柱形浮标平台的制作方法

文档序号:10517606阅读:475来源:国知局
柱形浮标平台的制作方法
【专利摘要】一种海上空中风力涡轮机系统包括:飞行器;导电系绳,其具有固定到飞行器的第一端和固定到平台的第二端;可旋转的电缆盘,其设置在平台上;飞行器停放架,其从平台延伸,其中平台被设置在柱形浮标的顶部上。
【专利说明】柱形浮标平台
[0001 ] 本申请要求2013年12月30日提交的美国专利申请第14/144272号的优先权,该申请通过引用完整地合并于此。
【背景技术】
[0002]除非这里另外地指明,本部分中描述的内容不是本申请中的权利要求的先有技术,并且不被承认为因此部分中的包含而是先有技术。
[0003]发电系统可以将化学和/或机械能(例如动能)转变成电能用于各种应用,诸如公共设施系统。作为一个示例,风能系统可以将风动能转变成电能。
[0004]风力涡轮机的作为用于利用能量的工具的使用已经被使用了很多年。常规风力涡轮机一般包括位于塔的顶上的大涡轮机叶片。制造、架设、维修和保养这样的风力涡轮机塔和风力涡轮机的费用是相当大的。
[0005]可被用来利用风能的对昂贵的风力涡轮机塔的一种替代物是使用以导电系绳连接到地面站的飞行器。这样的替代物可以被称作空中风力涡轮机或AWT。

【发明内容】

[0006]现在,海上空中风力涡轮机系统提供在之前不可用的深海应用中利用风能的可行方法。一种空中风力涡轮机系统被设置在系泊至海底的柱形浮标之上。该空中风力涡轮机系统包括连接到导电系绳的航空翼,该导电系绳将航空翼产生的电传输到柱形浮标上的平台,在此经由电缆电被传输到岸上,并在某些情形下被传输到电网上。电力也可以被当地使用,例如用于重整铝或将空气压缩到海底上的压缩空气罐中。这种空中风力涡轮机系统,因为它利用了可用系泊索被简单地系泊到海底的漂浮的浮标,所以不需要连接到海底的大型塔,因此适合于深海位置中的使用。
[0007]另一方面,一种海上空中风力涡轮机系统被提供为包括:飞行器;导电系绳,其具有固定至飞行器的第一端和固定至平台的第二端;可旋转的电缆盘,其被安置在平台上;飞行器停放架,其从平台延伸,其中平台被安置在柱形浮标的顶部上。
[0008]在另一个方面,一种柱形浮标被提供为包括:竖直取向的主构件,其中该主构件配置为支撑安置在主构件的上端上的空中风力涡轮机系统;压载物,处于主构件的下端,其中导电系绳的第二端是可连接到平台上的,并且其中飞行器是可连接到系绳的第一端的。
[0009]通过参照适合于附图的描述阅读以下详细描述,这些以及其它方面、优点和替代对于本领域普通技术人员将变得明显。
【附图说明】
[0010]图1是根据一示例实施方式的海上空中风力涡轮机10的透视图,海上空中风力涡轮机10包括用导电系绳30连接到柱形浮标平台的飞行器20。
[0011 ]图2是图1所示的飞行器20的特写透视图。
[0012]图3是根据一示例实施方式的海上空中风力涡轮机10的侧视图,飞行器120安放在停放架54上,且导电系绳30将柱形浮标平台50连接至飞行器120。
[0013]图4是根据一示例实施方式的图3所示的海上空中风力涡轮机10的侧视图,垂荡板64被安置在柱形浮标的主构件50上。
[0014]图5是根据一示例实施方式的图3所示的海上空中风力涡轮机10的透视图,其中柱形浮标平台50朝向飞行器120倾斜。
[0015]图6A是根据一示例实施方式的图5所示的海上空中风力涡轮机10的侧视图,其中飞行器120停放在柱形浮标平台50的停放架54上。
[0016]图6B是根据一示例实施方式的图6A所示的海上空中风力涡轮机10的侧视图,其中飞行器从位于柱形浮标平台50上的可旋转的电缆盘53退绕。
[0017]图6C是根据一示例实施方式的图6A和图6B所示的海上空中风力涡轮机10的侧视图,其中飞行器120转换为侧风飞行。
[0018]图7A是根据一示例实施方式的图6A-图6C所示的柱形浮标平台50的俯视图,其中系绳30从可旋转的电缆盘53延伸,且停放平台95相对于柱形浮标平台50的偏置臂58处于第一位置。
