用于钻探设备的流体分流器系统的制作方法

文档序号:5392796阅读:336来源:国知局
用于钻探设备的流体分流器系统的制作方法
【专利摘要】一种用于钻探设备的流体分流器系统,包括流体连接到延伸到海底油井的管状元件(3、42、43)的分流器外壳(15;15’)。分流器外壳(15;15’)包括用于关闭分流器外壳的能移动分流器元件(2)、连接到泥浆系统并包括第一阀(5)的第一流体导管(44)、从分流器外壳中的出口(46;46’)通向船外位置并包括第二阀(1;48)的至少一个第二流体导管(20;20’)、以及连接到泥浆/气体分离器(MGS)(13)并包括第三阀(4)的第三流体导管(16)。MGS(13)布置在分流器管线的出口(50)下,由此竖管流体可通过重力流从分流器外壳(15)供给到MGS(13)。位于钻探设备的背风侧上的分流器阀(1;48)构造成在分流器元件(2)围绕管状元件(3)关闭之前打开。
【专利说明】用于钻探设备的流体分流器系统
发明领域
[0001]本发明涉及从海底、地下、井中的碳氢化合物的抽取。更具体地,本发明涉及如在独立权利要求1中的前序部分中所说明的用于处理来自钻井孔的流体的系统。
[0002]发明背景
[0003]用在碳氢化合物井中的海底钻探中的分流器系统是众所周知的。最初,在防喷器(BOP)安装之前,分流器系统安装在钻井船或者半潜式钻井装置上,以便当利用海底竖管(riser,立管)钻探时来处理浅层气体。目前,更常用的是用海水或者水基泥浆并且随着返回到海床或者“无竖管”返回到钻井装置而钻探顶孔部分。
[0004]目前,分流器系统的主要目的是处理在BOP在所谓的“井涌(kick)”的情况下关闭之后而由于一些原因已进入竖管中的气体。井涌(kick)是其中因为由钻探流体柱施加的压力不足够大以克服由以正在钻探的形式的流体施加的压力,所以在钻探期间碳氢化合物、水或者其他形式流体进入井筒中的情形。随着行业正在向更深的水域发展,对于钻探工来说,及早地检测井涌(kick)已更加困难,因为由于海平面(Β0Ρ位于该处)处的静压力,气体将处于液相或者密相。处于液相或者密相的碳氢化合物比处于气相的碳氢化合物更不易压缩。如果压力高于153.5巴(临界凝结压力)并且温度在-29°C (临界温度)与+99°C (临界凝结温度)之间,则典型的天然气将进入密相。随着气体(处于液相或者密相)经过海底竖管向上行进,静压力减小,并且该气体从液/密相变化成气/蒸汽相并膨胀数百倍。
[0005]当气体在竖管中膨胀时,该气体可以填充整个环形套筒,推动静态的泥浆柱返回到钻井装置,即使BOP是关闭的。随着静态泥浆柱减少并且气体经过竖管向上行进,泥浆将以加速的和增大的流速返回。当分流器系统激活时,该泥浆和气体将被安全地分流到船外。
[0006]在许多钻井装置上,所谓的“泥浆/气体分离器”(MGS)已用在分流器系统中,试图将泥浆从气体中分离并且将泥浆返回到系统中,从而避免泥浆排出到海中。由美国技术学会(American Institute of Technology) (API)发行的刊物 “API RP64, RECOMMENDEDPRACTICE FOR DIVERTER SYSTEMS EQUIPMENT AND OPERATIONS (用于分流器系统设备和操作的操作规程建议)”在题为“Inadvertent Gas Entry into the Riser (气体到竖管中的无意进入)”的7.2.4节中陈述:
[0007]“当使用海底竖管时,浅层气流并非分流器系统的唯一应用。当BOP在井涌的情况下关闭时,当在任何深度钻探时气体可能无意地进入竖管。如果在BOP关闭之后压头泄漏,气体也可能进入竖管。竖管中的气体可通过将流分流到船外而安全地去除。在一些设计中,泥浆/气体分离器用在分流器系统中以将气体从泥浆中分离并且将泥浆返回到系统中。再次,该设计不应允许分流器完全地关闭井。”
[0008]在现有技术中该被解决的方法是分流器元件、返回流管线以及分流器管线已同时关闭,迫使流体从竖管向上返回到位于更高水平面的MGS中。这在图1中示出,其公开在题为“Deepwater Horizon Accident Investigation Report (深水地平线事故调查报告)”的BP公开报告(2010年9月8日发表)中的114页上。
