通过植物油加氢处理制成的具有高乙烯、丙烯和聚合物收率的蒸汽裂化原料的生产的制作方法

文档序号:5135380阅读:259来源:国知局

专利名称::通过植物油加氢处理制成的具有高乙烯、丙烯和聚合物收率的蒸汽裂化原料的生产的制作方法
技术领域
:石油产品的供应商縮减和价格提高引发对替代品的研究。在这种背景下,由生物质制成的产品尤其有吸引力。如今,生物质的应用主要指向两个方向在掺入柴油池之前将植物油转化成甲酯的生物酯方向,和在掺入汽油池之前将糖和淀粉转化成乙醇或转化成ETBE(乙基叔丁基醚)的乙醇方向。目前,这些生物产品的生产成本比化石燃料高,仅由于显著的财政鼓励而在经济上有利。此外,依据专家之见,可耕种土地的供应力无法生产当前燃料消耗量的10%以上。相反,用于石油化学的轻质烯烃的生产所涉及的吨数比燃料所需的吨数低得多。因此,生物质在此可以为石油化学作出极大贡献,并且通过所提出的本发明,从长远来看,由可再生原料生产显著比例的"生物"聚合物(基本基于乙烯和丙烯)被认为可行。本文描述的本发明处于这种背景下。其包括加氢处理获自可再生资源的原料,特别是氢化植物油以获得含有6至25个碳原子的直链烷烃。这些链烷烃随后送入蒸汽裂化装置(或根据英语定义,蒸汽裂化),其尺寸适合处理石油馏分,但也可以将这些链烷烃转化成以明显更好的收率制成的乙烯和丙烯和聚合物。本发明的目标因此是由获自原料加氢处理的链烷烃馏分以极高收率生产乙烯和丙烯,该原料获自可再生资源。现有技术专利US4620050(AT0CHEM)描述了具有高纯度的乙烯或乙烯/一氧化碳混合物的生产方法,其可以通过脂族羧酸的某些乙酯在沸石催化剂存在下在150至30(TC下的气相分解直接使用。专利申请US2007/0015947描述了由获自可再生资源的原料生产C2-C5烯烃的方法,其包括设计用来消除污染物如碱金属的原料的第一预处理阶段和在流化催化裂化(FCC)区中裂化纯化原料的第二阶段。发明目的现在已经发现获自可再生资源的原料的处理方法,所述方法包括下列阶段a)在两个阶段中加氢处理,其中由温和预氢化构成的所述第一处理阶段在50至30(TC的温度下,在0.1至lOMPa的氢分压下和在0.lh—1至10h—1的催化剂上每小时体积流速下运行,其中所述预氢化催化剂包含至少一种选自钯和铂的第VIII族贵金属或包含至少一种第VIII族非贵金属和/或至少一种第VIB族金属,由此第VIII族非贵金属选自镍和钴,且第VIB族金属选自钼和钨,由此所述预氢化催化剂是金属相催化剂,且其中所述第二处理阶段在200至450。C的温度下,在lMPa至lOMPa的压力下,在0.lh—1至10h—1的催化剂上每小时体积流速下运行,且与原料混合的氢的总量使得氢/原料比率为50至1,OOONm3氢/m3原料,其中第二处理阶段的所述催化剂包含至少一种第VIII和/或VIB族非贵金属,由此第VIII族非贵金属选自镍和钴,由此第VIB族金属选自钼和钨,并且是硫化物相催化剂,b)从获得阶段a)的加氢处理流出物中分离出氢、气体和至少一种由至少50重量%直链正链烷烃构成的液体烃流出物,c)获自阶段b)的至少一部分液体烃流出物的蒸汽裂化。起始原料获自可再生资源,如植物或动物来源的油和脂肪,或这类原料的混合物,含有甘油三酯和/或脂肪酸和/或酯。在可能的植物油中,它们可以是粗制或精制的,完全或部分的,并获自下列植物菜籽、向日葵、大豆、棕榈、棕榈仁、橄榄、椰子,由此这一名单不是限制性的。在可能的脂肪中,可以列举所有动物脂肪,如猪油或由来自食品工业或获自公共饮食工业的废物构成的脂肪。由此定义的原料含有甘油三酯和/或脂肪酸结构和它们的酯,它们的脂肪链含有6至25的碳原子数。在起始原料的转化过程中制成的烃的特征在于a)如果机制是将羧基氢化成烷基的机制,则碳原子数等于起始脂肪酸链的碳原子数。b)如果所涉及的机制是脱羧/脱羰机制,则烃链比起始脂肪酸链少具有1个碳原子。