[0019]图7B是根据一示例实施方式的图6A-图6C所示的柱形浮标平台50的俯视图,其中系绳30从可旋转的电缆盘53延伸,且停放平台95相对于柱形浮标平台50的偏置臂58在第二位置。
[0020]图7C是根据一示例实施方式的图6A-图6C所示的柱形浮标平台50的俯视图,其中系绳30从可旋转的电缆盘53延伸,且停放平台95相对于柱形浮标平台50的偏置臂58在第三位置。
[0021]图8A是根据一示例实施方式的供替换的柱形浮标平台150的侧视图,其具有设置在顶部的电缆盘53和停放板54。
[0022]图8A是图8A所示的柱形浮标平台150的俯视图。
[0023]图9A是柱形浮标平台的侧视图,其中飞行器120处于停放位置,且主构件52向左倾斜。
[0024]图9B是图9A所示的柱形浮标平台的侧视图,其中飞行器120处于飞行中,并且主构件52朝向飞行器120向右倾斜。
【具体实施方式】
[0025]这里描述了示例方法和系统。这里描述的任何示例实施方式或特征不必然被解释为优选的或优于其它实施方式或特征。这里描述的示例实施方式不意味着是限制性的。将易于理解,所公开的系统和方法的某些方面能以非常多种不同的配置来布置和组合,所有这些不同的配置都在这里被考虑到。
[0026]此外,图中所示的特定布置不应被视作限制性的。应当理解,其它实施方式可以包括所给附图中示出的或多或少的每个元件。此外,示出的元件中的一些可以被结合或省略。再者,示例实施方式可以包括未在图中示出的元件。
[0027]1.概述
[0028]示例实施方式涉及飞行器,其可用于风能系统中,诸如空中风力涡轮机或AWT。具体地,说明性的实施方式可以涉及使用飞行器的方法和系统或采取使用飞行器的方法和系统的形式,该飞行器被用导电系绳连接到地面站。
[0029]风能系统诸如AWT可以用于将风能转变成电能。AWT是基于风的能量产生装置,该装置可包括飞行器,该飞行器由具有安装的涡轮机的刚性翼构造。该飞行器可以是可操作的以在地面(或水)上方按横穿风的路径诸如基本上圆形的路径飞行,以将风动能转变成电能。在这样的侧风飞行中,飞行器按照类似于风力涡轮机的翼尖的圆形图案横穿风飞行。连接在刚性翼上的转子可以用来通过使翼减速而产生电力。具体地,横越涡轮机叶片移动的空气可以推动叶片旋转,这驱动发电机产生电。飞行器还可以经由导电系绳连接到地面站,导电系绳将飞行器产生的电力传输到地面站,在某些情形下传输到电网上,或者在当地使用。
[0030]当期望使飞行器着陆时,导电系绳可以被缠绕到地面站中的线轴或电缆盘上,该线轴或电缆盘收线将飞行器朝地面站上的停放架拉近。在着陆在停放架上之前,飞行器可以从飞行模式转变为悬停模式。在飞行器转变为悬停模式之后,系绳可以被缠绕到电缆盘上,直到飞行器回来停留在停放架上。
[0031]空中风力涡轮机可以提供优于常规风力涡轮机的显著优点。例如,空中风力涡轮机可以在高于地面500米的距离处飞行,与常规风力涡轮机所在的更靠近地面处(例如70米)相比,在这里风显著地更强。500米处的风可以提供70米处的风的两倍的电力。此外,常规风力涡轮机一般需要巨大的叶片和支撑叶片的大型塔。与空中风力涡轮机相比,制造、运输和维护叶片和塔是非常昂贵的。
[0032]此外,常规风力涡轮机一般需要变速箱以增大旋转的涡轮机叶片的每分钟转数(“rpm”)到对发电机有用的速度。变速箱会是昂贵的并易于出故障。在示例AWT中,飞行器可以以100-150英里每小时飞行,且小得多的螺旋桨以100rpm的速度旋转,使得不需要变速箱。此外,由于不需要大的塔和大涡轮机叶片的内部,所以空中风力涡轮机的材料成本是常规风力涡轮机的成本的十分之一。
[0033]然而,当其变成海上发电时,空中风力涡轮机可以提供优于常规风力涡轮机的另一个显著的优点。具体地,强烈、持续的风可以在深海位置(例如在30米深或更深的水域中)被发现。然而,由于其旋转的叶片引起的大的回转负载,常规风力涡轮机的顶部可以不能容许能够因风、水流和波浪导致的摇摆。如果漂浮平台被用来支撑常规风力涡轮机,则这会需要极大量的压载物以防止风力涡轮机的顶部由于波浪作用、水流和/或风而摇摆。因此,用于常规平台的漂浮平台可以不是切实可行的。