[0009]这个设计的危险部分是从竖管中返回的泥浆的流量大大高于MGS的设计容量,导致MGS和排气管线的充满。在具有该系统的大部分钻井装置上,依赖于(操作程序的)钻探工来打开分流器舷外阀,如果他相信返回流量超过了 MGS的容量的话。
[0010]在一些钻井装置中,MGS中的额外的高水平面起下钻(trip)和/或分流器外壳中的高压力起下钻已安装,以在MGS中的高水平面或者分流器外壳中的高压力下自动打开分流器舷外管线。
[0011]这些设计中的任一个中,危险的部分是其中用以采取适当动作(即在MGS的排气管线完全填充之前)的可用时间是非常有限的。在当已达到MGS中的高水平面或者分流器中的高压力时,从竖管中返回的泥浆处于高加速模式下并且可用于打开分流器阀的时间非
常有限。
[0012]重泥浆的段塞向上加速到MGS排气管线、随后是两相流并且最终是大的气体释放,将在分流器外壳中产生增大的压力以及在滑动接头中产生可能的泄漏,该可能的泄漏导致气体在滑动接头连接处在钻井装置下释放。这种事件的最坏的情况是深水地平线灾难。
[0013]本发明人已经设计和具体化了本发明以克服现有技术的缺点并且以获得进一步的优点。

【发明内容】

[0014]本发明在独立权利要求中进行阐述并特征化,而从属权利要求描述本发明的其他特征。
[0015]因此提供了一种用于钻探设备的流体分流器系统,包括分流器外壳,所述分流器外壳流动地连接到延伸到海底油井的管状元件;分流器外壳包括用于关闭分流器外壳的能移动的分流器元件、连接到泥浆系统并包括第一阀的第一流体导管、从分流器外壳中的出口通向位于船外位置处的出口并包括第二阀的至少一个第二流体导管、以及连接到泥浆/气体分离器(MGS)并包括第三阀的第三流体导管,其特征在于,MGS布置在分流器管线的出口下面,由此竖管流体能通过重力流从分流器外壳供给到MGS。
[0016]在一个实施例中,从第三流体导管进入MGS的入口布置在分流器外壳的出口下面的一竖直距离处。
[0017]MGS优选地通过液体密封流体连接到泥浆处理设备。
[0018]在一个实施例中,MGS进一步包括第一压力变送器(pressure transmitter,压力传送器),并且液体密封包括以竖直距离间隔布置的第二压力变送器和第三压力变送器,以及监测和控制系统,由此能确定液体密封密度。
[0019]在一个实施例中,第三阀与用于液体密封的水平面指示器联锁。
[0020]在一个实施例中,第二流体导管向上倾斜,这样使得第二流体导管的出口位于比第二流体导管的入口更高的高度处。
[0021]在一个实施例中,位于钻探设备的背风侧(leeward side,下风侧)上的分流器阀构造成在分流器元件围绕管状元件关闭之前打开。
[0022]本发明允许MGS以比已知系统更安全的方式接收竖管流体。
[0023]通过发明的系统,竖管流体通过重力流确定到MGS的路径,允许通向背风侧的分流器阀打开并且分流器元件同时关闭。这通过将MGS安装在比分流管线出口更低的水平面处来解决。气体安全地排出到船外而钻探流体返回到泥浆系统。在实际的应用中,该MGS可为第二 MGS,并且特别地指定用于接收来自海底竖管中的流体。
[0024]因此提供的是,在BOP在井涌(kick)的情况下关闭之后可能已经进入竖管中的任何气体被安全地排出到船外,并且同时泥浆可以安全的方式返回到系统中。
[0025]还提供可以安全地确定“钻探气体”从分流器到MGS分离器的路径,而保持分流器元件关闭以防止气体通过分流器外壳涌出并逸出到钻台上。当以脱气器模式运行系统时,将允许气侵泥浆经历两个阶段分离过程。MGS将取出通常会逸出到钻台和振动器上的气体,而第二阶段通过泥浆处理罐中的脱气器完成。脱气器用以分离钻探流体中夹带的气泡,该气泡太小而不能通过MGS去除。
[0026]附图的简要说明
[0027]参照附图,本发明的这些和其他特征将从如非限制性实例给出的实施方式的优选形式的下列描述中而变得清楚的,在附图中:
