罐式煅烧炉高温煅后焦余热利用汽水循环系统的制作方法

文档序号:4489878阅读:630来源:国知局
专利名称:罐式煅烧炉高温煅后焦余热利用汽水循环系统的制作方法
技术领域
罐式煅烧炉高温煅后焦余热利用汽水循环系统,属于固体高温物料余热利用技术领域,尤其涉及一种石油焦罐式煅烧炉高温煅后焦余热利用系统。
背景技术
石油焦通过高温(1350°C左右)煅烧去除其挥发份,完全炭化形成煅后焦。煅后焦广泛用于生产铝电解阳极、炼钢用石墨电极、增碳剂、工业硅及其它炭制品,是重要的基础原材料。我国煅后焦产量世界第一,2010年总产量为1032万吨,2011年总产量约为1200万吨,其中2/3以上是采用罐式煅烧炉生产。罐式煅烧工艺有两种余热可供利用高温烟气余热和高温煅后焦余热。高温烟气余热利用技术已经较为成熟,在国内许多企业得到了推广应用,并取得了显著的经济和社会效益。罐式煅烧炉底板出口的煅后焦温度在1000°C以上,一方面,其携带的余热大约占整个煅烧工艺总能的33. 5%,具有很高的利用价值;另一方面,高温煅后焦在排料前需要进行密闭均匀冷却,避免排料时发生氧化燃烧反应。目前,绝大多数企业采用传统的水冷夹套对高温煅后焦进行冷却,依靠大量的循环水流动将热量带走,再经过凉水降温后送回水冷夹套内循环利用。该冷却方式的弊端是(1)高温煅后焦的余热没有利用,同时还消耗了大量水资源;(2)物料冷却不均匀,位于水冷夹套通道中心的部分物料温度较高,排料时有少量煅后焦发生烧损,降低了煅烧实收率;也导致煅后焦灰分含量增加,质量下降。因此,迫切需要综合解决高温煅后焦余热利用和均匀冷却问题。潍坊联兴炭素有限公司的“煅烧炉高温物料冷却及余热回收系统”(申请号为201010613254. 2)在每个煅烧罐体下布置一套由内、外换热器组成的换热器,内、外换热器通过供水总管和回水总管与汽包相连通;汽包内的水依靠自然循环,经过供水总管分别进入内、外换热器,在内、外换热器内吸收高温煅后焦余热蒸发形成汽水混合物,内、外换热器的汽水混合物分别在两条回水总管内汇集,进入汽包,在汽包内进行水、汽分离,形成蒸汽。该专利初步解决了利用高温煅后焦余热生产蒸汽的问题。但随着罐式煅烧工艺的不断发展,每台罐式煅烧炉的煅烧罐数量逐渐增加,炉体越来越长。比如潍坊联兴炭素有限公司三期工程的每台罐式煅烧炉有60个煅烧罐(分为两排,每排30罐),炉体长度为38米。如果采用上述专利的一套汽水循环系统将所有煅烧罐的高温煅后焦余热利用起来,汽水循环管路很长,流动阻力较大,供水前端和后端的换热器的流量分配差异也较大,容易造成汽水循环系统工作不稳定,甚至出现换热器烧毁现象。

发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种与罐式煅烧工艺匹配、汽水循环距离短、能够稳定运行的罐式煅烧炉高温煅后焦余热利用汽水循环系统。本发明解决其技术问题所采用的技术方案是该罐式煅烧炉高温煅后焦余热利用汽水循环系统,包括集汽包、下降管路、上升管路、换热器和集汽包检修切换管路,集汽包上部连通蒸汽输出管,集汽包中部连通补水管路,集汽包下部与下降管路连通,下降管路连通多个由外换热器和内换热器组成的换热器,换热器再经由上升管路连通集汽包形成水循环系统,其特征在于所述集汽包布置在罐式煅烧炉的中部,将所有换热器从罐式煅烧炉中部沿炉体长度方向向两侧分为两组,形成两个分汽水循环系统;每个分汽水循环系统设置一条下降总管、一条内换热器上升总管和一条外换热器上升总管;每个分汽水循环系统的换热器并联在所述的下降总管、内换热器上升总管和外换热器上升总管之间。集汽包内的水分别进入两个分汽水循环系统的下降总管,然后分别进入所有换热器的内换热器和外换热器,在内换热器和外换热器内被加热。所述的集汽包检修切换管路包括凉水池、水泵、供水管、回水管和第三闸阀,回水管一端与第二闸阀下方的两条内换热器上升总管以及两条外换热器上升总管连通,另一端连通凉水池,供水管一端与第二闸阀下方的两条下降总管连通,另一端连通水泵,水泵连通凉水池;
