一种由生物质衍生物制备航空煤油和柴油的方法

文档序号:5134910阅读:332来源:国知局
一种由生物质衍生物制备航空煤油和柴油的方法
【专利摘要】本发明涉及一种基于木质纤维素为原料获得平台化合物的,完全不依赖化石能源的液态链烃燃料新合成路线。该方法所获得的液体燃料可以用作航空煤油和柴油的替代品或作为提高燃料的十六烷值和抗寒能力的添加剂,从而降低国家在液体燃料方面对进口石油的依赖程度。本发明方法共分为两部分:1)在新型固体酸催化剂上含醛基化合物(如甲醛、乙醛、丙醛、丁醛等)与呋喃类平台化合物(如呋喃、甲基呋喃、羟甲基呋喃等)通过酸催化烷基化反应制取碳链长度在8至16之间的含氧有机化合物;2)通过对烷基化产物进行加氢和加氢脱氧,对不饱和键加氢并去除其中的氧,制备碳链长度在8至16之间的生物质航空煤油或高品位柴油。
【专利说明】一种由生物质衍生物制备航空煤油和柴油的方法
【技术领域】
[0001]本发明涉及一种基于木质纤维素为原料获得平台化合物的,完全不依赖化石能源的航空煤油和柴油链烃合成路线,具体包括两个个步骤:1)由木质纤维素基平台化合物出发通过烷基化反应生成碳链长度为8至16的含氧有机化合物;2)通过加氢脱氧催化剂对上述烷基化反应产物进行加氢脱氧获得以链烃为主要成分碳链长度为8至16的生物质航空煤油和高品位柴油。
【背景技术】
[0002]航空煤油是目前国际上需求量很大的液体燃料,是一个国家的战略性物资。它的种类很多,一般是由碳数在8-16间的链状烷烃、芳烃和环烷烃组成。以目前常见JP-8为例,其经典组成如下:C8至C15的直链烷烃占35%,C8至C15的支链烷烃占35%,C7至ClO的芳香烃占18%,C6至ClO的环烷烃占7%。柴油是主要的运输燃料之一,主要是由C9至C18的链烃、环烃、芳香烃组成,其沸点在170-390°C之间。目前,航空煤油和柴油主要以化石资源(煤和石油)为原料制取,煤和石油都是不可再生的能源,由它们合成航空煤油和柴油在制造和使用过程会产生大量的二氧化碳,造成温室效应。且近年来随着石油资源的日益减少,原油价格不断攀升,使得航空煤油和柴油的价格也节节攀升。我国作为能源消费大国和石油进口大国,近几年的石油进口量不断增加,2009年的石油进口依存度为53.6%,已经突破50%的国家安全警戒线。和化石能源不同,生物质属于可再生能源,生物质燃料在燃烧过程中产生的二氧化碳可以被其生长过程通过光合作用消耗的二氧化碳所抵消,因此生物质燃料在整个使用过程中是二氧化碳中性的。因此从保护环境、国家能源安全以及潜在的经济价值三方面考虑 ,需要大力发展生物质航空煤油技术。
[0003]目前,生物质液体燃料可分为第一代生物质液体燃料和第二代生物质液体燃料。第一代生物质液体燃料是以可食用的玉米、大豆和向日葵等为原料,通过发酵和转酯化等反应制取生物乙醇和生物柴油。第一代生物质液体燃料在欧洲,美洲等地区作为运输燃料已有实际应用。但是,它是以粮食为原料,原料成本高且与人争地,不适合我国人多地少的国情。第二代生物质液体燃料是以不可食用的木质纤维素为原料,主要有三种途径生成燃料:I)热化学气化生物质到合成气,然后通过费托合成制取烷烃,该过程工艺比较成熟,但是需要高温高压的条件;2)高温热解生物质制取生物质油,该过程复杂,且制得的生物质油品质较差,无法直接用作发动机燃料,需进行进一步精炼;3)以木质纤维素为原料获得的生物质平台化合物分子,通过羟醛缩合、烷基化反等碳-碳偶联反应,然后加氢脱氧制取液态烷烃,该过程条件相对比较温和,合成路线灵活。