[0028]图1是根据现有技术的BOP压头、分流器元件以及阀位置的简化了的示意性表示,也表现了在钻井船或者半潜式钻井装置上的典型的布置。该附图复制自题为“DeepwaterHorizon Accident Investigation Report”的 BP 公开报告(2010 年 9 月 8 日发表)的 114页;
[0029]图2是发明的系统的简化了的示意性表示;
[0030]图3是发明的系统的可替换实施方式的简化了的示意性表示;以及
[0031]图4是发明的系统的可替换实施方式的简化了的示意性表示,用在Hydril ?海底竖管分流器系统中。
[0032]优选实施方式的详细描述
[0033]钻柱3在干舷钻台(未示出)与海床BOP (未示出)之间延伸,在伸缩的所谓“滑动接头”42和海底竖管47中延伸,从而限定环形套筒43。这种布置在本领域中是众所周知的,并且因此不需要进一步地描述。
[0034]分流器外壳15布置为与环形套筒43和从分流器外壳中的出口 46延伸并且延伸到在船外位置处的出口 50的分流器管线20流体连通。分流器外壳通常具有两个分流器管线,分别延伸到船的左舷侧和右舷侧,这样使得在背风侧上的分流器管线可以使用,如上面所解释的。但是,为了说明的目的,仅示出了一个分流器管线。分流器阀I布置在每个分流器管线20中。在附图中,分流器阀I显示为在打开状态(白色版面)。
[0035]分流器外壳15还通过流动管线44 (流动管线中的流由流动管线阀5控制)连接到船的泥浆系统(未示出)。在附图中,流动管线阀5显示为在关闭状态(灰色版面)。分流器元件2布置成围绕钻柱3关闭,并且在附图中显示为处于关闭状态。参考标号14表示分流器外壳15中的液面。
[0036]分流器外壳15通过MGS管线16流体连接到MGS13。MGS管线16中的流由MGS阀4控制,该MGS阀在附图中显示为在打开状态(白色版面)。排气管线21从MGS延伸。通常,该排气管线21延伸到高于井架(未示出)的顶部的一段距离(典型地,4米)。
[0037]此外,MGS通过出口管线45流体连接到振动器24,并且该振动器24以已知的方式对砂槽18和脱气器19进行供给。出口管线45通过在出口管线成回路向上返回至水平面A (该水平面A高于出口管线到MGS13的连接点)之前延伸一段向下的距离Ii1而有效地形成液体密封6。在出口管线45的回路的底部处,布置有检查和排出装置22 (仅示意性地示出),通过该检查和排出装置,任何阻塞或者钻屑可以从该管线监测和去除。
[0038]MGS13布置在低于分流器外壳的水平面处,这样使得竖管流体通过重力的作用而在MGS管线16中流动。更特别地,MGS管线入口 17位于比从分流器外壳的分流器管线20的出口、分流器管线的出口 50和分流器外壳中的液面低的水平面处。在图2中,这些高度差异分别由参考字母h2和h4表示。通过这种布置,在BOP在井涌的情况下已关闭之后可能已经进入竖管中的任何气体均安全地排出到船外并且同时泥浆可以安全的方式返回到系统中。
[0039]图3显示了可替换的实施方式,其中一个或多个分流器管线20’向上倾斜到出口50,并且因此可部分地填充液体,因为到MGS管线16的出口在与到一个或多个分流器管线20’的出口相同的水平面处或者在比所述一个或多个分流器管线的出口更高的水平面处。如果到MGS管线16的出口保持在比到一个或多个分流器管线20’的出口 46’更高的水平面处,则液体密封将形成在分流器管线中,当系统在“脱气器模式”中运行时减小在分流器管线中排出的气体的量。该可替换方案提供了更紧凑的布置,并且因此与图2中显示的实施方式相比,将需要钻台水平面与振动器甲板之间的更小的高度。分流器管线20’优选地包括伴热(未示出)或者类似的加热装置,以防止雨水冻结并且因此阻塞分流器管线。
[0040]图4仍然显示了一个可替换的实施方式,其中发明的系统用在Hydnl⑧/每底竖管分流器系统15’(其本身是已知的)中。在该可替换方案中,不存在外部分流器阀,而仅具有设定到背风分流器管线20’的分流的流的路径的流选择器48。到MGS管线16的出口在流选择器之前从分流器管线获得,并且分流器管线20’向上倾斜到如图3中的出口。流选择器48可以是已知的类型,例如,诸如Hydril ?压力控制流选择器。