所述供水管和回水管中均安装第三闸阀。所述的下降总管分为垂直段和水平段两部分,内换热器进水管和外换热器进水管都与下降总管的水平段连通。所述的内换热器上升总管和外换热器上升总管都分为垂直段和倾斜段两部分,倾斜段沿流动方向呈向上倾斜布置,内换热器出水管都与内换热器上升总管的倾斜段连通,外换热器出水管都与外换热器上升总管的倾斜段连通。倾斜段沿流动方向呈向上倾斜布置,有利于汽水混合物的流动,避免气阻现象产生。所述的换热器的外换热器包括换热器本体、环形上集箱、环形下集箱、上法兰和下法兰,环形上集箱和环形下集箱分别安装在换热器本体两端,下法兰安装在环形下集箱下端,上法兰安装在环形上集箱上端,上法兰由两个对称的法兰板组合而成,两个法兰板通过下面的连接板连接在一起,两个法兰板之间留有缝隙,在缝隙内填充耐热材料。优选的,所述的相邻两个法兰板之间缝隙内的耐热材料为耐热陶瓷纤维。与现有技术相比,本发明所具有的有益效果是
1、将汽水循环系统分为两个分汽水循环系统,有效缩短了汽水循环的距离,降低了流动阻力,也减小了各换热器流量分配的不均性;内换热器和外换热器分别设置上升总管,消除了内换热器和外换热器内部流动差别较大的影响;
2、与换热器相连接部分的两条上升总管,沿流动方向呈向上倾斜布置,有利于汽水混合物的流动,避免气阻现象产生,因此,提高了汽水循环系统运行可靠性;
3、换热器的外换热器的上法兰由两个对称的法兰板组合而成,两个法兰板通过下面的连接板连接在一起,两个法兰板之间留有缝隙,可以有效补偿上法兰热膨胀大于环形上集箱热膨胀而引起的变形,降低上法兰与环形上集箱之间焊缝以及环形上集箱环焊缝的应力,提高了换热器工作可靠性。


图1是该罐式煅烧炉高温煅后焦余热利用汽水循环系统的连接示意图。图2是该罐式煅烧炉高温煅后焦余热利用汽水循环系统中换热器的结构示意图。图中1、换热器 2、换热器本体 3、截止阀4、内换热器进水管 5、外换热器进水管6、下降总管7、内换热器出水管8、第一闸阀9、外换热器出水管10、外换热器上升总管11、内换热器上升总管12、第二闸阀13、液位计14、集汽包15、安全阀16、蒸汽输出管17、压力表18、补水管路19、回水管20、第三闸阀21、供水管22、环形上集箱23、环形下集箱24、水泵25、凉水池26、上法兰27、下法兰28、连接板29、耐热材料。
具体实施例方式图f2是该罐式煅烧炉高温煅后焦余热利用汽水循环系统的最佳实施例,下面结合附图Γ2对该罐式煅烧炉高温煅后焦余热利用汽水循环系统做进一步说明。参照附图1 :罐式煅烧炉高温煅后焦余热利用汽水循环系统,包括集汽包14、补水管路18、下降管路、上升管路、换热器I和集汽包检修切换管路。其中,集汽包14设有液位计13、安全阀15和压力表17 ;集汽包14上部与蒸汽输出管16连通,在集汽包14内形成的蒸汽通过蒸汽输出管16对外输送。集汽包14中部与补水管路18连通。罐式煅烧炉的每个煅烧罐体下面分别布置一套换热器1,所有换热器I均由外换热器和内换热器组成。下降管路的下降总管6上设有第二闸阀12,内换热器进水管4和外换热器进水管5上分别设有 截止阀3并分别与下降总管6连通。截止阀3用于调节外换热器和内换热器的水流量,也方便换热器I的更换。上升管路分为内换热器上升管路和外换热器上升管路。