机制a)的优点在于提供极好的链烷烃收率且碳数等于起始脂肪酸的碳数,但相反具有导致可高达3.6重量%氢的极大氢消耗的缺点。机制b)具有按重量计收率略小的缺点,这与链的碳原子减1相关联,其例如对菜籽油而言从C18到C17,但相反能够将H2消耗限制为仅1.6重量%。本发明的优点之一是在根据a)的氢化机制中优化氢的消耗,同时使根据b)的脱羧/脱羰机制最小化。发明描述本发明的一个目标是能够获得极高乙烯和丙烯和聚合物收率的蒸汽裂化装置原料的制备,其由获自可再生资源的原料制成。获自可再生资源的这些原料由所有植物油和动物脂肪构成,基本含有甘油三酯和脂肪酸或酯,具有碳原子数为6至25的脂肪烃链。这些油可以是棕榈油、棕榈仁油、椰肉干油、蓖麻油和棉籽油、花生油、亚麻油和甘蓝油,以及通过基因变异或杂交获自例如向日葵或菜籽的所有油。可以使用煎炸油、各种动物油,如鱼油、牛油和猪油。这些原料部分或完全不含硫和氮化合物,并且不含芳烃。有利地,在本发明的方法的阶段a)之前,原料可以经过预处理或预精制阶段以通过合适的处理消除污染物,如金属、碱性化合物、碱土金属和磷,例如在离子交换树脂上。合适的处理可以是例如本领域技术人员公知的热处理和/或化学处理。随a)根据本发明,获自可再生资源的原料的加氢处理阶段a)在两个阶段中实施。获自可再牛资源的原料在两个集成阶段中的加氡'处理阶段a)有利地由第一处理阶段和随后的第二处理阶段构成,所述第一处理阶段由所述原料的脂肪酸的烃链中所含的至少50%双键,优选至少80%双键,非常优选至少90%双键,再更优选至少99%双键的温和预氢化构成,所述第二处理阶段由所述原料的脂肪酸的烃链中所含的至少50%酯基团,优选至少80%酯基团,非常优选至少90%酯基团,再更优选至少99%酯基团的氢化构成。根据本发明的方法的一个优选实施方案,阶段a)由第一处理阶段和随后的第二处理阶段构成,所述第一处理阶段由所述原料的脂肪酸的烃链中所含的至少50%双键的温和预氢化构成,所述第二处理阶段由所述原料的脂肪酸的烃链中所含的至少50%酯基团的氢化构成。根据本发明的方法的一个非常优选的实施方案,阶段a)由第一处理阶段和随后的第二处理阶段构成,所述第一处理阶段由所述原料的脂肪酸的烃链中所含的至少90%双键的温和预氢化构成,所述第二处理阶段由所述原料的脂肪酸的烃链中所含的至少90%酯基团的氢化构成。根据本发明的方法的一个更优选的实施方案,阶段a)由第一处理阶段和随后的第二处理阶段构成,所述第一处理阶段由所述原料的脂肪酸的烃链中所含的至少99%双键的温和预氢化构成,所述第二处理阶段由所述原料的脂肪酸的烃链中所含的至少99%酯基团的氢化构成。烃链的双键可以通过几种分析方法测量*碘指数的测量包括测量对于烃链的不饱和度可以固定的二碘(12)的量。领幌的值因此表示为固定在100克产品上的12的毫克。对于脂肪酸,碘指数为,例如,油酸90,亚油酸181,亚麻酸274。根据EN14111标准化方法,在植物油的甲酯(EMHV)中测量碘指数。在其它标准化方法中,也可以列举ASTMD1959和ASTMD5554方法。*溴指数或溴值的测量是通过电位测定法的测量。根据ASTMD2710标准,溴指数适用于小于1000毫克/100克产品的含量。溴值涉及针对大于1克/100克产品的含量,根据ASTMD1159标准通过电位测定法得出的剂量。根据红外光谱法验证酯基团的存在。该方法的原理依赖于酯基团特有的红外带的存在。酯基团的氢化因此体现为通过红外检出的该特有带的消失。由温和预氢化构成的所述原料的第一处理阶段被设计成使原料的脂肪酸的烃链中所含的双键饱和以防止该双键的次级反应,例如以焦炭或树胶的形成告终的聚合反应。这种第一预氢化阶段根据本发明在50至300°C,优选50至200°C,再更优选100至200°C的温度下,在0.1至lOMPa的氢分压下运行。催化剂上每小时体积流速为0.lh—1至10h一1。在这种温和预氢化阶段中消耗的氢量相对于原料为0.5至1重量%氢。