[0034]因此,对于海上应用,常规风力涡轮机一般具有从海面上方向下延伸到海底的塔。因此,水越深,塔的尺寸越大,且由旋转的涡轮机叶片引起的围绕塔的底部的力矩越大。因此,用于深水应用的常规风力涡轮机的使用可以不是切实可行的。具体地,在许多海上位置,建造和/或安装这样的塔的成本可以是过分地昂贵。
[0035]示例实施方式针对柱形浮标平台,其可以被锚定到海底,并且其可以用于海上位置的空中风力涡轮机系统。对于空中风力涡轮机系统,飞行器通过系绳连接,该系绳延伸到水平面附近的浮标平台的顶部,所以没有由飞行的飞行器引起的大的力矩,这不同于常规风力涡轮机中由塔的顶部上的旋转叶片引起的绕塔的底部的力矩。而且,该力矩保持不变而与水的深度无关,因为系绳延伸到紧邻海平面上方的平台,而不是到海底。这在深海应用中是特别有利的。
[0036]此外,柱形浮标不必是像常规风力涡轮机所需的那样的巨大浮标,因为当飞行器在飞行时空中风力涡轮机系统对由波浪作用或风引起的浮标顶部处的摇摆不敏感。换句话说,在侧风飞行期间,浮标的顶部是否在水面之上摇摆,这可以无关紧要。然而,在使飞行器的着陆期间,浮标平台的顶部应当是稳定的。
[0037]压载物或质量块可以提供在柱形浮标的底部以帮助将浮标保持在竖直位置从而提供稳定性。质量块可以是位于浮标的底部的水、填充物、钢或混凝土以提供稳定性。柱形浮标应当足够稳定以在飞行器的起飞和着陆期间保持直立。
[0038]柱形浮标可以通过绳索连接到被锚定到海底的系泊设备上,该绳索可以有利地连接到从柱形浮标延伸的偏置臂。通过这种布置,当飞行器在侧风飞行中飞行时,飞行器将柱形浮标的顶部朝飞行器拉,使得柱形浮标偏向从而朝飞行器倾斜。此外,通过偏置臂,飞行器的拉力提供经系绳、偏置臂和绳索延伸至系泊设备的更直接的张力载荷。因此,可以减小由飞行器的拖拉引起的力矩,并且柱形浮标不遭受在常规风力涡轮机中发现的在塔的底部处的大的弯曲力矩。
[0039]倾斜的能力也是一个优点,因为飞行器按环形飞行,其中飞行器对于部分环爬升,并对于部分环下降。因此通过具有其中你实际上提升和降低整个柱形浮标的系统,能量被存储。因此,因为柱形浮标能够倾斜并比基于陆地的设计更顺应,所以势能能被储存,这帮助使飞行器放出的能量稳定。因此,飞行器上的电机以更一致的水平工作。
[0040]此外,当飞行器处于圆环飞行中时,浮标的振荡可以落后于飞行器的运动,使得存在飞行器在上行且浮标在向下运动的时候,下行时相反。这种相对运动可以衰减飞行器的运动以及浮标的振荡。最终结果可以使能量产生更稳定,由于通常存在振荡(上行程更多的电力产生,下冲程更少的电力产生)。有利地,飞行器能被建造为具有落在与50或100年波浪周期相同的结构的结构非灵敏区内的飞行圈周期,就结构激励而言其也必须被避免。例如,50年波浪的周期可能是17秒,AWT飞行的圈周期取决于风速可以在10和20秒之间,柱形浮标可以被建造为就对35秒周期上的张力或波作用的响应来说具有最显著的共振。
[0041]此外,柱形浮标提供在水位线处(和以下)的小的横截面以最小化波浪能的转移,因而最小化波浪作用对柱形浮标的影响。另一个考虑是,可以期望将浮标定位在水流和波浪力处于与风力不同的方向上的位置。
[0042]柱形浮标平台具有基于其质量和水线直径的固有共振,使得在风能够以不同的频率吹的同时它将以特定的频率在水中上下跳动。因此,柱形浮标系统应当被相对良好地衰减,使得它既不随波浪运动也不随飞行器的运动而强烈地共振。有益地,共振频率能被设定在由波浪运动或由飞行器的飞行以及力的拉紧程度和方向上的改变引入的那些频率之外。垂荡板可以关于柱形浮标被水平地设置以提供衰减。结构在水线处的直径能被改变以实现系统的有益响应。有益地,垂荡板可以被配置从而衰减平台中的起伏运动,但是可以被水平地放置从而在飞行器飞圈时限制对该平台的可以帮助储存能量的俯仰运动的衰减,且仅有对衰减的部分损失。