内换热器出水管7与内换热器上升总管11连通;外换热器出水管9与外换热器上升总管10连通;内换热器出水管7和外换热器出水管9上分别设有第一闸阀8,内换热器上升总管11和外换热器上升总管10上分别设有第二闸阀12。集汽包检修切换管路包括凉水池25、水泵24、供水管21、回水管19和第三闸阀20。集汽包14布置在罐式煅烧炉的中部,将所有换热器I从罐式煅烧炉中部沿炉体长度方向向两侧分为两组,形成两个分汽水循环系统;每个分汽水循环系统设置一条下降总管6、一条内换热器上升总管11和一条外换热器上升总管10 ;每个分汽水循环系统的换热器并联在下降总管6、内换热器上升总管11和外换热器上升总管10之间;集汽包检修切换管路的供水管21与第二闸阀12下方的两条下降总管6连通,回水管19与第二闸阀12下方的两条内换热器上升总管11和两条外换热器上升总管10连通。其中,换热器I的数量在实际应用中可以根据实际工况和需求进行调整,以满足整个系统的工作条件。其中,下降总管6分为垂直段和水平段两部分,内换热器进水管4和外换热器进水管5都与下降总管6的水平段连通。其中,内换热器上升总管11和外换热器上升总管10都分为垂直段和倾斜段两部分,倾斜段沿流动方向呈向上倾斜布置,内换热器出水管7都与内换热器上升总管11的倾斜段连通,外换热器出水管9都与外换热器上升总管10的倾斜段连通。参照附图2,换热器I的外换热器包括换热器本体2、环形上集箱22、环形下集箱23、上法兰26和下法兰27,环形上集箱22和环形下集箱23分别安装在换热器本体2两端,下法兰27安装在环形下集箱23下端,上法兰26安装在环形上集箱22上端,上法兰26由两个对称的法兰板组合而成,两个法兰板通过下面的连接板28连接在一起,两个法兰板之间留有缝隙,在缝隙内填充耐热材料29,耐热材料29可为耐热陶瓷纤维或石棉等耐火材质。工作过程如下在罐式煅烧炉高温煅后焦余热利用汽水循环系统正常工作时,截止阀3、第一闸阀8和第二闸阀12处于开启状态,第三闸阀20处于关闭状态。在下降总管6与内换热器上升总管11和外换热器上升总管10内工质密度差的驱动下,集汽包14内的水分别进入两个分汽水循环系统的下降总管6,然后分别进入所有换热器I的内换热器和外换热器,在内换热器和外换热器内被加热,一部分水蒸发变成蒸汽,从内换热器流出来的汽水混合物经过内换热器上升总管11进入集汽包14,从外换热器流出来的汽水混合物经过外换热器上升总管10进入集汽包14,汽水混合物在集汽包14内进行汽水分离,产生的蒸汽通过蒸汽输出管外供。水通过补水管路18送入集汽包14,维持集汽包14的水位在一定范围内。如果进入各内换热器的循环水流量差异较大,可以通过调节内换热器进水管4上的截止阀3开度,使他们的流量保持一致。如果进入各外换热器I的循环水流量差异较大,可以通过调节外换热器进水管5上的截止阀3开度,使他们的流量保持一致。当集汽包14需要检修或检验时,将第三闸阀20开启,将第二闸阀12关闭。凉水池25中的水在水泵24的驱动下,经过供水管21进入下降总管6,然后再进入内换热器和外换热器,然后再分别经过内换热器上升总管11和外换热器上升总管10进入回水管19,回到凉水池25。此时切断了集汽包14与换热器I之间的通路,可以实现在罐式煅烧炉运行条件下的集汽包14检修或检验。以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
权利要求