原料的第一处理阶段中所用的催化剂(被称作预氢化催化剂)有利地包含至少一种加氢_脱氢元素和基底,如氧化铝和/或二氧化硅和/或二氧化硅_氧化铝。根据本发明,所述预氢化催化剂包含至少一种优选选自钯和铂的第VIII族贵金属,由此所述预氢化催化剂是金属相催化剂。根据本发明的另一替代方案,所述预氢化催化剂包含至少一种第VIII族非贵金属和/或一种第VIB族金属,由此第VIII族非贵金属选自镍和钴,且由此第VIB族金属选自钼和钨,由此所述预氢化催化剂是金属催化剂。第VIII族贵金属或非贵金属的含量有利地为相对于催化剂总质量的0.5至20重量%,优选5至10重量%。第VIB族金属含量为相对于催化剂总质量的0.5至20重量%,优选7至17重量%。非常优选地,第VIII族非贵金属是镍,第VIB族金属是钼。有利地,也使用下列金属组合镍_钼和钴_钼。非常优选地,所述预氢化催化剂是金属相催化剂,其金属相仅由镍构成。获自这种第一温和预氢化阶段的流出物随后在所述原料的第二处理阶段中与多相催化剂接触,由此所述第二处理阶段在200至450°C,优选220至350°C的温度下运行。压力为lMPa至10MPa,优选2MPa至6MPa。催化剂中的每小时体积流速为0.lh—"至lOh—、使该原料在氢存在下与催化剂接触。与原料混合的氢的总量使得氢/原料比率为50至1,OOONm3氢/m3原料,优选100至500Nm3氢/m3原料。这种第二阶段中的氢消耗通常为起始原料的2至3重量%。在比所述第一温和预氢化阶段更严格的运行条件下运行的原料的所述第二处理阶段有利地能够氢化原料的脂肪酸的烃链中所含的至少50%酯基团,优选至少80%,优选至少90%,再更优选至少99%酯基团。根据上文定义的红外光谱法验证酯基团的存在。在原料的这种第二处理阶段中,使用至少一个固定催化剂床,其包含分散在合适的基底上的氢化基团。原料的第二处理阶段中所用的催化剂的基底有利地选自单独或混合使用的氧化铝、二氧化硅、二氧化硅_氧化铝、氧化镁和粘土。所述基底也可以有利地含有其它化合物,如选自单独或混合使用的氧化硼、氧化钛和五氧化二磷的氧化物。优选使用氧化铝基底,更优选n-、S-或Y-氧化铝基底。有利地通过至少一种第VIII族和/或第VIB族金属确保氢化基团。根据本发明,本发明的方法的原料的第二处理阶段中所用的催化剂包含至少一种第VIII族非贵金属和/或至少一种第VIB族金属,由此第VIII族非贵金属选自镍和钴,第VIB族金属选自钼和钨,由此所述催化剂是硫化物相催化剂。非常优选地,第VIII族非贵金属是镍,第VIB族金属是钼。原料的第二处理阶段中所用的催化剂中第VIB和VIII族金属氧化物的总含量有利地为相对于催化剂总质量的5至40重量%,优选7至30重量%。第VIB族金属与第VIII族金属之间的以金属氧化物表示的重量比有利地为20至l,优选10至2。本发明的方法的原料的第二处理阶段中所用的优选催化剂有利地在非晶矿物基底上包含O.5至10重量%,优选1至5重量%的氧化镍(NiO)含量和1至30重量%,优选5至25重量%的氧化钼(Mo03)含量,由此百分比以相对于催化剂总质量的重量%表示。本发明的方法的原料的第二处理阶段中所用的催化剂还可以有利地含有至少一种选自磷、硅、氟和硼的掺杂元素。这种元素可以有利地引入基质中并优选沉积在基底上。也可以在基底上单独沉积硅,或与磷和/或硼和/或氟一起沉积硅。按所述元素的氧化物重量计,掺杂元素的含量通常有利地小于20%,优选小于10%。本发明的方法的原料的第二处理阶段中所用的优选金属相催化剂包含20至70重量%,优选50至60重量%的镍含量。所述催化剂的基底有利地选自氧化铝、氧化镁和二氧化硅,该基底优选由氧化铝构成。6在使用硫化物相催化剂的情况下,合适地使其与足以防止其在氢存在下脱硫的H2S分压和与反应温度保持接触。为此,以传统方式,将硫化氢或至少一种在第二阶段的条件下分解成H2S的硫化合物添加到原料中或直接添加到反应器中。