙穿越的影响和对驾驶员的影响最小化或减小的方式)控制变速器24、马达发电机组件14、起动马达30以及发动机12的各个部件的运行。

vsc40接收指示驾驶员需求的信号。加速踏板位置传感器(apps)与vsc40通信,并且提供与加速踏板位置或踩下加速踏板和松开加速踏板相关的信息。踩下加速踏板可与来自驾驶员的针对更大速度、功率和/或扭矩的请求相关地使用,而松开加速踏板可与来自驾驶员的针对更小速度、功率和/或扭矩的请求相关地使用。制动踏板位置传感器(bpps)和挡位选择(prnd)也与vsc40通信,以提供与驾驶员需求相关的信息。例如在某些应用中提供了多种其他的传感器,诸如发动机扭矩传感器或变速器输入扭矩传感器。可选地,诸如发动机扭矩或变速器输入扭矩的各种运行参数可基于来自其他传感器的输入和计算的参数或估计的参数而进行计算或另外地通过tcu36、ecu38和/或vsc40来间接地确定。

在正常的动力传动系状况(无子系统/部件出故障)下,vsc40解释驾驶员的需求(例如prnd和加速或减速需求),然后基于驾驶员需求和动力传动系限制来确定车轮扭矩命令。此外,vsc40确定每个动力源何时需要提供扭矩以及需要提供多少扭矩来满足驾驶员的扭矩需求并达到发动机12和m/g14的操作点(operatingpoint)(扭矩和转速)。

车辆10可具有位于动力传动系和传动系26的多个位置处的转速传感器44。尽管由于响应时间以及信号和数据处理而可能存在一些滞后,但是转速传感器44近乎实时地将关于轴的旋转速度的信息提供到控制系统42。在图1所示的实施例中,转速传感器44测量发动机12输出轴的转速、连接到m/g14的轴的转速、变速器24输入轴的转速、变速器24输出轴的转速以及连接到车轮16的半轴中的一个或两个的转速。

作为用于车辆10的运行的控制策略或算法的部分,如图1所示,控制系统42可作出发动机扭矩请求(τeng)和/或m/g扭矩请求(τm)。假设分离离合器18和起步离合器22被锁止,那么变速器净输入扭矩(τin)是电动马达净扭矩加上发动机净扭矩(τin=τm+τeng)。

在可选实施例中,可使用包括锁止离合器或旁通离合器的变矩器来代替离合器22。当变矩器两边存在一定的旋转速度差异时,变矩器具有扭矩倍增效应。在扭矩倍增期间,由于变矩器两边的扭矩倍增,变矩器的输出扭矩大于输入扭矩。例如,当车辆10从静止启动,变矩器的输入轴开始旋转而变矩器的输出轴仍然处于静止状态或刚开始旋转时,存在扭矩倍增。

锁止离合器或旁通离合器用于使变矩器锁止,使得下游扭矩传递装置22的输入扭矩和输出扭矩彼此相等,并且使得装置22的输入转速和输出转速彼此相等。例如,当变矩器两边的转速比大于大约0.8时,锁止的离合器消除变矩器上的打滑和传动系低效率,并且可增大车辆10的燃料效率。

改变扭矩量和/或方向可能在传动系26中造成与间隙穿越相关联的扰动和振荡。每当车轮16扭矩和由发动机12与m/g14提供的动力装置扭矩中的一个相对于另一个改变方向时,车辆传动系26中可能出现齿隙。在车辆10在分离离合器18和起步离合器22(或变矩器的锁止离合器)二者处于锁定或接合位置时运行的情况下,可能出现扭矩方向的这种变化。例如,当车辆10正在减速时,发动机12的压缩制动效应向变速器24提供负扭矩,然后负扭矩传递经过差速器28,随后传递至车轮16。此时,传动系26沿负向被缠绕(wrapped)或扭绕(twisted)。如果驾驶员使用加速踏板来提供功率请求或踩下加速踏板,那么当发动机12开始供应扭矩以向前推进车辆10时,发动机12扭矩从负切换到正。当每个传动系部件从传递负扭矩变化为传递正扭矩时,传动系26解开缠绕或解开扭绕。在这个转变期间的某个时候,传动系26传递经过施加到车轮16的扭矩为零的松弛状态。

