一种三维纳米棒状Al2O3@分子筛壳核复合材料及其制备方法与流程

文档序号:11220044阅读:905来源:国知局
一种三维纳米棒状Al2O3@分子筛壳核复合材料及其制备方法与流程

本发明属于无机复合材料领域,具体涉及一种三维纳米棒状al2o3@分子筛壳核复合材料及其制备方法。



背景技术:

沸石分子筛是一种具备均匀微孔的结晶态的固体催化剂,因其具备均匀地微孔结构、优良的机械稳定性和水热稳定性,广泛地应用于石油化工、精细化工等领域。但由于其孔道尺寸过小,随之带来传输扩散性较差等问题,从而造成反应转化率低、催化剂积碳失活等一些列的问题,解决此项问题的一个策略便是合成具备多级孔道的沸石分子筛材料,即将介孔引入到原有的微孔体系中,即能保持沸石分子筛原有的强酸性,稳定性等,又能缩短传输路径,进一步增加催化剂的传输扩散性。

近年来,用于催化领域的复合材料被认为是一个重要的研究热点,复合材料可以集中催化剂材料中各组分的优势,形成一个具备不同功能于一体的材料。因此,如何将材料很好的复合在一起,或者怎样真正意义上实现不同材料功能的结合,是科研工作者们一直在探究的问题。



技术实现要素:

本发明的目的在于提供一种新型的三维纳米棒状al2o3@分子筛壳核复合材料,该复合材料的壳层为三维纳米棒状al2o3组装而成的介孔层,内核为分子筛纳米粒子,所述三维纳米棒状al2o3@分子筛复合材料具备多级孔介孔-微孔核壳整体结构,且涉及的制备方法简单可行、条件易于控制,适合推广应用。

为实现上述目的,本发明采用的技术方案为:

一种三维纳米棒状al2o3@分子筛壳核复合材料的制备方法,包括以下步骤:

1)微孔纳米分子筛的合成:将分子筛微孔结构导向剂、硅源、水搅拌混合均匀得澄清溶液i;将所得澄清溶液i加热进行晶化反应,再将所得产物依次进行洗涤、干燥、焙烧,得微孔纳米分子筛材料;

2)将微孔纳米分子筛材料加入醇溶剂中,在密封条件下超声分散均匀,得混合液ii;

3)将铝源加入步骤2)所得混合液ii中,在密封条件下搅拌混合均匀,得混合液iii(仲丁醇铝/分子筛的混合溶液);

4)将丁醇与水充分混合,配制丁醇水溶液,静置分层后取上层溶液作为反应溶剂体系;然后在搅拌条件下,将所得混合液iii滴加到反应溶剂体系中进行搅拌反应;

5)将步骤4)所得反应体系进行烘干得到干燥粉末然后进行焙烧,即得三维纳米棒状al2o3@分子筛核壳复合材料。

上述方案中,所述分子筛微孔结构导向剂为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵、四乙烯五铵或乙二胺;所述硅源为正硅酸四乙酯、硅溶胶或白炭黑;所述醇溶剂为乙醇、甲醇、异丙醇或正丁醇。

上述方案中,所述铝源为仲丁醇铝。

上述方案中,步骤1)中所述硅源的添加量以其引入的sio2的含量为准,其中分子筛微孔结构导向剂、sio2和引入的水(包括原料中引入的水)的质量比为(0.8-1.2):(0.8-1.2):(8-10);步骤1)中所述搅拌时间为2-5h。

