一种硅藻土中空纤维陶瓷膜的制备方法

文档序号:10498932阅读:412来源:国知局
一种硅藻土中空纤维陶瓷膜的制备方法
【专利摘要】本发明涉及水处理用膜技术领域,是一种利用价格较为低廉硅藻土作为原料,采用相转化法和干?湿法涂覆纺丝技术结合低温烧结制备一种中空纤维陶瓷膜的制备方法,应用于有酸碱腐蚀,高温等苛刻条件的大规模的工业水微滤处理中。所述的硅藻土中空纤维陶瓷膜通过相转化法一步成型,添加烧结助剂在低温下烧结而成,既有效的保护了硅藻土本身的孔结构,又能获得强度良好的陶瓷膜,该陶瓷膜具备了中空陶瓷膜的优良特性,具有原材料价格低廉,烧结温度低,易实现规模化生产等优点。
【专利说明】
一种硅藻土中空纤维陶瓷膜的制备方法
技术领域
[0001]本发明属于水处理用膜技术领域,具体地说,是一种硅藻土中空纤维陶瓷膜的制备方法,适用于酸碱,高温的大规模化学工业、饮用水等水处理。
【背景技术】
[0002]目前,商品化的中空纤维陶瓷膜多以纳米Al2O3和YSZ为主要材质,虽然具备了良好的陶瓷膜的性质,但是这类原材料多以纳米级材料为主,并且烧结温度需要在1400°C以上,昂贵的原材料价格和居高不下烧结温度限制了其大规模的工业应用。
[0003]硅藻土来源广泛,价格低廉,本身就具有大量微孔,另外由于其在温度超过1200°C本身的孔道就会坍塌,利用硅藻土本身的孔隙通过添加烧结助剂获得多孔陶瓷已有报道。所述利用硅藻土为原材料通过相转化/烧结来制备中空纤维陶瓷膜,不仅可以降低原材料的成本,还可以降低烧结的温度,从而可以大大降低中空纤维陶瓷膜的成本。
[0004]Ceramics Internat1nal杂志2013年第8期8955?8962页报道了通过添加高岭土,烧结了硅藻土复合支撑体层,在1200°C时,当高岭土的质量分数增加到15%时,孔径在0.4?
1.2μπι之间,所制备的膜支撑体在保持合理渗透性的情况下机械性能增强。
[0005]中国陶瓷杂志2002年第4期I?3页报道了以硅藻土为主要原料,天然有机细粉为造孔剂,水玻璃为高温粘合剂,经半干压成型,常规烧成,制出了性能优良的硅藻土多孔陶瓷,随着造孔剂的加入量、烧成制度的改变,气孔率从47%增加至71%,最大孔径从I?ΙΟμπι,密度从1.3g/cm3到0.7g/cm3改变,抗压强度则从11.05MPa降至4.38MPa。在用烧结方法制备出不同孔径及显气孔率的材料,过滤精度高、过滤速率大,能在0-400 °C温度范围内正常工作,适用于饮料、酿酒、医药、食用油、污水处理、石油化工、催化剂载体以及环保等方而的各种各种超精密和无菌过滤。
[0006]催化学报杂志1999年第I期42?44页报道了一种以硅藻土微粒骨架孔为孔道,以莫来石(3A1 203.2Si02)为硅藻土微粒的粘连剂,采用溶胶-凝胶-烧结技术制备硅藻土-莫来石复合陶瓷膜支承体。这种膜支承体孔径集中于2 Mi左右,孔隙率约为0.4,耐压强度大于415MPa,是一种品质优良的膜支承体材料。
[0007]中国发明专利CN201510110265.1公开了一种中空纤维陶瓷膜的制备方法,以聚醚砜(PES)N-甲基-2-吡咯烷酮溶液(NMP)作为有机溶液,加入YSZ和Fe2O3混合粉末制备了铸膜液利用纺丝机进行纺丝完成后进行高温烧结。其特征在于采用了相转化法结合高温技术。所用原材料YSZ价格较为昂贵,且1300°C高温烧结也会增加烧结成本,采用吉林本地资源硅藻土,添加烧结助剂进行低温烧结不仅可以降低成本利于产业化生产,还可以开发本地资源。另外,在纺丝过程中,采用纤维衬管作为衬底进行纺丝涂覆,能够在自由调控膜的尺寸大小的同时使制成的陶瓷膜机械性能良好。

【发明内容】

[0008]本发明的目的是,提供了一种硅藻土中空纤维陶瓷膜的制备方法,以解决现有中空纤维陶瓷膜的原材料成本过高以及烧结温度过高的问题。所制备的硅藻土中空纤维陶瓷膜具有很好的机械强度,耐酸碱腐蚀,耐高温,可以应用于大规模的工业水微滤处理。