在这个零扭矩区域期间,变速器24和/或差速器28中的齿轮齿可能不与配对的齿轮或部件紧密地结合并且传动系26中可能存在一些游隙或自由旋转。多个齿轮组中的游隙可累积。当发动机12继续提供正扭矩时,传动系26将沿正向缠绕。齿轮可以快速地结合,这造成产生闷响。另外,由于在半轴的差速器28侧较车轮16侧而言具有更高的扭矩,所以将差速器28连接到车轮16的半轴可轻微地扭曲。半轴可用作储存这种能量的扭簧。当车辆10开始加速时,车轮16扭矩赶上差速器28处的扭矩,并且储存在半轴中的任何能量快速地释放,这会造成沿相反方向的振荡或反冲。这种齿隙穿越的结果是当齿轮齿碰撞在一起时产生闷响或噪声,以及在消耗半轴能量时车轮扭矩的减小。闷响和振荡可以根据其严重性而被驾驶员注意到。对于具有串联布置的多个齿轮啮合(gearmesh)的传动系而言,每个齿轮啮合均可具有间隙区域。传动系中的间隙通过齿轮啮合而叠加(cascade)或发展(progress)。在齿轮啮合被接合之后,随后的齿轮啮合随着扭矩反向通过部件而穿越间隙区域。齿隙可包括主齿轮间隙以及任何随后的齿轮间隙。

以上所描述的情形还可以沿着相反方向发生。在这种情况下,驾驶员将提供功率请求,诸如踩下加速踏板用于车辆加速,然后通过释放加速踏板(松油门)来突然地消除功率请求。传动系26从沿正向被缠绕变为沿负向被缠绕,在该转变期间存在类似的扭矩下降或扭矩洞(torquehole)以及闷响。由于突然加速导致齿隙穿越的影响通常比突然减速更加显著。

作为示例,图2中以曲线图的方式示出了车辆10的两种齿隙状况。示出了在68处突然减速和在70处加速期间的加速踏板60、变速器输出转速62、车轮转速64以及车轮扭矩66。在68处的减速请求之后,变速器输出转速62比车轮转速64减小得更快。这产生了被标记为“零车轮扭矩”的区域72,在该区域中,当车轮扭矩66由正转变为负时,传动系26处于松弛状态。紧接该转变之后,当车轮转速64赶上变速器输出转速62时,车轮扭矩66迅速地减小,这导致被标记为“扭矩下降”的区域74。这样的扭矩下降74实质上是齿隙,并且除了是由变速器输出提供的负扭矩之外,扭矩下降74是由储存在半轴中的能量被释放和变速器24以及其他传动系部件中的游隙所造成的。齿隙穿越74的效应造成了最终的车轮扭矩的振荡。

在70处的踩下加速踏板请求之后的加速期间,出现类似的情形,只不过是以反向的方式出现。变速器输出转速62的增加引起车轮转速64的增加,这产生了零扭矩区域76和随后在78处的扭矩快速上升或“扭矩突增”,从而造成齿隙穿越效应或者驾驶员可感觉到的噪声和振荡。

控制系统42被配置为检测、感测和/或预测间隙区域,以减小或减轻齿隙穿越效应。如下面所描述的,车辆10中的齿隙可通过观察变速器输入扭矩和输出扭矩之比来感测。在一个示例中,如2015年5月19日授权的第9,037,329b2号美国专利(该美国专利通过引用而整体地被包含在本文中)中所描述的,控制系统42检测或感测车辆的齿隙状况。在其他实施例中,齿隙还可通过使用转速传感器或本领域所公知的其他技术(诸如,2007年5月29日授权的第7,223,203b2号美国专利中所描述的那些技术,该美国专利通过引用而整体地被包含在本文中)来感测。

图3示出了变速器24两边的输入扭矩与输出扭矩之比。理想或完美的变速器24具有如穿过零点的线100所示的完美的扭矩比。然而,在实际的变速器24中存在成比例的损耗和不成比例的损耗,所述损耗可被考虑在内以提高准确性。所述损耗具有将理想扭矩比置换或修改为输出扭矩与输入扭矩的实际比率的作用。实际扭矩比是增添了损耗的理想扭矩比。当输入扭矩和输出扭矩两者均为负(发电)时,变速器损耗起到辅助车辆减速的作用。当输入扭矩和输出扭矩两者均为正(推进)时,所述损耗妨碍了推进作用。线118表示推进期间的考虑了损耗的实际比率。线120表示当发电时考虑了损耗的实际比例。线122是变速器24携带近似为零的扭矩下的比率范围,且产生间隙区域效应的可能性最高,线122表示间隙区域。