作为硫化合物,可以列举二甲基二硫醚(DMDS)、二硫化碳(CS2)、有机多硫化物、硫醇、硫化物、二硫化物、氧化硫化合物,和溶解和/或部分悬浮的元素硫。根据本发明,由温和预氢化构成的第一处理阶段中所用的催化剂是金属相催化剂,第二处理阶段中所用的催化剂是硫相催化剂。非常优选地,由温和预氢化构成的第一处理阶段中所用的催化剂有利地是在金属相氧化铝上的镍催化剂,第二处理阶段中所用的催化剂有利地是在硫化物相氧化铝上的镍/钼催化剂。在两个阶段中进行的加氢处理的情况下,该运行在低温下进行。此外,使氢化功能最大化也能够限制导致树胶形成的聚合和/或縮合反应,树胶会降低催化性能的稳定性。,b):双自,a)論歸雄屮扁,分m根据本发明的方法的阶段b),获自本发明的方法的阶段a)的加氢处理流出物至少部分,优选完全经受一个或多个分离。本发明的方法的阶段b)的目的是将气体与液体分离,特别是回收富氢气体(其也可以含有如一氧化碳(C0)、二氧化碳(C02)和丙烷之类的气体)以及至少一种由至少50重量%直链正链烷烃,优选至少80重量%,非常优选至少90重量%,再更优选至少98重量%直链正链烷烃构成并具有6至25的碳原子数的液体烃流出物。根据色谱法进行链烷烃(正链烷烃和异链烷烃)含量的测量。与质谱仪联用。这种方法也可获得烯烃、环烷烃和芳族化合物的含量(PONA分析)。在本发明的方法的获自可再生资源的原料的加氢处理阶段a)中形成的一部分水包含在液体烃流出物中,并有利地至少部分,优选完全与液体烃流出物分离。因此,在本发明的方法的分离阶段b)之后,可以进行除水阶段。氢气(H2)、一氧化碳(CO)、二氧化碳(C02)和分离的丙烷的混合物本身可随后有利地进行本领域技术人员已知的用于清除一氧化碳(CO)和二氧化碳(C02)以及将氢气与丙烷分离的处理,由此后者可以有利地送入用于液化气的蒸汽裂化的蒸汽裂化炉。根据本发明,获自本发明的方法的阶段b)的分离的液体烃流出物随后根据本发明的方法的阶段c)至少部分,优选完全送入蒸汽裂化炉。阶段c):获自阶段b)的液体烃流出物的蒸汽裂化获自本发明的方法的分离阶段b)并含有至少50重量%直链正链烷烃,优选至少80重量%,非常优选至少90重量%,再更优选至少98重量%直链正链烷烃的液体烃流出物至少部分,优选完全送入蒸汽裂化炉,在此这些正链烷烃以显著收率转化成乙烯和丙烯,该收率明显优于在送至蒸汽裂化装置的原料是蒸汽裂化装置的传统原料的情况下,例如在该原料由中间石脑油构成的情况下获得的收率。蒸汽裂化通常是所选用于获得石油化学的基础产品,例如乙烯和丙烯的方法。通常,蒸汽裂化装置的当前原料完全获自石油气体和液体,从乙烷到柴油,它们根据原料的品质具有不定的乙烯和丙烯收率。有利地,本发明的方法的蒸汽裂化阶段c)中常用的运行条件如下该蒸汽裂化装置在750至85(TC的温度下在优选与石油馏分的重量比为0.5至1.5的注入水蒸汽存在下运行。在这些条件下的停留时间通常为0.2秒至1.2秒。根据本发明的方法的阶段c)的优选实施方案,将获自本发明的方法的分离阶段b)的含有至少50重量%直链正链烷烃的液体烃流出物至少部分,优选全部,与外来石油馏分,例如石脑油馏分或柴油馏分混合送入蒸汽裂化炉。在这种情况下,乙烯和丙烯的收率低于仅用获自本发明的方法的分离阶段b)的含有至少50重量%直链正链烷烃的液体烃流出物获得的收率。在蒸汽裂化结束时,有利地分离该产物。,d)郝,'烷射及,诵讨气鹏雄鹏銜吾瓶,汽皿静烷靴成颠'在本发明的方法的阶段c)中,在蒸汽裂化装置中制成的甲烷可以有利地送入气相转化或蒸汽转化装置以根据下列反应制造氢气CH"歸-CO鳴由此后者在本领域技术人员公知的条件下,即在550至85(TC的温度下在氧化铝载的镍基催化剂上运行的管式炉中进行。此外,可以通过根据同样公知的下列反应进行一氧化碳(C0)的转化或根据英语术语"变换"来提高氢收率CO+H20jC0i+H2由于这些转化,以由100千克正链烷烃的蒸汽裂化产生的表1中所示的22千克开始,可以生产至少5千克^。