[0004]2005 年,Dumesic、Huber 等人在[Science,2005,308,1446-1450]和专利[US7, 671,246]报道了羟甲基糠醛或糠醛与丙酮(或四氢糠醛分子间)通过碱催化的羟醛缩合反应制取具有航空煤油链长范围的含氧有机化合物,然后通过加氢和加氢脱氧等步骤制取C8至C15范围的液态烷烃。用PVSiO2-Al2O3作为加氢脱氧催化剂,采用固定床四相流反应器,反应过程中需要加入十六烷防止催化剂失活,工艺比较复杂。后来,在[ChemSusChem,2008, I, 417-424]和专利[US7,880,049]他们对羟甲基糠醛和糠醛的制备工艺进行了改进,并采用磷酸化的铌氧化物作载体。发现采用新载体后不需要使用十六烷也能取得很好的效果,从而简化了工艺。但是由于该过程合成的烷烃均为直链烷烃,这些烃类的凝固点很高(正十五烷:8.5-10°C,正十三烷:-5.50C,正十二烷:-120C ),不符合航空煤油的要求(熔点低于-40。。)。随后Huber小组[ChemSusChem 2010,3,1158-1161]报道了在酸性催化剂的作用下通过对呋喃和糠醛之间烷基化反应也获得具有航空煤油链长范围的含氧有机化合物,但是他们主要使用硫酸作为催化剂,且没有对生成的化合物进行加氢脱氧制备航空煤油的尝试。最近,Corma等人[Angew.Chem.1nt.Ed.2011, 50, 1-5]报道了甲基呋喃与丁醛、5-甲基糠醛、5-羟甲基糠醛以及其自身三聚反应,制备了具有航空煤油或柴油链长范围的含氧有机化合物,其后通过梯度床反应器加氢脱氧获得了液体燃料。随后,Corma等人[ChemSusChem, 2011, 4,1574-1577]又报道了 5-甲基糠醛与2-甲基呋喃的烷基化反应,并采用Pt/C,Pt/C_Ti02作为加氢脱氧催化剂,获得了较高的液相烷烃收率。他们在该工作中使用硫酸、对甲基苯磺酸等作为酸催化剂对设备的腐蚀比较严重,产物中滞留的硫酸如洗脱不够彻底,会导致下游的加氢或加氢脱氧催化剂的中毒。从实用角度,需要开发出对木质纤维素获得的平台化合物之间烷基化反应具有较高活性和稳定性的催化剂,以及对烷基化反应产物加氢脱氧具有高的活性、选择性的加氢脱氧催化剂。

【发明内容】

[0005]本发明的目的在于提供一种基于木质纤维素为原料获得平台化合物的,完全不依赖化石能源的航空煤油和高品质柴油链烃新合成路线。
[0006]本发明是通过以下技术方案实现的:
[0007]该路线共分为两步:
[0008]I)在酸催化剂的作用下,以含醛基化合物(如甲醛、乙醛、丙醛、丁醛)与呋喃类平台化合物(如呋喃、甲基呋喃、羟甲基呋喃等)之间通过液相烷基化反应,制取碳链长度为8至16的含氧有机化合物。
[0009]2)在加氢脱氧催化剂的作用下将烷基化反应产物经过加氢脱氧制取碳链长度为8至16链烃。
[0010]第一步烷基化反应,所述呋喃类平台化合物为:呋喃、甲基呋喃、羟甲基呋喃中的一种或多种;所述含醛基化合物为:甲醛、乙醛、丙醛、丁醛的一种或多种,含醛基化合物与呋喃类化合物摩尔比为10:1至1: 20,优选为1: 2,未反应的原料可通过蒸馏或精馏从反应体系中移除,可循环使用;反应温度在0-100°C间,反应时间为0.2-48h,反应在溶液中或无溶剂存在的液态条件下进行,溶剂为甲醇、乙醇、四氢呋喃或水。优选温度为50-65°C,优选反应时间为0.5-2h。
[0011]使用的酸催化剂为液体酸或固体酸:所述液体酸为H2SO4 ;固体酸为磺化的活性炭或介孔碳、酸性树脂、硫酸化或磷酸化的氧化锆或氧化铝。可以在较温和的反应条件下和较短的反应时间内高产率获得碳链长度为8-16的含氧有机化合物;