区域124表示从推进侧或正输入扭矩侧进入间隙区域的入口区域(entryregion)。区域126表示从发电侧或负输入扭矩侧进入间隙区域的入口区域。区域124和126之间的线122是通过零输入扭矩(126处)至正的标量的输入扭矩(124处)以及通过负标量的输出扭矩(126处)至零输出扭矩(124处)而界定的。在其他实施例中,可设置其他边界以限定间隙区域。通过在车辆10随车辆沿线122加速或减速而依照线122运行时控制输入扭矩,间隙穿越事件效应甚至可被减小或减轻。线122可以是线性的或非线性的。例如,线122可以是阶梯函数,其中,多个阶梯是由传动系中的每个齿轮啮合中的间隙产生的。

如下面所描述的,可以确定图3所示的用于齿轮比的输入-输出扭矩模型。在加速事件期间,传动系处于驱动构造,使得来自发动机12和/或m/g14的扭矩通过变速器24而被传递至车轮16。在减速事件期间,传动系处于被驱动构造,使得来自车轮16的扭矩通过变速器24而被传递至m/g14。然而,通过变速器24和传动系26传递的扭矩量是变速器24和传动系26中齿轮比和损耗的函数。图3图形化地示出了变速器24的扭矩、齿轮比和损耗。变速器24的齿轮比等于扭矩输入(τin)与扭矩输出(τout)之比,其中,τin是变速器24的输入轴46处的扭矩,τout是变速器24的输出轴48处的扭矩,并且系统中没有损耗。齿轮比可以是基于传动比的,并可通过在变速器24中接合的各个齿轮的齿数直接计算得出。齿轮比还可被认为是理想扭矩比。例如,如果齿轮比为4:1,则对于正100nm的输入扭矩(τin),输出扭矩(τout)为400nm。因此,理想扭矩比由图3中的线100表示,其中,所述线的斜率是理想扭矩比或齿轮比。

对变速器而言,可使用线性关系将扭矩输入与扭矩输出相关联,其中,所述线性的线可被描述为以下公式:

y=m*x+b

其中,y是输出扭矩(τout),x是输入扭矩(τin)。斜率m是输出/输入扭矩比或齿轮比,并且当输入扭矩为零时,b是输出扭矩。理想地或者在没有损耗的变速器24中,斜率将是理想扭矩比并且偏移量为零,如线100所示。在没有损耗的情况下的斜率是理想扭矩比或齿轮比(trideal)。因此,用于线100的公式为:

τout=(τin*trideal)式(1)

然而,变速器24不是完美地高效的而具有一些损耗。变速器中的损耗可以是摩擦、热、旋转损耗或许多其他因素的函数。变速器中的损耗可被表征为“成比例的损耗”和“不成比例的损耗”。成比例的损耗根据当前挡位和速度而变化,而不成比例的损耗独立于扭矩。变速器24的效率通常在变速器24上测量。传动系26的效率通常是在起步离合器22锁止或变矩器的旁通离合器锁止的情况下测量的,或者可在没有变矩器的情况下来建模。

对于阶梯传动比变速器的每个挡位而言,截距b等于在图3中112处所示的不成比例的损耗ts。线114示出了在考虑变速器24中的不成比例的损耗ts时的理想扭矩比或齿轮比。不成比例的损耗ts可以以输出扭矩为单位。传动系中的不成比例的损耗或旋转损耗可以根据传动系输出转速、传动系油温和传动系处于哪个挡位。传动系输出转速可以是传动系输入转速和传动系的齿轮比的函数。因此,线114的公式为:

τout=(τin*trideal)–ts式(2)

该模型中还可考虑成比例的变速器损耗。变速器24的实际扭矩比τout/τin可按经验在不同挡位下进行测量。在没有变矩器(变矩器被锁止或不包括变矩器)的情况下,变速器24的经验模型允许以相对于“不与扭矩成比例”的损耗独立的“与扭矩成比例”的损耗进行表示,“与扭矩成比例”的损耗通过使用输出扭矩和输入扭矩之间的线性关系来表示。成比例的损耗可以是传动系油温、传动系所处的挡位以及传动系的输入扭矩的函数。成比例的损耗由每个挡位的输出扭矩与输入扭矩的关系的斜率表示。包括成比例的损耗的斜率等于变速器24两边的实际扭矩比。