[0041]真空断路器管线23流体连接到出口管线45,以避免排空出口管线45的虹吸效应。
[0042]第一压力变送器9布置在MGS13的上部区域中,并且第二和第三压力变送器7、8布置在液体密封6的下部区域中。第二压力变送器7和第三压力变送器8布置为具有竖直间隔h3,因此有利于液体密封密度的计算。液面指示器10接收来自压力变送器7、8、9的信号(虚线),并且还连接到钻机的控制系统DCS。
[0043]分流器阀1、分流器元件2、MGS阀4以及流管线阀5全部通过DCS/ΒΟΡ控制系统相互连接(控制和驱动管线未示出)。这种控制系统是众所周知的,并且因此不需要进一步地描述。
[0044]参考标号11表示MGS13中的高水平面读数HH,并且参考标号12表示液体密封6中的低水平面读数LL。
[0045]发明的系统在下列模式中是有用的:a)分流器模式、b)脱气器模式、以及c)起下钻气体模式。
[0046]a)分流器模式
[0047]如果由于延迟BOP在井涌情况下的关闭气体已经无意地进入海底竖管中,或者如果在BOP关闭之后压头泄漏,竖管中的气体将继续上升到表面并且必须安全地分流到船外。
[0048]深水地平线灾难是这种操作模式以及如果这没有安全地设定路径到船外的话可发生的潜在灾难的终极实例。BP的出版物“Deepwater Horizon Accident InvestigationReport" (2010年9月8日发表)指出碳氢化合物在大约21:38时进入竖管(98页)并且第一 BOP压头在大约21:41时关闭。即,BOP在大约3分钟后被激活,太晚而不能使碳氢化合物停止进入竖管中。该报告还显示第一压头没有100%密封并且第二压头在大约21:46时激活(表2,103页)。在大约21:47时,B0P100%密封。在21:49:20时发生的第一次爆炸完全由已进入竖管中的气体引起。该调查报告还作出结论,保持分流器阀和分流器元件两者关闭而同时设定泥浆和气体返回到MGS的路径是爆炸的一个直接原因。
[0049]本发明的一个重要的特征是分流器阀与分流器阀和分流器元件联锁,这样使得正在使用的(即,在背风侧上的)分流器阀I在分流器元件2围绕钻柱3关闭之前打开。同时,泥浆可允许由重力通过MGS阀4和管线16安全地返回到MGS13。
[0050]通过联锁分流器阀(B卩,背风侧上的分流器阀I在分流器元件2围绕钻柱3关闭之前打开),发明的系统遵循 “ABS ⑶IDE FOR THE CLASSIFICA OF DRILLING SYSTEMS2011(用于钻探系统的分类的ABS指南2011)”,其在3.7.3节(Control System for Diverters(用于分流器的控制系统))中陈述:
[0051]“iv)控制系统将具有联锁以便分流器阀在环状元件围绕钻柱关闭之前打开。”
[0052]发明的系统还遵循“DNV-0S-E101DRILLING PLANT (钻探设备),2009年10月”,其在第5部分第2章(303Control and monitoring (控制和监测),第2条)中陈述:
[0053]“分流器控制系统应当设有联锁以确保分流器导管中的通向背风侧的阀在分流器围绕钻探设备关闭之前打开。”
[0054]当BOP在井涌的情况下关闭时,正常的井控制响应将通过流动管线44和流动管线阀5进行流检查。在该初始阶段中,分流器元件2通常将打开,并且分流器阀I和MGS阀4关闭。如果流检查显示井仍然在增大,则通常立即采取动作以关闭第二压头。如果钻探流体仍然在返回,则将采取针对“竖管井喷”的准备措施。
[0055]通过本发明,用于为“竖管井喷”做准备的第一个步骤是检查MGS中的液体密封6填满。设置用于填充液体密封6的泥浆填充装置(未示出)。液体密封6装配有上述的两个压力变送器7、8,位于液体密封6的底部附近,并且间隔一个竖直距离h3以计算密封中的流体密度。h3的适合的值是0.5米。液体密封完整性将由控制系统DCS针对来自第一压力变送器9的读数来校正,以获得当气体排出时由水平面指示器10提供的液体密封完整性(SP,水平面指示)的正确读数。