用于气相转化和用于一氧化碳(CO)转化的反应器可以容易地集成到该蒸汽裂化装置中。制成的富氢混合物可随后送入蒸汽裂化装置的分离系统(train),其本身产生用在气相转化流出物的各种氢化和加氢处理中的纯化氢气。制成的显著过量的氢因此可用于植物油的加氢处理。因此,可以避免输入仍然非常昂贵的氢,甚至可以输出这种资源,其在精炼中非常稀有但确是需求量越来越大的对象。本发明的优点之一是使用获自本发明的分离阶段b)并含有至少50重量%直链正链烷烃的液体烃流出物作为蒸汽裂化装置的原料。使用获自本发明的分离阶段b)并含有至少50重量%直链正链烷烃的液体烃流出物作为蒸汽裂化装置的原料的优点清楚显示在下列实施例中,其中将根据本发明获得的收率与通过直馏中间石脑油的蒸汽裂化获得的收率进行比较。实施例1阶段a)获自可再牛咨源的原料在两个集成阶段中的加ft处理1)第一溫和预ft化阶段在由调节成确保等温操作的反应器构成的第一阶段中,装入40克基于氧化铝载镍并含有15%计算重量的镍(预先还原)的温和预氢化催化剂的固定床。将下面详细列出其组成的100克/小时预精制菜籽油送入这一固定床。:获自可再生资源的原料的组成8<table>tableseeoriginaldocumentpage9</column></row><table>在15(TC下在4MPa压力下引入每升原料100:1TPN的氢(TPN=正常的温度和压力条件)。在分离过量氢后,获得收率略高于100%的甘油酯混合物。预氢化流出物含有与起始原料相同的链,其中双键几乎完全氢化。所造成的氢消耗相对于原料为大约0.9重2)第二原料处理阶段将获自第一阶段的预氢化混合物直接和完全送入装有89克用于处理原料的第二阶段催化剂的第二等温操作固定床反应器中,由此所述加氢处理催化剂基于镍和钼并在氧化铝基底上具有等于4.3重量%的氧化镍含量和等于21.5重量%的氧化钼含量,该催化剂预先硫化。将每升原料150:1TPN的H2引入保持在30(TC和4MPa压力下的该反应器中。阶段b):获自阶段a)的流出物的分离分离获自本发明的方法的阶段a)的所有加氢处理流出物以回收富氢气体和与生成的水分离的链烷烃液体烃流出物。所得收率显示在下表中表3<table>tableseeoriginaldocumentpage10</column></row><table>通过气相色谱法-质谱仪分析由此获得的链烷烃液体烃流出物其由98重量%的碳原子数为6至25的正链烷烃和2%的C17至C21异链烷烃构成。包含多于95%的C16至C22正链烷烃。阶段c):将链烷烃混合物送入蒸汽'裂化'炉将表2中所示的含有98重量%正链烷烃的所有液体烃流出物送入在H20/链烷烃重量比等于l的水蒸汽存在下并在80(TC温度下运行的传统蒸汽裂化炉。在该炉中的停留时间为O.5秒。以85.7千克在分离阶段b)结束时获得的正链烷烃开始,如表3中所示,获得下列表4<table>tableseeoriginaldocumentpage10</column></row><table>如果将本发明的方法的加氢处理阶段a)中形成的丙烷分离以送入尺寸适合处理液化气的蒸汽裂化炉,如表3中所示,以3.2千克丙烷开始,可以获得下列产量水平表5总计,以100千克植物油开始,可以获得下表中所示的产量,其中为了比较,列出由中间石脑油和常压柴油获得的收率。表6<table>tableseeoriginaldocumentpage11</column></row><table>本发明的方法因此能够获得非常明显高于由液体石油馏分产生的收率的乙烯收率,同时获得改进的丙烯收率。制成的乙烯和丙烯可随后送入本领域技术人员已知的聚合装置以便由可再生资源综合获得最终产品(聚乙烯,聚丙烯,...)。