理想扭矩比或齿轮比以及扭矩输入-输出关系然后可以只结合实际扭矩比输入-输出关系的一些测量点来使用,以确定理想扭矩比(trideal)与实际扭矩比(tractual)的斜率之差。可通过减去从理想扭矩比和实际扭矩比之间的斜率差获得的τin的那部分来考虑成比例的扭矩损耗。不成比例的损耗由ts表示。在考虑成比例的损耗和不成比例的损耗时,图3中线116所示的用于变速器的线性方程可根据下式来表示:

τout=(τin*trideal)–ts–τin*(trideal–tractual)式(3a)

消去损耗等式的右手侧的项,用于图3中的线116的方程可简化为:

τout=(τin*tractual)–ts式(3b)

例如,对于输入扭矩为+100nm、实际扭矩比为4.0、理想扭矩比为4.1以及不成比例的损耗为5,τout可如下进行确定。注意,为简单起见,在下述示例中对数字进行了舍位(truncate)。

首先,使用式(3a),输出扭矩被计算为:

τout=(100*4.1)–5–(100*(4.1–4.0))=395nm

使用式(3b),输出扭矩被计算为:

τout=(100*4.0)–5=395nm

功率可以用扭矩乘以轴46、48的转速来确定,由下式表示:

p=τ*ω

使用输入转速400rad/sec,可根据下式计算出输入功率和输出功率:

pin=100*400=40,000瓦特

pout=395*(400/4.1)=38,536瓦特

变速器输入46处的功率和变速器输出48处的功率之间的差是由于变速器的低效而产生的功率损耗的量并可根据下式确定:

pin–pout=1,464瓦特

式(3a)和(3b)的损耗方程在描述传统的动力传动系中包括损耗的变速器时大体上是准确的。式(3a)和(3b)中的损耗方程还可准确描述当车辆10运行(motor)时在hev动力传动系中包括损耗的变速器。然而,当车辆10将功率放置到变速器输出48中并从变速器输入46中提取出(诸如,在hev中的动力传动系再生制动期间)时,问题出现。在此情况下,通过传动系26的扭矩值为负,变速器处于被驱动构造,式(3a)和(3b)中的损耗方程以不同方式进行应用。

通过如下示出的另一示例来说明在动力传动系再生制动期间式(3a)和(3b)中的损耗方程的问题。例如,对于负扭矩而言,在输入扭矩τin为-100nm、实际扭矩比为4.0、理想扭矩比为4.1以及不成比例的损耗(ts)为5的情况下,τout被计算为:

使用式(3a),τout=(-100*4.1)–5–(-100*(4.1–4.0))=-405nm,或

使用式(3b),τout=(-100*4.0)–5=-405nm

使用的400rad/sec的输入转速,我们能够将功率计算确定为:

pin=-100*400=-40,000瓦特

pout=-405*(400/4.1)=-39,512瓦特

pin–pout=ploss=-488瓦特

使用标准方程得出了负损耗的计算,而负损耗是不可能的,这是因为在此期间进入变速器24的输出轴48的功率小于从变速器的输入轴46出来的功率。对这个示例而言,在只有39,512瓦特的再生能量从车轮16进入变速器的输出48时,在变速器输入46处收集了40,000瓦特的再生能量。

对于对扭矩关系进行建模而言,两条线比一条线更佳地拟合数据。如图3中的线118所示的第一条线用于诸如在车辆10运行时的正输出扭矩τout和输入扭矩τin。如图3中的线120所示的第二条线用于诸如在车辆10再生制动时的负输出扭矩和输入扭矩。

在运行期间和再生期间不成比例的损耗112被算出为相同。因此,线118和线120两者都使用用于不成比例的损耗ts的相同的偏移项b。然而,在再生期间,使用了标准运行等式而未正确地考虑成比例的损耗。

对于给定的τout值而言,正确的τin是在成比例的扭矩损耗沿正确的方向求和时正确地算出的。无论变速器是传递正扭矩还是负扭矩,式(3a)中的成比例的损耗项(即,τin*(trideal–tractual))都必须是正值。由于在再生期间τin为负并且式(3a)中的成比例的损耗表达式必须为正,所以在再生期间需要使理想扭矩比小于实际扭矩比,以提供如下正确的计算:在负扭矩传递期间进入变速器输出48的能量比在变速器输入46处所接收的能量更多。