[0012]第二步对烷基化产物在加氢脱氧催化剂作用下进行加氢脱氧反应,反应在溶液中或无溶剂存在的液态条件下进行,溶剂为甲醇、乙醇、四氢呋喃或水,溶液的浓度为
0.5-100%,优选为 50-100% O[0013]加氢脱氧反应可采用间歇式釜式反应器或固定床反应器进行。
[0014]加氢脱氧的原料为丁醛与2-甲基呋喃的产物及其类似化合物。
[0015]釜式反应器的条件为:温度140-400°C,氢气压力为常压至l0.0MPa,反应时间为
0.5-60h,优选条件为:温度250-350°C,氢气压力4_7MPa,反应时间20_30h ;
[0016]固定床反应器的条件为:温度140_400°C,氢气压力为常压至10.0MPa,反应原料/催化剂的质量空速为0.1-10.0h-Ι,氢气与反应原料的摩尔比为20-1500。优选条件为:温度250-350°C,氢气压力4-7MPa,反应原料/催化剂的质量空速为0.3-21^,氢气与反应原料的摩尔比为200-800。
[0017]催化剂为以下的一种或多种:活性炭或者介孔碳为载体负载贵金属Pt、Pd、Ru、Ir中的一种或多种的负载型催化剂、过渡金属碳化物或氮化物催化剂、雷尼镍催化剂、非晶态镍、钴、钥、钨中的两种或多种合金催化剂。
[0018]负载型贵金属催化剂采用等体积浸溃的方法制备:配制2-10%的贵金属前躯体溶液,按照计量比加入硝酸处理过的活性炭或介孔碳载体中等体积浸溃,催化剂中金属的含量占0.5-10%,静置2h后在80-120°C下干燥6-24h,再在200-600°C下用氢气还原Ι-lOh,待温度降低至室温后通入1% 02钝化4h以上。过渡金属碳化钨和氮化物的制备:过渡金属碳化钨和氮化物的制备:配制偏钨酸铵、偏钥酸铵、或偏钒酸铵溶液,等体积浸溃到活性炭、介孔碳、或氧化铝上,120°C干燥6h,500°C空气焙烧6小时,氢气或氨气气氛下500°C至900°C还原0.5小时以上,流量为60mL/giSiWfl」,待温度降低至室温后通入体积比I %o2/n2钝化,可制备碳化物或氮化物催化剂;
[0019]配制硝酸镍和过渡金属前驱体溶液,等体积浸溃到活性炭上,120°C干燥6h,氢气或氨气气氛下500°C至900°C还原0.5小时以上,流量为60mL/giSiWfl」,待温度降低至室温后通入体积比1%02/N2钝化,可制备镍促进的碳化物或氮化物催化剂。
[0020]烷基化反应的产物及其类似化合物作为加氢脱氧的原料,加氢脱氧的原料为下述之一种或二种以上组合:丁醛与2-甲基呋喃烷基化反应物(见表1:例1),以及其类似物为表 1-例 2-20:
[0021]表I 丁醛与2-甲基呋喃的产物及其类似物
【权利要求】
1.一种航空煤油或柴油的制备方法,其特征在于: 1)在酸催化剂存在的条件下,以含醛基化合物与呋喃类平台化合物为原料,通过酸催化烷基化反应制取碳链长度在8至16之间的含氧有机化合物; 2)通过对烷基化反应的产物及其类似化合物中的一种或多种进行加氢及加氢脱氧,对不饱和键加氢并脱除其中的氧,制取饱和碳链长度在8至16之间的生物质航空煤油或高品位柴油。
2.按照权利要求1所述的制备方法,其特征在于: 在步骤I)中,所述酸催化剂为液体酸或固体酸; 所述呋喃类平台化合物为:呋喃、甲基呋喃、羟甲基呋喃中的一种或多种; 所述含醛基化合物为:甲醛、乙醛、丙醛、丁醛中的一种或多种; 醛基化合物与呋喃类化合物摩尔比为10:1至1: 20,未反应的原料可通过蒸馏或精馏从反应体系中移除,可循环使用; 反应温度在0-100°C间,反应时间为0.2-48h ;反应在液态条件下进行,反应体系中可添加溶剂或不添加溶剂;添加溶剂时,溶 剂为甲醇、乙醇、四氢呋喃或水,溶液的质量浓度为0.5-100%。