[0043]当系绳在着陆过程期间朝向平台卷回时,电缆盘可以用于储存系绳。在一示例中,电缆盘可以绕水平轴旋转。当系绳被缠绕在电缆盘上时,浮标可以朝飞行器倾斜,使得系绳处于垂直于电缆盘的角度。柱形浮标平台可以包括停放架,该停放架利用停放支撑件从柱形浮标的顶部延伸。在一些实施方式中,停放架和停放支撑件可以绕柱形浮标的顶部旋转以在着陆和起飞期间允许停放架的所需定位。然而,本柱形浮标设计可以有利地允许不旋转的停放架。具体地,柱形浮标可以以柱形浮标追随风的方式漂浮。当飞行器被收线拉近时,停放架能位于系绳被缠绕到电缆盘上的路径中,且柱形浮标和停放架在飞行器被收线拉近时能简单地四处漂浮和跟随飞行器。以这样的方式,停放架将总是保持在适于飞行器的着陆的位置。
[0044]以这样的方式,通过旋转并跟随飞行器,柱形浮标平台可以消除偏航轴,这可以允许柱形浮标平台塔的围绕其系泊设备的运动以稳定停放架的沿其偏航轴的运动,诸如方位角上的运动。
[0045]2.说明性的海上空中风力涡轮机
[0046]如图1-2中公开的,根据一示例实施方式,一种海上空中风力涡轮机系统10被公开。海上空中风力涡轮机系统10是基于风的能源产生装置,其包括由刚性翼22构造的飞行器20,刚性翼22具有安装的涡轮机40a、40b,飞行器20按横穿风的路径诸如基本上圆形的路径飞行。在一示例实施方式中,飞行器20可以在水面上方250和600米之间飞行以将风动能转变成电能。然而,飞行器可以在其它的高度飞行而不脱离本发明的范围。在侧风飞行中,飞行器20按类似于风力涡轮机的翼尖的圆形图案横穿风飞行。连接到刚性翼22的转子40a和40b用来通过使翼22减速而产生电力。横越涡轮机叶片运动的空气推动它们旋转,这驱动发电机产生电。飞行器20经导电系绳30连接到柱形浮标平台50,系绳30将飞行器20产生的电力传输到柱形浮标平台50,以及传输到电网上。
[0047]如图1所示,飞行器20可以连接到系绳30,系绳30可以连接到柱形浮标平台50。在此示例中,系绳30可以在柱形浮标平台50上的一个位置连接到柱形浮标平台50,并利用笼头绳32a、32b和32c在飞行器20上的三个位置连接到飞行器20。然而,在另一些示例中,系绳30可以在多个位置连接到柱形浮标平台50和/或飞行器20的任何部分。
[0048]柱形浮标平台50可以用于固定住和/或支撑飞行器20直到它处于工作模式中。柱形浮标平台50可以包括可在水面上方延伸大约15米的竖直取向的主构件52。柱形浮标平台50还可以包括可绕电缆盘轴55旋转的电缆盘53,电缆盘53用于通过缠绕系绳30到可旋转的电缆盘53上而收线拉回飞行器20。在此示例中,电缆盘53水平取向,尽管电缆盘还可以竖直地取向(或成一角度)。此外,柱形浮标平台50可以进一步配置为在着陆期间接收飞行器20。例如,停放支撑构件56a和56b连接到停放板54并从可旋转的电缆盘53向外延伸。当系绳30缠绕到电缆盘53上并且飞行器20朝向柱形浮标平台50被收线拉回时,飞行器20可以回来停放在停放板54上。柱形浮标平台50可以由能够在悬停飞行、向前飞行或侧风飞行时适当地保持飞行器20连接到柱形浮标的任何材料形成。
[0049]系绳30可以将飞行器20产生的电能传输到柱形浮标平台50,该电能然后可以经由电缆传输到岸上和到电网上。此外,系绳30可以传输电到飞行器20以便在起飞、着陆、悬停飞行和/或向前飞行期间向飞行器20供电。系绳30可以以任何形式并使用任何材料构造,该材料可允许由飞行器20产生的电能的传输、运送和/或利用和/或到飞行器20的电的传输。系绳30也可以配置为在飞行器20处于工作模式时承受飞行器20的一种或更多种力。例如,系绳30可以包括芯,所述芯被配置为当飞行器20在悬停飞行、向前飞行和/或侧风飞行时承受飞行器20的一种或更多种力。芯可以由任何高强度纤维或碳纤维条构造。在某些示例中,系绳30可以具有固定的长度和/或可变的长度。例如,在一个不例中,系绳具有500米的固定长度。