1.罐式煅烧炉高温煅后焦余热利用汽水循环系统,包括集汽包(14)、下降管路、上升管路、换热器(I)和集汽包检修切换管路,集汽包(14)上部连通蒸汽输出管(16),集汽包(14)中部连通补水管路(18),集汽包(14)下部与下降管路连通,下降管路连通多个由外换热器和内换热器组成的换热器(I ),换热器(I)再经由上升管路连通集汽包(14)形成水循环系统,其特征在于所述集汽包(14)布置在罐式煅烧炉的中部,将所有换热器(I)从罐式煅烧炉中部沿炉体长度方向向两侧分为两组,形成两个分汽水循环系统;每个分汽水循环系统设置一条下降总管(6)、一条内换热器上升总管(11)和一条外换热器上升总管(10);每个分汽水循环系统的换热器(I)并联在所述的下降总管(6)、内换热器上升总管(11)和外换热器上升总管(10)之间。
2.根据权利要求I所述的罐式煅烧炉高温煅后焦余热利用汽水循环系统,其特征在于所述的集汽包检修切换管路包括凉水池(25)、水泵(24)、供水管(21)、回水管(19)和第三闸阀(20),回水管(19) 一端与第二闸阀(12)下方的两条内换热器上升总管(11)以及两条外换热器上升总管(10)连通,另一端连通凉水池(25),供水管(21) —端与第二闸阀(12)下方的两条下降总管(6)连通,另一端连通水泵(24),水泵连通凉水池(25); 所述供水管(21)和回水管(19)中均安装第三闸阀(20)。
3.根据权利要求I所述的罐式煅烧炉高温煅后焦余热利用汽水循环系统,其特征在于所述的下降总管(6)分为垂直段和水平段两部分,内换热器进水管(4)和外换热器进水管(5)都与下降总管(6)的水平段连通。
4.根据权利要求I所述的罐式煅烧炉高温煅后焦余热利用汽水循环系统,其特征在于所述的内换热器上升总管(11)和外换热器上升总管(10)都分为垂直段和倾斜段两部分,倾斜段沿流动方向呈向上倾斜布置,内换热器出水管(7)都与内换热器上升总管(11)的倾斜段连通,外换热器出水管(9)都与外换热器上升总管(10)的倾斜段连通。
5.根据权利要求I所述的罐式煅烧炉高温煅后焦余热利用汽水循环系统,其特征在于所述的换热器(I)的外换热器包括换热器本体(2)、环形上集箱(22)、环形下集箱(23)、上法兰(26 )和下法兰(27 ),环形上集箱(22 )和环形下集箱(23 )分别安装在换热器本体(2 )两端,下法兰(27 )安装在环形下集箱(23 )下端,上法兰(26 )安装在环形上集箱(22 )上端,上法兰(26 )由两个对称的法兰板组合而成,两个法兰板通过下面的连接板(28 )连接在一起,两个法兰板之间留有缝隙,在缝隙内填充耐热材料(29 )。
6.根据权利要求5所述的罐式煅烧炉高温煅后焦余热利用汽水循环系统,其特征在于所述的耐热材料(29)为耐热陶瓷纤维。
全文摘要
罐式煅烧炉高温煅后焦余热利用汽水循环系统,属于固体高温物料余热利用技术领域。其特征在于所述集汽包(14)布置在罐式煅烧炉的中部,将所有换热器(1)从罐式煅烧炉中部沿炉体长度方向向两侧分为两组,形成两个分汽水循环系统;每个分汽水循环系统设置一条下降总管(6)、一条内换热器上升总管(11)和一条外换热器上升总管(10);每个分汽水循环系统的换热器(1)并联在所述的下降总管(6)、内换热器上升总管(11)和外换热器上升总管(10)之间。该罐式煅烧炉高温煅后焦余热利用汽水循环系统有效缩短了汽水循环的距离,降低了流动阻力,也减小了各换热器流量分配的不均性,提高了汽水循环系统运行可靠性。
文档编号F22B1/04GK102980166SQ201210568888
公开日2013年3月20日 申请日期2012年12月25日 优先权日2012年12月25日
发明者刘永启, 王佐峰, 王佐任, 刘瑞祥, 郑斌 申请人:山东理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1