例如,在负扭矩传递期间,其中,变速器输入扭矩τin是-100nm,实际扭矩比是4.2,小于实际扭矩比的理想扭矩比是4.1,不成比例的损耗ts是5,τout可确定为:

使用式(3a),τout=(-100*4.1)-5-(-100*(4.1-4.2))=-425nm,或

使用式(3b),τout=(-100*4.2)-5=-425nm。注意,之前的-405的损耗误差约为百分之五。

使用400rad/sec的输入转速,输入功率、输出功率以及功率损耗可根据下式计算:

pin=-100*400=-40,000瓦特

pout=-425*(400/4.1)=-41,463瓦特

pin–pout=ploss=1463瓦特

当输出扭矩和输入扭矩两者都为正时,实际测量的斜率小于理想扭矩比,如通过将线118与线114比较所见到的。然而,当输出扭矩和输入扭矩两者都为负时,实际测量的斜率或tractual大于机械扭矩比或trideal,如通过将线120与线114比较所见到的。负扭矩的实际扭矩比被测量为4.2。如果测量的正扭矩比4.0被用于扭矩为负的情况,那么式(3a)将计算出:在再生期间在变速器输入46处收集的能量比输入到变速器输出48中的能量更多(如通过将线116与线114比较所示出的)。

为了考虑实际扭矩比与理想扭矩比(或齿轮比)之间的差异,针对每个挡位使用下面的公式来计算成比例的损耗系数c1:

c1=τin*(trideal–tractual)式(4)

在推进/运行或正扭矩通过变速器24期间,成比例的损耗系数c1被包括在式(3b)中,以推导出如下的损耗等式:

τout=(τin*(tractual–c1))–ts式(5)

或者可选地,可基于运行期间的期望的扭矩输出τout来重新布置式(5)以确定τin:

τin=(τout+ts)/(trideal–c1)式(6)

当通过变速器24的扭矩为负(诸如,在再生制动事件期间)时,实际扭矩比比理想扭矩比(或齿轮比)大的量与在运行期间理想扭矩比比实际扭矩比大的量相同。因此,c1的符号在再生制动期间变化,但c1的绝对值保持相同。因此,在负扭矩传递通过变速器期间,基于期望扭矩输出τout的τin为:

τin=(τout+ts)/(trideal+c1)式(7)

因此,通过两条线118、120来更好地表征变速器24的输入-输出扭矩的关系,以在运行与再生(或正扭矩与负扭矩)之间进行区分。图3中的线120示出了考虑加到再生制动的成比例的损耗的线。线120可通过重新布置式(7)而表征如下:

τout=(τin*(trideal+c1))–ts式(8)

在整个变速器控制开发过程中,变矩器的包括、泵损耗以及动态惯性损耗可以保持不变。例如,当车辆包括变矩器时,车辆运行时的扭矩输入τin可被确定为:

τin=((τout+ts)/(trideal-c1))*(1/trtorque_converter)+losspump+lossdyn_inertia式(9)

当m/g14正在发电或者当车辆正在再生制动使得变速器输出扭矩为负时,式(9)被修改为使得扭矩输入τin可以根据以下等式确定:

τin=((τout+ts)/(trideal+c1))*(1/trtorque_converter)+losspump+lossdyn_inertia式(10)

变矩器可连接在m/g14与变速器24之间。变矩器还可被包括在变速器24中。当变矩器经由锁止旁通离合器而被锁止时,变矩器的扭矩比是1:1。

控制系统42被配置为基于变速器的挡位来确定车辆10的间隙区域,并且在车辆运行期间利用所确定的间隙区域来预测或检测即将产生的间隙区域,进而该间隙区域可被用在控制策略中以通过控制主动式马达阻尼系统(如下面将更详细地描述的)的可调节的增益而减轻传动系间隙穿越效应。