[0050]飞行器20可以包括各种类型的装置或采取各种类型的装置的形式,诸如风筝、直升飞机、翼和/或飞机,还有其它的可能性。飞行器20可以由金属、塑料和/或其它聚合物的固体结构形成。飞行器20可以由允许高推重比和电能产生的任何材料形成,该电能可以用于公共应用。另外,材料可以被选择以允许迅速硬化、冗余和/或容错的设计,该设计可以能够应付风速和风向上的大的和/或突然的改变。其它的材料也是可以的。
[0051 ] 如图1并且更详细地如图2中所示,飞行器20可以包括主翼22、转子40a和40b、尾梁或机身24、以及尾翼26。这些部件的任一个可以按任何形式成形,所述形式允许抵抗重力和/或使飞行器20向前运动的升力部件的使用。
[0052]主翼22可以为飞行器20提供主要升力。主翼22可以是一个或更多个刚性或柔性的机翼,并可以包括各种控制面,诸如翼梢小翼、襟翼、方向舵、升降舵等。控制面可以用于在悬停飞行、向前飞行和/或侧风飞行期间稳定飞行器20和/或减少飞行器20的阻力。主翼22可以是用于飞行器20进行悬停飞行、向前飞行和/或侧风飞行的任何适合的材料。例如,主翼20可以包括碳纤维和/或无碱玻璃。
[0053]转子连接器43可以用于连接上转子40a到主翼22,转子连接器41可以用于连接下转子40b到主翼22。在某些示例中,转子连接器43和41可以采取一个或更多个外挂架的形式或在形式上类似于一个或更多个外挂架。在此示例中,转子连接器43和41布置为使得上转子40b定位在翼22上方并且下转子40a定位在翼22下方。
[0054]转子40a和40b可以配置为驱动一个或更多个发电机以产生电能。在此示例中,转子40a和40b可以每个包括一个或更多个叶片45,诸如三个叶片。所述一个或更多个转子叶片45可以经由与风的相互作用而旋转,其能用于驱动所述一个或更多个发电机。此外,转子40a和40b也可以配置为在飞行期间提供推力给飞行器20。通过这种布置,转子40a和40b可以用作一个或更多个推进单元,诸如螺旋桨。尽管转子40a和40b在此示例中被示出为四个转子,但是在另外的示例中飞行器20可以包括任何数目的转子,诸如少于四个转子或多于四个转子,例如六个或八个转子。
[0055]返回参照图1,当期望使飞行器20着陆时,电缆盘53旋转以朝向柱形浮标平台50上的停放板54收线拉回飞行器20,并且导电系绳30被缠绕到电缆盘53上。在着陆于停放板54上之前,飞行器20从飞行模式转变为悬停模式。电缆盘53被进一步旋转以进一步缠绕系绳30到电缆盘53上直到飞行器20回来停在停放板54上。
[0056]3.柱形浮标平台的说明性示例
[0057]图3和图4示出海上空中风力涡轮机10的示例实施方式,其包括具有机身124的飞行器120。飞行器120被示为停放在从连接到柱形浮标平台50的停放支撑件56a延伸的停放板54上。导电系绳30被示为从绕水平电缆盘轴55旋转的可旋转电缆盘53延伸。可旋转电缆盘53设置在柱形浮标的主构件52的上端52顶上。柱形浮标平台50由位于柱形浮标的主构件52的底部处的压载物53稳定。偏置臂58从柱形浮标的主构件52的顶部52a延伸,其延伸到位于偏置臂58和下臂59的交点处的连接点60,下臂59连接到柱形浮标的主构件的底部。绳索70的第一端连接到锚定到海底80的系泊索72和74,绳索70的第二端连接到连接点60。柱形浮标的主构件52在水线处(和以下)具有小的横截面62,这最小化从来自经过主元件52的水90的波浪或水流的力的能量传递。
[0058]压载物或质量块53可以提供在柱形浮标的主元件52的底部以帮助保持浮标处于竖直位置从而提供稳定性。质量块可以是设置在浮标的底部的水、填充物、钢或混凝土以提供稳定性。柱形浮标应当足够稳定以在飞行器20的起飞和着陆期间保持直立。
[0059]图5示出图1-4所示的海上空中风力涡轮机系统10,其被示出具有处于飞行状态的飞行器20。在此示例中,飞行器20被延伸到水平面附近的柱形浮标平台50的顶部的系绳30连接,所以没有由飞行的飞行器20引起的大的力矩,这不同于常规风力涡轮机中由塔的顶部上的旋转叶片引起的绕塔的底部的力矩。此外,该力矩保持不变而与水90的深度无关,因为系绳30延伸到紧邻海平面上方的柱形浮标平台50,而不是如常规风力涡轮机的情形延伸到海底。这在深海应用中是特别有利的。