3.按照权利要求2所述的制备方法,其特征在于: 含醛基化合物与呋喃类化合物优选摩尔比为1: 2 ;优选温度为50-65°C,优选反应时间为2-6h ;溶液的质量浓度为50-100% ; 所述液体酸为H2SO4 ;固体酸为磺化的活性炭或介孔碳、酸性树脂、硫酸化或磷酸化的氧化锆或氧化铝。
4.按照权利要求1所述的制备方法,其特征在于: 在步骤2)中对烷基化产物在加氢脱氧催化剂作用下进行加氢脱氧反应,反应在液态条件下进行,反应体系中可添加溶剂或不添加溶剂;添加溶剂时,溶剂为甲醇、乙醇、四氢呋喃或水;溶液的质量浓度为0.5-100% ; 加氢脱氧反应可采用间歇式釜式反应器或固定床反应器进行; 釜式反应器的条件为:温度140-400°C,氢气压力为常压至10.0MPa,反应时间为0.5-60h ; 固定床反应器的条件为:温度140-400°C,氢气压力为常压至10.0MPa,反应原料/催化剂的质量空速为0.1-10.0h—1,氢气与反应原料的摩尔比为20-1500。
5.按照权利要求4所述的制备方法,其特征在于: 加氢脱氧反应原料溶液的浓度优选为50-100% ; 釜式反应器的优选条件为:温度250-350°C,氢气压力4-7MPa,反应时间5_10h ;固定床反应器的优选条件为--温度250-350°C,氢气压力4-7MPa,反应原料/催化剂的质量空速为0.氢气与反应原料的摩尔比为200-800。
6.按照权利要求4所述的制备方法,其特征在于: 加氢脱氧催化剂为下述催化剂中的一种或多种混合: 以活性炭或者介孔碳为载体负载贵金属Pt、Pd、Ru、Ir中的一种或多种的负载型贵金属催化剂、过渡金属碳化物或氮化物催化剂、镍促进的过渡金属碳化物或氮化物催化剂、或雷尼镍催化剂、非晶态镍、钴、钥、钨中的两种或多种合金催化剂;负载型贵金属催化剂采用等体积浸溃的方法制备:配制质量浓度2-10%的贵金属前躯体溶液,按照计量比加入硝酸处理过的活性炭或介孔碳载体中等体积浸溃,催化剂中金属的质量含量占0.5-10%,静置大于2h后干燥6h以上,再在200-600°C下用氢气还原Ih以上,待温度降低至室温后通入含体积浓度1% 02/N2钝化4h以上; 过渡金属碳化钨和氮化物的制备:配制偏钨酸铵、偏钥酸铵、或偏钒酸铵溶液,等体积浸溃到活性炭、介孔碳、或氧化铝上,120°C干燥6h,500°C空气焙烧6小时,氢气或氨气气氛下500°C至900°C还原0.5小时以上,流量为60mL/g催化剂,待温度降低至室温后通入体积比1% 02/N2钝化,可制备碳化物或氮化物催化剂; 配制硝酸镍和过渡金属前驱体溶液,等体积浸溃到活性炭上,120°C干燥6h,氢气或氨气气氛下500°C至900°C还原0.5小时以上,流量为60mL/giSira,待温度降低至室温后通入体积比1% 02/N2钝化,可制备镍促进的碳化物或氮化物催化剂。
7.按照权利要求1所述的制备方法,其特征在于: 烷基化反应的产物及其类似化合物作为加氢脱氧的原料,加氢脱氧的原料为下述之一种或二种以上组合:丁醛与2-甲基呋喃烷基化反应物,以及其类似物为:

【文档编号】C10G69/12GK103450940SQ201210169817
【公开日】2013年12月18日 申请日期:2012年5月28日 优先权日:2012年5月28日
【发明者】张涛, 李广亿, 李宁, 王爱琴, 王晓东, 丛昱 申请人:中国科学院大连化学物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1