[0009]本发明的目的是由以下技术方案来实现的:一种硅藻土中空纤维陶瓷膜的制备方法,其特征是,包括以下步骤:
(I)铸膜液的配置:取有机粘结剂,致孔剂溶于有机溶剂,60-80 0C水浴加热,机械搅拌6?Sh,配得基础有机铸膜液;加入硅藻土,Al203,烧结助剂,继续恒温60?80 V,水浴加热并配合机械搅拌20?26h,获得铸膜液;
(2 )纺丝过程:将所制备的铸膜液放入纺丝机的浆料罐中,在60?80 °C的抽真空4?8h排出残余气泡,静置脱泡20?26h,在纺丝头中装上中空纤维衬管,调整铸膜液挤出速率2?10mL/min,中空纤维衬管的挤出速率2?10cm/min,空气距调整为2?15cm,凝固浴的温度为20-30 V,进行纺丝涂覆;从凝固浴里出来的丝膜会被绕到绕丝轮上,卷绕速度20?30m/min,将制备好的硅藻土中空纤维膜浸入去离子水中浸泡20?26h进行完整的相转化过程;
(3)干燥过程:在温度15?25°C下,将所制备的膜干燥20?26h;
(4)烧结过程:将所制备的硅藻土中空纤维膜送入马弗炉烧结,烧结低温阶段烧结温度为200?600°C,烧结速率控制在I?5°C/min,高温阶段烧结温度为1000?1300°C,烧结速率为为5?10°C/min,在低温阶段的保温时间为60?200min,在高温阶段的保温时间为200?480mino
[0010]所述有机粘结剂为聚醚砜(PES)、聚砜(PS)、聚偏氟乙烯(PVDF)、聚醚酞亚胺(PEI)或聚丙烯晴(PAN),在铸膜液中的质量分数为10%?20%;所述有机溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAC)或N-甲基吡咯烷酮(NMP),在铸膜液中的质量分数为40%?50%。
[0011]所述致孔剂为纤维素、淀粉、炭黑、聚乙烯吡咯烷酮(K3Q)或聚乙二醇(PEG),分子量400?20000,在铸膜液中的质量分数为5%?15%。
[0012]硅藻土和Al2O3的添加量在20%?50%,A1203和硅藻土的添加的质量比为0.85?2.5。
[0013]所制备的铸膜液粘度在4300?9400MPa.s。
[0014]所述烧结助剂为纳米CaC03、MgC03、Mg0、V205或AlF3,在铸膜液中的质量分数为2%?10%。
[0015]本发明的一种硅藻土中空纤维陶瓷膜的制备方法有益效果是:方法科学合理,适用性强,效果佳。所制备的硅藻土中空纤维陶瓷膜的空隙率最大可以达到64.8%,抗裂的强度最大可以达到60.5 MPa,水通量的测试表明在较小的操作压力下,陶瓷膜的水通量性能良好,可以达到315.73 171113*11。最大孔径计算为7.2 μπι,与所扫描电镜图片的孔径大小基本符合。另外对所制备的陶瓷膜的酸碱性能测试发现,陶瓷膜的耐酸碱能力可达90%以上,所制备的硅藻土中空纤维陶瓷膜可以应用在酸碱环境下的微滤场合。
【附图说明】
图1为实施例1的硅藻土中空纤维陶瓷膜烧结前横截面SEM图;
图2为实施例1的硅藻土中空纤维陶瓷膜烧结后横截面SEM图;
图3为实施例1的硅藻土中空纤维陶瓷膜烧结后孔结构SEM图;
图4为实施例2的硅藻土中空纤维陶瓷膜烧结后孔结构SEM图。
【具体实施方式】
[0016]以下是实施案例和附图,对本发明作进一步说明,有助于专业技术人员更好地理解,但不以任何形式限制本发明。
[0017]实施例1:
将5g的聚合物聚醚砜(PES),7.5g致孔剂聚乙二醇(PEG1000)加入到65g有机溶剂N,N-二甲基乙酰胺(DMAC)中,在75°C下进行水浴加热,机械搅拌6 h使聚合物充分溶解。
[0018]在聚合物溶液中加入30.5g硅藻土和28g氧化铝作为无机粒子以及4g烧结所需要的低温烧结助剂V2O5,继续恒温水浴加热并机械搅拌24 h后,得到铸膜液。