[0056]作为额外的安全水平面,MGS阀4将在MGS13中的高水平面11上或者液体密封6中的低水平面12上关闭。
[0057]当液体密封6中的确认的水平面已建立时,MGS阀4可打开并且分流器外壳14中的水平面可向下排出到低于通向分流器阀I的出口和通向流管线阀5的出口的水平面。通过观察到下降到零的流动管线44中的流而获得水平面14已向下排出的确认。作为一个选择,水平变送器(未示出)可另外安装在分流器外壳15中。
[0058]从分流器外壳15到MGS13的MGS管线16优选地设定尺寸最大为总脱气器容量的80%,以便不超过MGS和下游砂槽18的容量。脱气器罐19中的脱气器(未示出)可以是离心或者真空型。大容量MGS管线16在“竖管井喷”的事件中将不会避免钻探流体被处理到海上;它将仅以安全的方式减小被处理到海上的量,避免从钻探流体逸出的气体被处理到钻台上,而是安全地排出到船外。[0059]用于MGS管线16的尺寸标准典型地将是在最大1000至1500gpm的量级。MGS管线16优选地设定尺寸用于满液运行的管道,并且驱动力将是分流器外壳15中的水平面14与MGS入口 17的入口高度(图2和图3中显示Sh4)之间的总的可用静压力差。为了减小入口压力损失,对于第一个十倍管径长度,与用于MGS管线16的管道直径相比,分流器外壳15的出口和MGS阀4应该具有下一个较大的管道直径(例如,如果管道直径是0.25米(DN250),则在将管道直径减小到0.2米(DN200)之前该直径将用在第一个2.5米中)。同样地,应当进行考量以减小管道直径或者在MGS入口 17处安装孔口,以便确保MGS管线16满液运行。MGS管线16的总的容量将根据布局取决于管线尺寸以及总的可用静压力差。h4(即,分流器外壳中的水平面14与MGS入口 17的高度之间在高度上的差异)的典型的值在2与5米之间。
[0060]在“竖管井喷”的事件中,MGS管线16的容量将被超出并且超出的竖管流体通过分流器管线20安全地处理到海中。但是,MGS13的容量将不会被超出,因为典型地为最小值的通向液体密封6的出口与用于MGS入口 17的管道直径相比具有下一个较大的管道直径。而且,当MGS13中的水平面由于分流器外壳15中的增大的压力而增加时,它将不会填充MGS排气管线21,因为分流器外壳15中的压力限制为由流过分流器管线20和MGS管线16的竖管流体导致的背压。在从MGS13的液体密封出口 6阻塞(S卩,出口管线45中阻塞)的情况下,MGS13将过满而MGS排出管线21将不会,因为分流器阀I是打开的。在这种情况下,作为在HH水平面11上的额外的安全水平面MGS阀4将关闭,并且以防止另外的竖管流体分流到阻塞了的MGS13中。
[0061]液体密封6的高度Ill应该设定尺寸以防止气体漏气到处理罐。4=6米(20英尺)的最小液体密封推荐用于在深水中操作的钻井船或者半潜式钻井装置中。如果没有来自于权威机构(ABS、DNV等)的另外的规定,则待考虑的最大漏气情况应该基于根据165mmsCfd(大约200000Sm3/h)的深水地平线事故的峰值气体流量(参考BP公开报告“De印waterHorizon Accident Investigation Report”(2010 年 9 月 8 日发表)中 113 页上的图1)。气体峰值流量将通过MGS管线16在分流器管线20与MGS排气管线21之间成比例地排出。分流器管线20和MGS排气管线21的管线尺寸待设定以保持MGS13中的背压低于可接受的水平以防止气体漏气到振动器24。
[0062]虽然分流器管线20和MGS排气管线21尺寸设定成防止气体漏气到处理罐中,但是额外的安全水平面安装在内部,以便如果液体密封6的完整性由于一些原因而丧失,则自动地在LL水平面12上关闭MGS阀4。
[0063]为了防止液体密封6通过虹吸效应排空,液体密封顶部待装配如上所述的真空断路器21。