上述方案中,所述晶化反应温度为100-110℃,时间为20-40h;步骤1)中所述焙烧温度为500-600℃,焙烧时间为5-8h。

上述方案中,所述所述微孔纳米分子筛与醇类溶剂的质量比为1:(100-200);步骤2)中所述超声时间为1-5h。

上述方案中,所述步骤3)中的铝源与醇类溶剂的质量比为1:(25-50);搅拌时间为10-50min。

上述方案中,步骤4)中所述丁醇和水的体积比为(1-2):1,搅拌时间为1-10min,静置时间为5-30min。

上述方案中,步骤2)中所述醇溶剂和反应溶剂体系的体积比为1:(1-10)。

优选的,所述步骤2)中所述醇溶剂和反应溶剂体系的体积比为1:(1-2)。

上述方案中,步骤4)中所述搅拌反应温度为20-80℃,滴加时间为1-10min,搅拌反应时间为0.5-2h。

上述方案中,步骤5)中所述干燥温度为40-100℃,时间为10-24h;步骤5)中所述焙烧温度为400-600℃,时间为2-8h。

根据上述方案制备的三维纳米棒状al2o3@分子筛壳核复合材料,其特征在于,该复合材料具有壳核复合结构,包括壳层和内核,其中壳层由纳米棒状al2o3组装而成的三维介孔层,介孔尺寸为20-26nm;内核为微孔纳米分子筛,其粒径为100-200nm,微孔尺寸为0.45nm。

本发明的原理为:本发明将分子筛与铝源仲丁醇铝充分混合在无水或少水体系的醇溶剂中,使微孔纳米分子筛颗粒被仲丁醇铝分子所围绕,再将所得反应体系加入含有一定量水的溶剂体系(反应溶剂体系)中,调节分子筛颗粒和仲丁醇铝的投料比,以及反应温度和滴加速率,使附着在分子筛颗粒表面的仲丁醇铝分子水解缩合产生醇分子并向外扩散,生成棒状al2o3,并相互堆积组装在纳米分子筛的外表面,形成由三维棒状组装而成的介孔壳层,并与微孔纳米分子筛复合得到所述三维纳米棒状al2o3@分子筛壳核复合材料。

本发明的有益效果为:以经静置分层处理的丁醇水溶液为反应溶剂体系,将仲丁醇铝/分子筛的混合溶液滴加到反应溶剂体系中,即可使仲丁醇铝分子原位水解缩合生成棒状al2o3材料,并附着在微孔纳米分子筛表面形成三维介孔纳米棒状al2o3@分子筛核壳复合材料;该复合材料具备多级孔介孔-微孔结构,介孔al2o3壳层能够极大的提高催化剂的介孔比表面积,同时对微孔分子筛内核有保护作用;al2o3作为一种工业上常用的催化剂载体,也可以进一步负载其他催化活性物质,进行负载改性,且al2o3纳米棒组成的介孔孔道结构,在有效改善催化剂的流通扩散性的同时,并有利于负载改性效果和稳定性;此外,本发明涉及的制备方法简单,反应条件易于调控,有望实现大规模工业生产,在分子吸附以及工业催化等领域均有极大的应用前景。

附图说明

图1为本发明实施例1所得产物的扫描电镜图。

图2为本发明实施例1所得产物的透射电镜图

图3为本发明实施例2所得产物的xrd图。

图4为本发明实施例2所得产物的氩气吸脱附曲线图。

图5为本发明实施例3所得产物的介孔孔径分布图。

图6为本发明实施例3所得产物的微孔孔径分布图。

具体实施方式

为了更好的理解本发明,下面结合具体实施例和附图进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。

以下实施例中,如无具体说明,采用的试剂均为市售化学试剂。

实施例1

一种三维纳米棒状al2o3@分子筛壳核复合材料,其制备方法包括如下步骤:

1)微孔纳米分子筛的合成:将5.7gtpaoh(40wt%)、10gteos加入16g去离子水中,搅拌3h,混合均匀得澄清溶液i,将此溶液倒入反应釜中,在100℃下晶化24h,去除样品洗涤干净,烘干,置于550℃马弗炉焙烧7h,得微孔纳米分子筛材料;

2)将0.25g所得微孔纳米分子筛材料加入40ml异丙醇中,在密封条件下,超声3h分散均匀得混合液ii;

3)将1g仲丁醇铝加入混合液ii中,搅拌30min,混合均匀得混合液iii(仲丁醇铝/分子筛的混合溶液);

4)将100ml丁醇与50ml水搅拌5min充分混合,配制丁醇的水溶液,静置10min分层后,取上层清液40ml作为反应溶剂体系;然后将所得混合液iii快速滴加到反应溶剂体系中,边滴加边搅拌反应一段时间,其中搅拌反应温度为60℃,滴加时间为1min,搅拌反应时间为1h;