[0060]在图5中,飞行时的飞行器20和连接的系绳30的拉力施加趋向于使柱形浮标平台50以角度α朝向飞行器20倾斜的力。倾斜的能力也是有益的,因为飞行器20按环形飞行,其中飞行器20对于部分环爬升,对于部分环下降。因而通过具有实际上提升和降低整个柱形浮标平台50的系统,能量被储存。因此,由于柱形浮标平台50能够倾斜并比基于陆地的设计更顺应,所以势能能够被储存,其帮助使飞行器20放出的能量稳定。因此,飞行器20上的电机可以以更一致的水平工作。此有利方面必须与避免平台的强共振(其会增大负荷)的需求保持平衡,且存在优选的系统参数或系统参数的优选范围以实现一定量的电力平衡同时避免不希望的负荷。例如,翼的频率在各种激励轴上或沿特定的本征模式可以显著地超出平台的共振模或充分地在所述平台的共振模之前。然而,如果系统被制作为在飞行中具有不同的响应,则两个有益方面可以有可能被保留。例如,与浮标更直立且系统被停泊时相比,以飞行角度倾斜并置于飞行深度时或系泊索处于飞行张力时浮标的更大的水线面积可以导致显著更快的俯仰响应以及更小的衰减。
[0061]柱形浮标平台50可以通过绳索70连接到锚定到海底的系泊索72和74,绳索70可以有利地连接到从柱形浮标平台50的主元件22的顶部52a延伸的偏置臂58。通过这种布置,当飞行器20在侧风飞行中飞行时,飞行器20朝向飞行器20拉柱形浮标平台50的顶部,使得柱形浮标平台50偏离为朝向飞行器20倾斜。此外,利用偏置臂58,飞行器20的拉力提供经系绳30、偏置臂58和绳索70延伸到系泊索72和74的更直的张力负载。因此,由飞行器20的拖拉引起的力矩可以减小,柱形浮标平台50不遭受在常规风力涡轮机中发现的在塔的底部处的大的弯曲力矩。
[0062]此外,柱形浮标平台50不必像常规风力涡轮机所需的那样是巨大的浮标,因为当飞行器20在飞行时,空中风力涡轮机系统10对波浪作用或风引起的浮标的顶部处的摇摆不敏感。换句话说,在侧风飞行期间,即使柱形浮标平台50的顶部在水面上方摇摆,这也是无关紧要的,只要柱形浮标平台50的顶部在飞行器20的着陆期间是稳定的。
[0063]返回参照图4,如上所述,柱形浮标平台50可以具有基于其质量和水线直径的固有共振,从而当风可能以不同的频率吹时它将以特定的频率在水90中上下浮动。因此,柱形浮标平台50应当被相对良好地衰减,使得它超过临界频率,在该临界频率该柱形浮标通常跟随飞行器20的运动。为了提供对柱形浮标平台50的衰减,垂荡板64可以绕柱形浮标的主元件52水平地设置。
[0064]图6A-6C示出图5所示的海上空中风力涡轮机10的侧视图,其中飞行器120被显示处于不同位置。图6A是根据一示例实施方式的海上空中风力涡轮机10的侧视图,飞行器120停放在柱形浮标平台50的停放板54上。飞行器120被示出为停放在从连接到柱形浮标平台50的停放支撑件56a延伸的停放板54上。导电系绳30被示出为从绕水平电缆盘轴55旋转的可旋转电缆盘53延伸到飞行器120的翼122。可旋转电缆盘53定位在柱形浮标的主构件52的上端52a顶上。柱形浮标平台50由位于柱形浮标的主构件52的底部的压载物53稳定。偏置臂58从柱形浮标的主构件52的顶部52a延伸,其延伸到位于偏置臂58和下臂59的交点处的连接点60,下臂59连接到柱形浮标平台50的主构件52的底部。绳索70的第一端连接到锚定到海底80的系泊索72和74,绳索70的第二端连接到连接点60。柱形浮标的主构件52在水线(和以下)具有小的横截面62,小的横截面62最小化来自经过主元件52的水90的波浪的能量传递。
[0065]图6B是图6A所示的海上空中风力涡轮机10的侧视图,其中飞行器120从设置在柱形浮标平台50上的可旋转电缆盘53退绕。可旋转电缆盘53可以用于在着陆过程期间其朝向柱形浮标平台50收线拉回时储存系绳30。在一优选实施方式中,电缆盘53可以绕水平轴55旋转。当系绳30被缠绕到电缆盘53上时,柱形浮标平台50可以朝向飞行器120倾斜,使得系绳30处于垂直于电缆盘53的轴55的一角度处。柱形浮标平台50可以包括利用停放支撑件56a (和56b)从柱形浮标52a的顶部延伸的停放板54。