权利要求获自可再生资源的原料的处理方法,包括下列阶段a)在两个阶段中加氢处理,其中由温和预氢化构成的所述第一处理阶段在50至300℃的温度下,在0.1至10MPa的氢分压下和在0.1h-1至10h-1的催化剂上每小时体积流速下运行,其中所述预氢化催化剂包含至少一种选自钯和铂的第VIII族贵金属或包含至少一种第VIII族非贵金属和/或至少一种第VIB族金属,由此第VIII族非贵金属选自镍和钴,且第VIB族金属选自钼和钨,由此所述预氢化催化剂是金属相催化剂,且其中所述第二处理阶段在200至450℃的温度下,在1MPa至10MPa的压力下,在0.1h-1至10h-1的催化剂上每小时体积流速下运行,且与原料混合的氢的总量使得氢/原料比率为50至1,000Nm3氢/m3原料,其中第二处理阶段的所述催化剂包含至少一种第VIII和/或VIB族非贵金属,由此第VIII族非贵金属选自镍和钴,由此第VIB族金属选自钼和钨,并且是硫化物相催化剂,b)从获得阶段a)的加氢处理流出物中分离出氢、气体和至少一种由至少50重量%直链正链烷烃构成的液体烃流出物,c)获自阶段b)的至少一部分液体烃流出物的蒸汽裂化。2.根据权利要求l的方法,其中阶段a)由第一处理阶段和随后的第二处理阶段构成,所述第一处理阶段由所述原料的脂肪酸的烃链中所含的至少99%双键的温和预氢化构成,所述第二处理阶段由所述原料的脂肪酸的烃链中所含的至少99%酯基团的氢化构成。3.根据权利要求1或2之一的方法,其中预氢化催化剂的第VIII族金属是镍。4.根据权利要求1或2之一的方法,其中预氢化催化剂的第VIB族金属是钼。5.根据权利要求1至4之一的方法,其中使用下列金属的组合镍_钼和钴_钼。6.根据权利要求1至5之一的方法,其中所述预氢化催化剂是金属相催化剂,其金属相仅由镍构成。7.根据权利要求1至6之一的方法,其中第二处理阶段的催化剂的第VIII族非贵金属是镍。8根据权利要求1至6之一的方法,其中第二处理阶段的催化剂的第VIB族金属是钼。9.根据权利要求7至8之一的方法,其中所述催化剂在非晶矿物基底上包含0.5至10重量%的氧化镍(Ni0)含量和1至30重量%的氧化钼(Mo03)含量,由此百分比以相对于催化剂总质量的重量%表示。10.根据权利要求l至9之一的方法,其中获自阶段b)的液体烃流出物由至少98重量%的直链正链烷烃构成。11.根据权利要求l至10之一的方法,其中将获自阶段b)的液体烃流出物完全送入蒸汽裂化炉。12.根据权利要求l至ll之一的方法,其中将获自阶段b)的液体烃流出物与外来石油馏分,如石脑油馏分或柴油馏分混合完全送入蒸汽裂化炉。13.根据权利要求l至12之一的方法,其中将阶段c)中制成的甲烷送入气相转化装置。14.根据权利要求1至13之一的方法,其中获自可再生资源的原料是植物或动物来源的油和脂肪,或这类原料的混合物,含有甘油三酯和/或脂肪酸和/或酯,由此所述植物油可以是粗制或精制的,完全或部分的,且由此所述原料含有甘油三酯和/或脂肪酸结构和它们的酯,它们的脂肪链含有6至25的碳原子数。全文摘要本发明涉及获自可再生资源的原料的处理方法,包括在固定床催化剂(所述催化剂包含加氢-脱氢官能和非晶基底)存在下在50至450℃的温度、1MPa至10MPa的压力、0.1h-1至10h-1的每小时体积流速下和在使得氢/原料比为50至1000Nm3氢/m3原料的与原料混合的总氢量存在下的加氢处理步骤,接着从获自阶段a)的加氢处理流出物中分离出氢、气体和至少一种包括至少50%直链正链烷烃的液体烃流出物,和获自阶段b)的至少一部分液体烃流出物的蒸汽裂化。文档编号C10G47/04GK101778928SQ200880103037公开日2010年7月14日申请日期2008年6月3日优先权日2007年6月12日发明者D·休德比恩,J·科辛斯,Q·德布伊谢尔特,T·查普斯申请人:Ifp公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1