主动式马达阻尼(amd)可用于控制通过间隙区域穿越或车轮扭矩反向而产生的传动系振荡。图4示出了根据阻尼控制的一个实施例的控制系统框图,所述阻尼控制可包含一个或更多个可调节的增益,用以在间隙区域穿越期间调节马达扭矩并减小动力传动系振荡。控制系统400可包括移除频率成分并将阻尼函数限制在预定的频率范围内的滤波器402(这里示出在前向回路中),该滤波器有效地用作带通滤波器。预定的频率范围可被选择为包括已被识别为激发产生不平稳的车辆行为的动力传动系共振的任何动力传动系扭矩变化的情形。因此,所选频率范围可根据车辆构造而变化。例如,滤波器402可通过将阻尼函数限制到窄频率范围(诸如,5hz到7hz)的窄带宽陷波滤波器(narrowbandnotchfilter)来实施。然而,频率范围可变化,并且可根据特定的应用和实施方式而包括1hz与100hz之间的频率。滤波器402还可基于所选的齿轮箱24的挡位和齿轮比来调节或变化,以适应与当前所选的挡位和相关齿轮比相关联的共振频率的变化。

m/g14的机械系统动力学的简化模型可通过控制系统400内的传递函数来表示,如框404处总体上表示的,诸如:

其中,jm是m/g14的惯量,c是机械系统的阻尼常数,k是机械系统的弹簧常数。传递函数404可用于确定与输入马达扭矩命令τm相对应的m/g14的角位置θ。m/g14的角位置θ被输入到求导框406,该求导具有表示m/g14的马达转速的输出ωm(马达转速是马达角速度)。尽管马达转速ωm被示出为求导框406的输出,但是这仅仅是机械系统的表示。马达转速ωm通常是由相应的传感器44确定的马达轴的旋转的测量值并还可被称为测量的马达转速ωm。

参照图5,测量的马达转速ωm被示出为示出在m/g14的马达转速ωm内出现的振荡。还示出了通过生成近似于测量的马达转速ωm的平滑线而计算出的期望的马达转速ωm_des。可使用诸如插值或平滑处理(smoothing)的数值分析曲线拟合技术来构建期望的马达转速ωm_des。一旦计算出期望的马达转速ωm_des,便计算扭绕转速(twistspeed)ωm_twist,扭绕转速是测量的马达转速ωm与期望的马达转速ωm_des之间的差。

再参照图4,一旦已经算出扭绕转速ωm_twist,它便可用作反馈回路中的输入。反馈回路可包括反馈控制器408,反馈控制器408可以是由下面的传递函数表示的比例-微分(pd)控制器:

其中,kmd是与扭绕转速ωm_twist有关的导数项,是超前滤波器(leadfilter),kmp是基于扭绕转速ωm_twist的比例项。导数项kmd和比例项kmp可以是常数值或者可以是来自存储在(例如)tcu36或vsc40中的一个或更多个表的输出,其中,所述表的输入是扭绕转速ωm_twist。反馈控制器408的输出是马达扭矩调节τm_adj。在410处从期望的马达扭矩τm_des中减去马达扭矩调节τm_adj以产生马达扭矩命令τm。期望的马达扭矩τm_des将会是m/g14在混合动力模式下作为发电机运转或纯电动模式下运转时所提供的扭矩量。马达扭矩命令τm在通过滤波器402之后还用作传递函数404的输入。

可选地,kmd可以是基于马达转速ωm的导数项,kmp可以是基于马达转速ωm的比例项,并且导数项kmd和比例项kmp可以是常数值或者可以是来自存储在tcu36或vsc40中的表的输出,其中,所述表的输入是马达转速ωm。

反馈控制器408不限于pd控制器,而是可包括其他类型的控制器,诸如pi(比例-积分)控制器或pid(比例-积分-微分)控制器。类似地,可使用具有各种前馈项和/或反馈项的其他控制系统构造。

如下面参照图6所描述的,控制系统400可包括响应于穿过间隙区域的操作而变化的一个或更多个可调节的增益。控制算法协调对发动机和马达的控制,以减小扭矩方向变化期间的传动系反冲,同时还对由传动系中的快速的扭矩变化所造成的振荡进行阻尼。控制系统400将继续运行,以提供主动式的马达阻尼并减小传动系振荡以持续预定的经过时间或直至转速误差被减小至预定的阈值以下为止。转速误差是测量的马达转速ωm与期望的马达转速ωm_des之间的差(扭绕转速ωm_twist)并可由下式来表示:

