一种满足egr循环需要的可变截面废气旁通涡轮机的制作方法_4

文档序号:8919185阅读:来源:国知局
,旁通阀门支承轴42具有大径端,以支撑弹費27。
[0134]以上实施例提供的涡轮机不仅适用于四缸发动机,还可以适用于六缸发动机。图4-10的结构即对应于四缸,六缸时需要设置两组进气内流道3、进气外流道2、废气旁通管路,如图16、17所示,涡轮壳I的进气安装端面相应地设有两个涡轮壳废气旁通入口 9、涡轮壳外流道入口 10、涡轮壳内流道入口 11。此时,可以设置两组上述的阀门即可。
[0135]本文还提供一种针对六缸发动机,结构更为紧凑、体积小,且控制更为简单、精准的阀门结构。
[0136]如图13、18、20所示,调节阀门5包括相接的两个阀门本体,插装入涡轮壳I后,两个阀门本体分别对应控制两个外流道2的进气量。该调节阀门5依然与一个废气旁通阀门26联动安装,即在原有调节阀门5上加设一阀门门体,即可适用于六缸发动机,相当于一个阀门控制两个流道的进气量,易于实现精准控制。
[0137]上述实施例中提供了多种调节阀门5和废气旁通阀门26联动的方式,可以理解,单独控制废气旁通阀门26也是可行的,如图21、22所示的实施例4。与【背景技术】中提及的进气外流道放气阀类似,也可以为废气旁通阀门26配备相应的废气旁通阀门控制执行器48,则可根据相应的进气信号,控制废气旁通阀门26的启闭。废气旁通阀门控制执行器48与控制执行器7的工作原理相同,如图22所示,废气旁通阀门控制执行器48的杆端会在气压下伸长,带动销片组件旋转,进而驱动废气旁通阀门26转动,以关闭或开启阀口。
[0138]需要说明的是,上述实施例中,调节阀门5和废气旁通阀门26联动时,当联动力撤销时,通过设置弹簧27,使得废气旁通阀门26可复位至初始状态。弹簧27结合上述多种调节面25配合的联动方式,简单、可靠地实现了废气旁通阀门26的开启。可以理解,当由废气旁通阀门控制执行器48控制废气旁通阀门26启闭时,则无需设置复位装置。实际上,除了已提到的废气旁通阀门26联动方案,还有其他方案可实现废气旁通阀门26和调节阀门5的联动,而无需设置回位结构。比如,调节阀门5的端部设有齿轮,废气旁通阀门26设有齿条,或者调节阀门5设有螺母,废气旁通阀门26设有螺杆,当然,上述的设置方式相对简易,也不易干涉阀口。
[0139]本发明还对驱动动力涡轮31的进气方式作了改进。
[0140]如图4、23所示,所述涡轮壳I内靠近动力动力涡轮31的位置设有无叶喷嘴,以便将进气内流道3和进气外流道2排出的废气导入到动力涡轮31的叶片,本实施例在靠近无叶喷嘴的位置安装有开槽导叶12,所述涡轮壳I内靠近动力涡轮31的位置安装有导叶支撑盘30,导叶支撑盘30上设置有若干个开槽导叶12,为实现更为均匀地进气,若干个开槽导叶12呈环形均匀排列。
[0141]开槽导叶12的中间位置设有导流槽29。即在导叶支撑盘30的环面周向设置若干凸起于环面的导叶,然后开设贯穿导叶的导流槽29,则形成开槽导叶。开槽导叶12的排列角度B (如图23所示,该角度为开槽导叶12中轴线的切线、开槽导叶12靠近导叶支撑盘30中心的尖端与导叶支撑盘30中心连线,二者的夹角)可为68°?80°,导流槽29的两槽边可由切割线36 (开槽导叶12靠近导叶支撑盘30中心的尖端与导叶支撑盘30中线连线)围绕导叶支撑盘30的中心进行旋转获得,槽宽最窄处按3mm控制。
[0142]所述开槽导叶12采用气固复合喷嘴形式,即结合了气体流动和固体喷嘴的功能,发动机低速低负荷时,涡轮机进气内流道3起作用,本领域技术人员可知,此时进气内流道3进气角由公式tan(a) = 2 3ib/(A/r)获得,其中b为涡轮进口宽度,是定值,进气角则由进气内流道3的A/r决定,其中,A是涡轮壳I零截面积,R为零截面质心到涡轮壳I轴心的距离,如图24所示,图24为涡轮壳A、r示意图。
[0143]导叶角(两个开槽导叶12之间的夹角)按进气内流道3进气角进行设计,确保两角度基本一致,则气体沿进气内流道3进入开槽导叶12,再沿开槽导叶12进入动力涡轮31,中间没有转弯损失,气动效率高。
[0144]随着发动机转速逐渐提升,气体流量加大,进气外流道2会随着调节阀门5的打开参与进气,进气外流道2进气角也由进气外流道2的A/r决定,导流槽29角度按进气外流道2进气角进行设计,确保两角度基本一致,气体沿进气外流道2进入导流槽29,再沿导流槽29进入动力涡轮31,避免产生安装完整导叶(没有导流槽29)时的撞击损失和拐弯损失,不但提高了效率,更是拓宽了流量。而且,随着气流速度的加快,气流径向速度分量上升更快,导流槽29的存在,使高速段的流量拓宽更加明显。
[0145]图23中附有气体流动示意图,在发动机低速低负荷时,气流只沿N向(角度为α,即进气角)进入动力涡轮31,当发动机转速逐渐提升,气流会沿Μ(角度为β,即进气角)、N两个方向汇合成H向对动力涡轮31起作用,图中δ为流入动力涡轮31的气流方向变化范围。
[0146]此处以设置阀门座15时的实施例为例说明废气流动路径。