[0066]图6C是根据一示例实施方式的图6A和图6B所示的海上空中风力涡轮机10的侧视图,其中飞行器120转变为侧风飞行。
[0067]图7A是根据一示例实施方式的图6A-6C所示的柱形浮标平台50的俯视图,其中系绳30从可旋转电缆盘53延伸,且停放平台95处于相对于柱形浮标平台50的偏置臂58的第一位置,停放平台95连接到停放支撑件56a和56b,停放支撑件56a和56b连接到停放板54和停放杆54a。
[0068]图7B是根据一示例实施方式的图6A-6C所示的柱形浮标平台50的俯视图,其中系绳30从可旋转电缆盘53延伸,且停放平台95处于相对于柱形浮标平台50的偏置臂58的第二位置,停放平台95连接到停放支撑件56a和56b,停放支撑件56a和56b连接到停放板54和停放杆54a。
[0069]图7C是根据一示例实施方式的图6A-6C所示的柱形浮标平台50的俯视图,系绳30从可旋转电缆盘53延伸,停放平台95处于相对于柱形浮标平台50的偏置臂58的第三位置,停放平台95连接到停放支撑件56a和56b,停放支撑件56a和56b连接到停放板54和停放杆
54a ο
[0070]在图7A-7C所示的实施方式中,停放平台95、停放支撑件56a和56b以及停放板54可以绕柱形浮标平台50的主元件52的顶部52a旋转,以允许在着陆和起飞期间停放板54的期望定位。
[0071]然而,本柱形浮标平台设计可以有利地允许不旋转的停放板54。具体地,柱形浮标平台50可以以柱形浮标平台50跟随风的方式在水90中漂浮。当飞行器120被收线拉回时,停放板54能位于系绳30被缠绕到电缆盘53上的路径中,并且在柱形浮标平台50顶部柱形浮标平台50(如图7A所示)和停放板54能简单地四处漂浮,并在飞行器120被收线拉回时跟随飞行器120。以这样的方式,停放板54将总是保持在适合于飞行器的着陆的位置,对可旋转的停放平台的需求能被消除。
[0072]图8A和图8B是根据一示例实施方式的备用柱形浮标平台150的视图,柱形浮标平台150具有设置在顶部160上的可绕轴55旋转的电缆盘53以及停放板54。向下延伸的腿152、154和156在顶部160下面延伸并连接到横贯构件158a、158b和158c。系泊索72、74和76被用来相对于风、水流或波浪作用将柱形浮标平台定位在期望的位置。
[0073]图1-8中示出的柱形浮标平台可以具有在飞行器飞行的圈周期的0.5和2倍之间的振荡频率。具体地,柱形浮标平台可以具有在约10和20秒之间的非灵敏区。如果飞行器也以10-20秒的圈周期(取决于风)飞行,该平台适于两者。因此,在一些实施方式中,平台可以具有10-20秒的振荡频率,飞行器飞行的圈周期为10-20秒。
[0074]图9A是柱形浮标平台的侧视图,其中飞行器120处于停放位置。由于停放在柱形浮标平台上的飞行器120,主构件52被示为向左倾斜成第一取向。图9B是图9A所示的柱形浮标平台的侧视图,其中飞行器120在飞行,并且当飞行器处于飞行模式时主构件52向右倾斜并朝向飞行器偏离垂线一角度成第二取向。因此,与飞行器飞圈时相比,当飞行器被停放时,平台具有非常不同的取向。
[0075]此外,柱形浮标平台可以被配置使得第一停放取向下的水线的位置低于(或高于)飞行器飞行时第二取向下的水线的位置。来自柱形浮标的响应可以在飞行负载下改变,以通过水线高度的改变、侧滚或俯仰角或者系绳张力的改变减小衰减并增加飞行器储存的能量。
[0076]4.结论
[0077]以上详细说明参照附图描述了所公开的系统、装置和方法的多种特征与功能。虽然这里已经公开了很多方面和实施方式,但是其它的方面和实施方式对于本领域技术人员将是显然的。这里公开的很多方面和实施方式是为了说明的目的,而不意在是限制性的,真实的范围和精神由所附权利要求书指出。
【主权项】