e=ωm-ωm_des或者e=ωm_twist

图6是示出根据本公开的至少一个实施例的在车轮扭矩反向期间用于发动机和马达控制的控制架构的框图。例如,控制600可通过由被编程的微处理器(诸如,tcu36、ecu38和/或vsc40)执行的一个或更多个控制算法来实现。框602表示基于输入604(在本实施例中包括加速踏板位置、传动系传动比以及车辆速度)来对驾驶员所需的变速器输入扭矩进行确定。框602确定606处所表示的并提供至框608的变速器输入扭矩请求。框608基于当前运行参数(诸如,当前运行模式、电池荷电状态(soc)、车辆速度、变速器挡位选择等)来确定用于满足变速器输入扭矩请求606的发动机扭矩请求610和马达扭矩请求612。发动机扭矩请求610经受如620处所表示的发动机子系统限制,以向发动机子系统624提供如622处所表示的发动机扭矩命令。发动机子系统控制提供对发动机或装置630的发动机扭矩控制626以及如628处所表示的发动机输出扭矩估计。

以类似的方式,在640处通过马达扭矩上限和/或下限来限制马达扭矩请求612,以生成用于马达子系统644的马达扭矩命令642。马达控制646控制马达或装置650提供用于满足马达扭矩命令642的马达扭矩。

如660处所表示的,基于各种车辆输入662(可包括例如发动机扭矩估计、马达扭矩估计、变速器扭矩比、变速器输入转速和输出转速以及车轮转速)来执行间隙区域或车轮扭矩反向检测。所产生的扭矩估计664被用于预测车轮扭矩反向或间隙区域穿越,以便使用如框666表示的所计划的一个或更多个主动式马达阻尼(amd)增益来启用amd。可使用一个或更多个查找表来计划或另外基于一个或更多个等式来计算amd增益。如图6所示,在一个实施例中,在框666处调节在由amd控制器670执行的振荡控制算法中使用的amd增益,以在从推进力转变为再生力(或者相反)、传动系扭矩接近零时提供使增益减小至接近零的增益调节668。然后,在扭矩反向发生之后,通过amd控制器670以平滑地逐步增加(phasein)振荡控制的方式使增益增大。

图7示出了在与松开加速踏板相关联的车轮扭矩反向期间的现有技术的混合动力车辆的代表性操作。由曲线图700表示的控制系统不包括amd控制器中的一个或更多个可调节的增益。曲线图a表示在穿越间隙区域716之前、期间以及之后的加速踏板位置710。如所示出的,在本示例中松开加速踏板位置710或者减小加速踏板位置710将在间隙区域716内触发车轮扭矩反向。曲线图b表示变速器输入转速请求720并示出了传动系共振下的振荡722。曲线图c中示出了变速器输入扭矩请求730。为了平滑地穿过零扭矩点,变速器输入扭矩请求速率在间隙区域716开始时(如732大体上指示的)变化以降低该速率。通过主动式马达阻尼控制来施加与转速变化相反的马达扭矩(如在734处所表示的),以对传动系共振进行阻尼。曲线图d中通过线740示出了预期的车轮扭矩,在742处指示预期的零扭矩区域,其中,啮合的齿轮齿是浮动(floating)的。曲线图e中示出了实际的车轮扭矩,如线750所表示的。使用如图f中由线760所示的恒定增益的amd控制使车轮扭矩多次穿过零扭矩(如752处所指示的),这导致传动系的闷响。

图8示出了根据本公开的一个实施例的在与松开加速踏板相关联的车轮扭矩反向期间使用具有可调节增益的amd的混合动力车辆的代表性操作。图或曲线图800所表示的控制系统包括具有一个或更多个可调节的增益的amd系统。曲线图a示出了由线810表示的加速踏板位置,该加速踏板位置导致间隙区域816内的车轮扭矩反向。曲线图b示出了如由线820表示的变速器输入转速请求和如由线822表示的在传动系共振下的相关联的振荡。曲线图c示出了由线830表示的变速器输入扭矩请求。用于对传动系振荡进行阻尼的amd扭矩由线832表示并且通过在834处所指示的零扭矩区域将一个或更多个amd增益调节至接近零而被减小至接近零。然后,增大所述增益以提供amd扭矩的平滑的转变,如836处所指示的。曲线图d示出了预期的车轮扭矩840和预期的零扭矩区域842,在零扭矩区域842中啮合的齿轮齿是浮动的。曲线图e示出了实际的车轮扭矩850。在零扭矩区域852附近的减小后的amd扭矩允许平滑的扭矩转变。