[0019]将所制备的铸膜液放入纺丝机的浆料罐中,在60°C的抽真空4h排出残余气泡,静置脱泡20h。在纺丝头中装上已制备的中空纤维衬管,调整铸膜液挤出速率2mL/min,衬管的挤出速率2cm/min,空气距调整为2cm,凝固浴的温度设定为20°C,进行纺丝涂覆。从凝固浴里出来的丝膜会被绕到绕丝轮上,卷绕速度设定在20m/min,将制备好的娃藻土中空纤维膜浸入去离子水中浸泡26h进行完整的相转化过程。
[0020]将相转化后硅藻土中空纤维膜前驱体膜置于室温下干燥24h,进行烧结,烧结制度:室温?500 °C,升温速率为2 °C/min,并在500 V下保温2 h,500-1000 °C升温速率为2 °C /min,1000?1200°C,升温速率为5°C/min,1200°C下保温6 h。
[0021]所制备的陶瓷膜烧结前后横截面SEM如图1,图2所示。孔结构SEM如图3所示。
[0022]实施例2:
将22.5g的聚合物聚砜(PS),7.5g致孔剂聚乙二醇(PEG400)加入到67.5g有机溶剂N-甲基吡咯烷酮(NMP)中,在70°C下进行水浴加热,机械搅拌4 h使聚合物充分溶解。
[0023]在聚合物溶液中加入24.3g硅藻土和20.7g氧化铝作为无机粒子以及7.5g烧结所需要的低温烧结助剂AlF3,继续恒温水浴加热并机械搅拌20 h后,得到铸膜液。
[0024]将所制备的铸膜液放入纺丝机的浆料罐中,在65°C的抽真空5h排出残余气泡,静置脱泡20h。在纺丝头中装上已制备的中空纤维衬管,调整铸膜液挤出速率2mL/min,衬管的挤出速率2cm/min,空气距调整为2cm,凝固浴的温度设定为20°C,进行纺丝涂覆。从凝固浴里出来的丝膜会被绕到绕丝轮上,卷绕速度设定在20m/min,将制备好的娃藻土中空纤维膜浸入去离子水中浸泡26h进行完整的相转化过程。
[0025]将相转化后硅藻土中空纤维膜前驱体膜置于室温下干燥20h,进行烧结,烧结制度:室温?200 °C,升温速率为I °C/min,并在200 V下保温2 h,200-1000 °C升温速率为IV /min,1000?1200°C,升温速率为3°C/min,1200°C下保温4 h。
[0026]所制备的陶瓷膜孔结构SEM如图4所示。
[0027]实施例3:
将15g的聚合物:聚偏氟乙烯(PVDF),7.5g致孔剂K3q,加入到65g有机溶剂N-甲基吡咯烷酮(NMP)中,在65°C下进行水浴加热,机械搅拌5 h使聚合物充分溶解。
[0028]在聚合物溶液中加入30.5g硅藻土和28g氧化铝作为无机粒子以及4g烧结所需要的低温烧结助剂CaCO3,继续恒温水浴加热并机械搅拌22 h以上后,得到铸膜液。
[0029]将所制备的铸膜液放入纺丝机的浆料罐中,在60°C的抽真空4h排出残余气泡,静置脱泡20h。在纺丝头中装上已制备的中空纤维衬管,调整铸膜液挤出速率2mL/min,衬管的挤出速率2cm/min,空气距调整为2cm,凝固浴的温度设定为20°C,进行纺丝涂覆。从凝固浴里出来的丝膜会被绕到绕丝轮上,卷绕速度设定在20m/min,将制备好的娃藻土中空纤维膜浸入去离子水中浸泡26h进行完整的相转化过程。
[0030]将相转化后硅藻土中空纤维膜前驱体膜置于室温下干燥22h,进行烧结,烧结制度:室温?600 °C,升温速率为3 °C/min,并在600 V下保温3 h,600-1000 °C升温速率为3 V /min,1000?1200°C,升温速率为3°C/min,1200°C下保温5 h。
[0031]实施例4:
将15g的聚合物聚丙烯晴(PAN),7.5g致孔剂K3q,加入到65g有机溶剂N-甲基吡咯烷酮(NMP)中,在65°C下进行水浴加热,机械搅拌5 h使聚合物充分溶解。
[0032]在聚合物溶液中加入40.9g娃藻土和17.6g氧化招作为无机粒子以及4g烧结所需要的低温烧结助剂CaCO3,继续恒温水浴加热并机械搅拌22h以上后,在真空干燥箱里进行抽真空4h,得到铸膜液。