[0147]实际工作中,当发动机处于低速、低负荷时,调节阀门5关闭,进气沿排气管14、阀门座气体入口 23、阀门座内流道接口 18、涡轮壳内流道入口 11、进气内流道3、相邻开槽导叶12之间的通道流入动力涡轮31,驱动动力涡轮31做功。
[0148]此时,气流沿两开槽导叶12中间区域流向动力涡轮31,驱动动力涡轮31做功,只有进气内流道3起作用,截面较小,而且流经开槽导叶12时也只沿导叶角流入,即图20中N向,气流集中,可以提高涡前压力、提升EGR率。
[0149]当发动机转速、负荷逐渐升高时,调节阀门5开始开启,部分气流流过调节阀门5,沿阀门座外流道接口 19、涡轮壳外流道入口 10、进气外流道2、开槽导叶12流入动力涡轮31,以适应逐渐增大的流量需求,在此过程,通过调节调节阀门5的开度,可以调整涡前压力,确定合适的EGR率。
[0150]在调节调节阀门5的过程中,调节阀门5转到一定角度后(通常对应于发动机高速段),会通过调节面25给调节杆28施加推力,调节杆28带动废气旁通阀门26压缩弹簧27,打开废气旁通管路,废气沿排气管废气旁通出口 16、阀门座废气旁通入口 24、阀门座废气旁通出口 20、涡轮壳废气旁通入口 9、涡轮壳废气旁通出口 13流出,排掉一部分废气能量,确保发动机高速、高负荷时增压器涡前压力不致过大。
[0151]而且,随着进气量的增大,进气会沿开槽导叶12上的导流槽29流入,即图23中M向,M向、N向同时进气,避免了高速段的气流堵塞。
[0152]如图25、26所示,导叶的存在,减少了气流回流,不但提高了涡轮机效率,更使气流流动顺畅,避免了喉口处的气流扰动,保证涡轮机效率。
[0153]此外,涡轮机的压比、流量对其性能影响较大,而对流量其决定作用的是通流截面,现有技术依靠涡轮壳I的流道设计控制通流截面,但如【背景技术】所述,铸造涡轮机的生产一致性难以控制,相应地流量难以控φι」。本实施例中设有导叶结构,则可由导叶控制通流面积,而导叶结构能够精密加工形成,通流面积可得到精密控制,从而不受涡轮壳I本身加工精度的影响。
[0154]设置导叶后,使得涡轮机、发动机获得了明显的性能提升,如下:
[0155]1、涡轮机效率明显提升,效率对比图如图27所示,上方较粗的黑色线A为本发明效率线,下方较细的黑色线B为未改进之前的涡轮机效率线。
[0156]2、与发动机联合运行油耗对比曲线如图28所示,采用本发明的涡轮增压器,油耗率实现整条匹配线上的大幅度降低。
[0157]实施例5,在上述实施例基础上,本发明还提供另一种导叶设置形式,如图29所示,导叶包括长导叶32和短导叶33,长导叶32的长度大于短导叶33的长度,长导叶32和短导叶33间隔设置。
[0158]长导叶32和短导叶33的大小根据流动分析来定,但短导叶33的尾缘34与长导叶32的前缘35在圆周方向上要有一段距离,便于气流在发动机高速工况时从此流入,可以拓宽流量、减小堵塞,实现的功能类似于前一实施例的开槽导叶12。即长导叶32按照一定角度沿导叶支撑盘30周向排列,短导叶33按照另一角度排列,则按照逆时针方向,长导叶32和短导叶33之间的通道形成与进气内流道3导通的导流流道,短导叶33和长导叶32之间的通道形成与进气外流道2导通的导流流道。具体工作过程可参照上述的开槽导叶12理解。
[0159]长导叶32的排列角度B可设计为68°?80°,长导叶32的排列角度B与短导叶33的排列角度A的角度差为:B-A = 0°?5。。
[0160]其中,排列角度B为,长导叶32中轴线的切线、长导叶32靠近导叶支撑盘30中心的尖端与导叶支撑盘30的中心连线,二者的夹角;排列角度A为,短导叶31中轴线的切线、短导叶31靠近导叶支撑盘30中心的尖端与导叶支撑盘30的中心连线,二者的夹角。
[0161]该种导叶设置方式的涡轮机效率更优,效率对比图如图30所示:
[0162]上方最细的黑色线A为长短导叶涡轮机效率线、下方最粗的黑色C线为一般废气旁通涡轮机效率线、中间的黑色线B为开槽导叶涡轮机效率线。通过上表可以看出,设置长导叶32、短导叶33的涡轮机效率甚至还要高于开槽导叶12结构。
[0163]从以上描述可看出,无论是开槽导叶12,还是长导叶32、短导叶33的配合设置,均是为了形成两种具有预定夹角的第一导流通道、第二导流通道(即二者不平行设置,该夹角值和进气内流道3、进气外流道2的进气角有关),以便进气内流道3流出的废气能够经第一导流通道导流至所述动力涡轮31,进气外流道2流出的废气能够经所述第二导流通道导流至所述动力涡轮31。如上,则相邻开槽导叶12之间的通道形成所述第一导流通道,导流槽29形成第二导流通道;按照逆时针方向,长导叶32至短导叶33之间的通道形成第二导流通道,短导叶33至长导叶32之间的通道形成第一导流通道。
[0164]只要能够将进气内流道3和进气外流道2的废气分别引向动力涡轮31,拓宽流量范围,即可以产生如上所述的技术效果,显然,两种流道的形成方式并不限于上述的开槽导叶12以及长导叶32、短导叶33,当然,上述实施例的结构,易于加工,而且不阻碍气流,导流效
当前第4页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1