5)将步骤4)所得反应体系置于100℃烘箱中干燥10h,然后将所得干燥粉末置于500℃马弗炉中焙烧2h,即得所述三维纳米棒状al2o3@分子筛壳核复合材料。

图1为本实施例所得产物的扫描电镜图。图中可见所得产物由一个一个的尺寸为100-200nm的颗粒堆积而成,颗粒表面有须状的壳层形貌。图2为本实施例所得产物的透射电镜图,可以看出所得产物包括纳米分子筛材料内核,其表面附着着由al2o3纳米棒组装而成的壳层,al2o3纳米棒和分子筛很好地复合在一起,形成了具备两种孔道结构的核壳复合材料。

实施例2

一种三维纳米棒状al2o3@分子筛壳核复合材料,其制备方法包括如下步骤:

1)微孔纳米分子筛的合成:将5.7gtpaoh(40wt%)、10g硅溶胶(30wt%)加入16g去离子水中,搅拌2h,混合均匀得澄清溶液i,将此溶液倒入反应釜中,在100℃下晶化24h,去除样品洗涤干净,烘干,置于550℃马弗炉焙烧6h,得微孔纳米分子筛材料;

2)将0.2g所得微孔纳米分子筛材料加入50ml异丙醇中,在密封条件下,超声3h分散均匀得混合液ii;

3)将1g仲丁醇铝加入混合液ii中,搅拌30min,混合均匀得混合液iii(仲丁醇铝/分子筛的混合溶液);

4)将100ml丁醇与80ml水搅拌10min充分混合,配制丁醇的水溶液,静置10min分层后,取上层清液80ml作为反应溶剂体系;然后在搅拌条件下,将所得混合液iii滴加到反应溶剂体系中进行搅拌反应,其中搅拌反应温度为20℃,滴加时间为2min,搅拌反应时间为2h;

5)将步骤4)所得反应体系置于60℃烘箱中干燥24h,然后将所得干燥粉末置于500℃马弗炉焙烧3h,即得所述三维纳米棒状al2o3@分子筛壳核复合材料。

图3为本实施例所得产物的xrd图,图中基本表现出mfi型分子筛的衍射峰,表明所得棒状al2o3呈无定形状。图4为本实施例所得产物的氩气吸脱附曲线图,在相对压力p/p0小于0.02时,吸附量陡增,表明所得复合材料中具备大量的微孔(分子筛提供);相对压力p/p0为0.7~1时,迟滞环的出现,表明所得复合材料中存在介孔(纳米棒状al2o3提供)。本实施例所得产物的孔属性参数见表1。

表1实施例2所得产物的孔属性参数

实施例3

一种三维纳米棒状al2o3@分子筛壳核复合材料,其制备方法包括如下步骤:

1)微孔纳米分子筛的合成:将5.5gtpaoh(40wt%)、3g白炭黑(工业纳米sio2)加入15g去离子水中,搅拌4h,混合均匀得澄清溶液i,将此溶液倒入反应釜中,在110℃下晶化20h,去除样品洗涤干净,烘干,置于550℃马弗炉焙烧6h,得微孔纳米分子筛材料;

2)将0.3g所得微孔纳米分子筛材料加入50ml异丙醇中,在密封条件下,超声3h分散均匀得混合液ii;

3)将1.2g仲丁醇铝加入混合液ii中,搅拌25min,混合均匀得混合液iii(仲丁醇铝/分子筛的混合溶液);

4)将100ml丁醇与100ml水搅拌3min充分混合,配制丁醇的水溶液,静置10min分层后,取上层清液50ml作为反应溶剂体系;然后在搅拌条件下,将所得混合液iii滴加到反应溶剂体系中进行搅拌反应,其中搅拌反应温度为40℃,滴加时间为1min,搅拌反应时间为2h;

5)将步骤4)所得反应体系置于60℃烘箱中干燥24h,然后将所得干燥粉末置于500℃马弗炉焙烧3h,即得所述三维纳米棒状al2o3@分子筛壳核复合材料。

图5为本实施例所得产物的介孔孔径分布图,所得复合材料的介孔在20-26nm分布相对集中。图6为本实施例所得产物的微孔孔径分布图,微孔分布在0.45nm,分布均一。

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求保护范围由所附属的权利要求书及其等效物界定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1