1.一种海上空中风力涡轮机系统,包括: 飞行器; 导电系绳,其具有固定到所述飞行器的第一端和固定到平台的第二端; 可旋转的电缆盘,其设置在所述平台上; 飞行器停放架,其从所述平台延伸; 其中所述平台设置在柱形浮标的顶部上。2.如权利要求1所述的系统,其中偏置臂从所述柱形浮标的侧部延伸。3.如权利要求2所述的系统,其中所述偏置臂包括用于至系泊索的连接的连接点。4.如权利要求3所述的系统,其中当所述飞行器处于侧风飞行时,所述柱形浮标的所述顶部朝向所述飞行器倾斜。5.如权利要求4所述的系统,其中所述飞行器的拉力引起经所述导电系绳、所述偏置臂和所述系泊索的张力负荷。6.如权利要求1所述的系统,其中所述飞行器停放架绕所述柱形浮标的顶部是可旋转的。7.如权利要求1所述的系统,其中当所述飞行器正被收线拉回并且所述系绳正被缠绕到所述可旋转的电缆盘上时,所述飞行器停放架位于所述系绳被缠绕到所述可旋转的电缆盘上的路径中。8.如权利要求7所述的系统,其中所述可旋转的电缆盘具有水平的旋转轴。9.一种柱形浮标,包括: 竖直取向的主构件,其中所述主构件被配置为支撑设置在所述主构件的上端上的空中风力涡轮机系统平台; 压载物,其在所述主构件的下端; 其中导电系绳的第二端可连接到所述平台;以及 其中飞行器可连接到所述系绳的第一端。10.如权利要求9所述的柱形浮标,还包括设置在所述主构件的所述上端上的所述空中风力涡轮机系统平台。11.如权利要求10所述的柱形浮标,还包括设置在所述平台上的可旋转的电缆盘。12.如权利要求11所述的柱形浮标,还包括从所述平台延伸的飞行器停放架。13.如权利要求9所述的柱形浮标,其中偏置臂从所述柱形浮标的所述主构件的侧部延伸。14.如权利要求13所述的柱形浮标,其中所述偏置臂包括用于到系泊索的连接的连接点。15.如权利要求14所述的柱形浮标,其中所述连接点设置在所述偏置臂的远端。16.如权利要求12所述的柱形浮标,其中偏置臂从所述柱形浮标的所述主构件的侧部延伸,其中,当所述飞行器处于侧风飞行时,所述柱形浮标的所述上端朝向所述飞行器倾斜。17.如权利要求16所述的柱形浮标,其中所述飞行器的拉力引起经所述导电系绳、所述偏置臂和系泊索的张力负荷。18.如权利要求12所述的柱形浮标,其中所述飞行器停放架绕所述柱形浮标的顶部是可旋转的。19.如权利要求12所述的柱形浮标,其中偏置臂从所述柱形浮标的所述主构件的侧部延伸,并且其中当所述飞行器正被收线拉回并且所述系绳正被缠绕到所述可旋转的电缆盘上时,所述飞行器停放架位于所述系绳被缠绕到所述可旋转的电缆盘上的路径中。20.如权利要求19所述的柱形浮标,其中所述可旋转的电缆盘具有水平的旋转轴。21.如权利要求9所述的柱形浮标,其中垂荡板被围绕所述柱形浮标的所述主构件设置。22.如权利要求1所述的系统,其中所述平台具有在所述飞行器飞的圈周期的0.5和2倍之间的振荡频率。23.如权利要求22所述的系统,其中所述平台具有10-20秒的振荡频率,并且所述飞行器飞的所述圈周期是10-20秒。24.如权利要求1所述的系统,其中当所述飞行器停放在停放板上时,所述柱形浮标具有第一取向,当所述飞行器处于飞行模式时,所述柱形浮标具有第二取向。25.如权利要求1所述的系统,其中当所述飞行器处于所述飞行模式时,所述柱形浮标偏离垂线朝向所述翼转动成所述第二取向。26.如权利要求25所述的系统,其中所述柱形浮标转动至偏离垂线成所述第一取向的方向,所述方向与偏离垂线成所述第二取向的方向相反。27.如权利要求24所述的系统,其中处于所述第一取向的所述柱形浮标的水线高度不同于处于第二取向的水线高度。28.如权利要求24所述的系统,其中来自所述柱形浮标的响应在飞行负载下改变,以通过水线高度的改变、侧滚或俯仰角或者系绳张力的改变减小衰减并增大所述飞行器储存的能量。
【文档编号】B63B35/44GK105874195SQ201480071795
【公开日】2016年8月17日
【申请日】2014年12月17日
【发明人】D.范德林德
【申请人】谷歌公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1