[0033]将所制备的铸膜液放入纺丝机的浆料罐中,在75°C的抽真空4h排出残余气泡,静置脱泡24h。在纺丝头中装上已制备的中空纤维衬管,调整铸膜液挤出速率6mL/min,衬管的挤出速率6cm/min,空气距调整为10cm,凝固浴的温度设定为20°C,进行纺丝涂覆。从凝固浴里出来的丝膜会被绕到绕丝轮上,卷绕速度设定在20m/min,将制备好的娃藻土中空纤维膜浸入去离子水中浸泡26h进行完整的相转化过程。
[0034]将相转化后硅藻土中空纤维膜前驱体膜置于室温下干燥22h,进行烧结,烧结制度:室温?600 °C,升温速率为3 °C/min,并在500 V下保温3 h,600-1000 °C升温速率为3 V /min,1000?1200°C,升温速率为3°C/min,1200°C下保温7 h。
[0035]本发明实施例仅用于对本发明作进一步的说明,并非穷举,并不构成对权利要求保护范围的限定,本领域技术人员根据本发明实施例获得的启示,不经过创造性劳动就能够想到其它实质上等同的替代,均在本发明保护范围内。
【主权项】
1.一种硅藻土中空纤维陶瓷膜的制备方法,其特征是,包括以下步骤: (1)铸膜液的配置:取有机粘结剂,致孔剂溶于有机溶剂,60-800C水浴加热,机械搅拌6?Sh,配得基础有机铸膜液;加入硅藻土,Al203,烧结助剂,继续恒温60?80 V,水浴加热并配合机械搅拌20?26h,获得铸膜液; (2)纺丝过程:将所制备的铸膜液放入纺丝机的浆料罐中,在60?80°C的抽真空4?8h排出残余气泡,静置脱泡20?26h,在纺丝头中装上中空纤维衬管,调整铸膜液挤出速率2?10mL/min,中空纤维衬管的挤出速率2?10cm/min,空气距调整为2?15cm,凝固浴的温度为20-30 V,进行纺丝涂覆;从凝固浴里出来的丝膜会被绕到绕丝轮上,卷绕速度20?30m/min,将制备好的硅藻土中空纤维膜浸入去离子水中浸泡20?26h进行完整的相转化过程; (3)干燥过程:在温度15?25°C下,将所制备的膜干燥20?26h; (4)烧结过程:将所制备的硅藻土中空纤维膜送入马弗炉烧结,烧结低温阶段烧结温度为200?600°C,烧结速率控制在I?5°C/min,高温阶段烧结温度为1000?1300°C,烧结速率为为5?10°C/min,在低温阶段的保温时间为60?200min,在高温阶段的保温时间为200?480mino2.如权利要求1所述的一种硅藻土中空纤维陶瓷膜的制备方法,其特征是,所述有机粘结剂为聚醚砜(PES)、聚砜(PS)、聚偏氟乙烯(PVDF)、聚醚酞亚胺(PEI)或聚丙烯晴(PAN),在铸膜液中的质量分数为10%?20%;所述有机溶剂为N,N-二甲基甲酰胺(DMF )、N,N-二甲基乙酰胺(DMAC)或N-甲基吡咯烷酮(NMP),在铸膜液中的质量分数为40%?50%。3.如权利要求1所述的一种硅藻土中空纤维陶瓷膜的制备方法,其特征是,所述致孔剂为纤维素、淀粉、炭黑、聚乙烯吡咯烷酮(K3q)或聚乙二醇(PEG),分子量400?20000,在铸膜液中的质量分数为5%?15%。4.如权利要求1所述的一种硅藻土中空纤维陶瓷膜的制备方法,其特征是,硅藻土和Al2O3的添加量在20%?50%,Al 203和硅藻土添加的质量比为0.85?2.5。5.如权利要求1所述的一种硅藻土中空纤维陶瓷膜的制备方法,其特征是,所制备的铸膜液粘度在4300?9400MPa.s。6.如权利要求1所述的一种硅藻土中空纤维陶瓷膜的制备方法,其特征是,所述烧结助剂为纳米CaCO3、MgC03、MgO、V2O5或AlF3,在铸膜液中的质量分数为2%?10%。
【文档编号】B01D67/00GK105854632SQ201610321827
【公开日】2016年8月17日
【申请日】2016年5月15日
【发明人】张瑛洁, 崔学军, 姜永久, 庄媛媛
【申请人】东北电力大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1