曲线图f示出了代表性amd控制系统增益860,amd控制系统增益860随着变速器输入扭矩接近间隙区域816而减小或逐步减小(phaseout),如862处表示的。一个或更多个增益减小至接近零(如864处所指示的),然后增大或逐步增加(phasein)(如866处所指示的)。尽管在本示例中一个或更多个增益被示出为分段式线性函数,但是所述一个或更多个增益可根据特定的应用而以不同的方式减小。类似地,增益的减小或逐步减小可以以不同于增益的逐步增加或增大的速率来执行。

图9是示出在代表性实施例的车轮扭矩反向期间用于发动机和马达控制的系统或方法的操作的简化流程图。图9的图示提供了根据本公开的代表性实施例的用于具有内燃发动机和一个或更多个电机的混合动力车辆的代表性控制策略或算法。所示的控制策略和/或逻辑通常被存储为由一个或更多个车辆控制器(诸如,tcu36、ecu38、vsc40和/或相关的车辆控制器)中的软件和/或硬件实现的指令或代码。所述指令或代码可使用诸如事件驱动、中断驱动、多任务、多线程等的任意数量的策略来处理。因此,所示的各种步骤或者功能可以以所示的顺序执行、以并行的方式执行或者在某些情况下可被省略。虽然未被明确地示出,但是本领域普通技术人员将认识到,一个或更多个所示的步骤或功能可根据正在采用的特定的处理策略而被重复地执行。类似地,处理的顺序对于获得在此所描述的特征和优势而言不一定被需要,而是为了易于示出和描述而进行提供。当然,示出的控制逻辑或算法可根据特定的应用而以一个或更多个控制器中的软件、硬件或软件和硬件的组合的方式来实施。当以软件实施时,控制逻辑或指令可存储在一个或更多个非暂时性的计算机可读存储介质中,该计算机可读存储介质存储有代表由计算机执行以控制车辆的指令或代码的数据。计算机可读存储介质可包括采用电、磁、光学和/或混合式存储器以存储可执行指令和相关联的校准信息、操作变量等的多个已知的物理装置中的一个或更多个。

在910处,控制系统或方法900确定变速器输入扭矩是否小于零,如果是,则在912处确定驾驶员需求是否增加。然后,框914确定变速器输入扭矩是否正在接近零。如果是,则主动式马达阻尼控制的一个或更多个增益减小或逐步减小,如916处所表示的。如果在914处变速器输入扭矩不是在接近零,则框918确定变速器输入扭矩是否通过了零点穿越,如果是,则框920增大或逐步增加主动式马达阻尼控制的一个或更多个增益。

如果变速器输入扭矩大于或等于零,如910处所指示的,则框930确定驾驶员需求是否减小。然后,框932确定变速器输入扭矩是否正在接近零。如果在932处变速器输入扭矩不是在接近零,则框934确定变速器输入扭矩是否通过了零点穿越。如果是,则框936逐步增加或增大用于主动式马达阻尼控制的至少一个增益。如果在932处变速器输入扭矩正在接近零,则至少一个主动式马达阻尼增益减小或逐步减小,如938处所指示的。如果框912、918、930或934中的任何一个的结果为否,则该过程结束并重复,如950处所指示的。类似地,在用于主动式马达阻尼控制的一个或更多个增益被调节(如框916、920、936以及938所指示的)之后,该过程结束并重复。

虽然上文描述了示例性实施例,但并非意味着这些实施例描述了要求保护的主题的所有可能的形式。更确切地,说明书中使用的词语为描述性词语而非限制性词语,并且将理解的是,在不脱离本公开的精神和范围的情况下可做出各种改变。此外,可将各个实施的实施例的特征进行组合以形成未明确描述或示出的进一步的实施例。尽管各个实施例可能已经被描述为在一个或更多个期望特性方面提供优点或者优于其它实施例或现有技术实施方式,但是如本领域普通技术人员知晓的,根据具体应用和实施方式,一个或更多个特征或特性可被折衷,以实现期望的总体系统属性。这些属性可包括但不限于成本、强度、耐用性、生命周期成本、可销售性、外观、封装、尺寸、可维护性、重量、可制造性、易组装性等。被描述为在一个或更多个特性方面不如其它实施例或现有技术实施方式合意的实施例并不一定在本公开的范围之外,并可被期望用于特定应用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1