[0064]在正常井控制情况下,对于可能已经进入海底竖管中的气体将花费时间以到达水面,特别是在深水中。返回的钻探流体起初将是低流速的,并且随着气体接近表面,在流速上以指数方式增加。因此,应当有时间以便为如上所述的“竖管井喷”做准备。但是,在任何时候,如果竖管中的气体存在快速膨胀,则分流器元件2必须关闭(如果还没有关闭)并且流被分流到船外。自动分流器联锁系统(“应急按钮”)将确保到通向背风侧的分流器阀I在分流器元件2关闭之前打开。该系统将根据规则工作,与MGS阀4的位置无关。
[0065]b)脱气器模式[0066]虽然发明的系统将以安全的方式收集钻探流体,并且减小在“竖管井喷”的情况下的环境影响,但是当该系统用于在两阶段脱气过程中循环出“钻探气体”时,会获得真正的益处。
[0067]当钻探穿过包含气体的多孔地层时,在切割中的特定数量的气体将进入钻探流体中。由于钻探穿过地层而表现在表面上的气体称为“钻探气体”。虽然由泥浆柱施加的流体静压力比地层压力大,但是通过这种机制表现在表面上的气体总会发生。充分地增加泥浆重量以使这种情况消失是不可行的。
[0068]如果正在钻探的地层包含大量处于高压下的钻探气体,则随着该气体经过竖管向上行进时该气体将膨胀,并且气体可以在分流器外壳15中从钻探流体逸出并且还会减小竖管中的气侵泥浆的密度。如果气侵泥浆中的气体浓度太高,则钻探应该停止,并且气侵泥浆应该在两阶段分离过程中通过MGS阀4并且经由MGS13以减小的速度循环到脱气器罐19中。以这种方式,在继续钻探之前,在包含海底竖管的环形套筒43中的全部泥浆量可被脱气直到达到可接受的标准。
[0069]如果在分流器外壳15中气体正在逸出并且泄漏到钻台上,则在分流器15中的水平面14已经通过MGS阀4向下排出、并且分流器阀I已经打开之后,分流器元件2可以被关闭。以这种方式,来自气侵泥浆的气体可以安全地排出到船外,远离钻台和钻井装置。本发明的重要的实施方式是气侵泥浆的这种脱气可以两阶段分离过程进行,而无需对分流器外壳15施加压力,并且遭受与“ABS⑶IDE FOR THE CLASSIFICATION OF DRILLINGSYSTEM-2011 (用于钻探系统的分类的ABS指南一2011)”和DNV标准DNV-0S-E101冲突的危险。
[0070]c )起下钻气体模式
[0071]当行进脱出孔时,起下钻气体通过抽吸效应产生。当再次行进返回孔中之后“倒置”循环时,气体可以在表面处看到。本发明可用于通过打开MGS阀4而循环出起下钻气体,并且分流器阀I已经打开以允许分流器元件2关闭。但是,如果我们具有大量起下钻气体,则随着该气体经过竖管向上行进而膨胀,气体可以越过段塞流,并且如果MGS管线16的容量被超出,则可以结束填充整个竖管环形套筒,将泥浆的段塞推出到海中。用以消除泥浆对海的可能污染的更好的方法是通过竖管进行“倒置”循环直到底部接近海床处的BOP并且通过压井和阻流管线以正常的方式循环剩余部分。
[0072]现在已经参照附图对本发明的实施方式进行了描述,该附图是示意性的并且仅显示了对于阐明本发明所必需的部件。虽然本发明已经参照具体的实施方式、数字值以及操作模式进行了描述,但是应当理解的是,本发明不应该被必然地限制在这种实施方式、值以及模式中。
【权利要求】
1.一种用于钻探设备的流体分流器系统,包括流体连接到管状元件(3、42、43)的分流器外壳(15 ;15’),所述管状元件延伸到海底油井;所述分流器外壳(15 ;15’)包括用于关闭所述分流器外壳的能移动的分流器元件(2)、连接到泥浆系统并包括第一阀(5)的第一流体导管(44)、从所述分流器外壳中的出口(46 ;46’ )通向位于船外位置处的出口(50)并包括第二阀(I ;48)的至少一个第二流体导管(20 ;20’)、以及连接到泥浆/气体分离器(MGS)(13)并包括第三阀(4)的第三流体导管(16),并且所述MGS (13)布置在所述分流器管线的所述出口(50)的下面,其特征在于,位于所述钻探设备的第一侧上的所述第二阀(I ;48)构造成在所述分流器元件(2)围绕所述管状元件(3)关闭之前打开。
2.根据权利要求1所述的流体分流器系统,其中,所述钻探设备的所述第一侧是背风侧。
3.根据权利要求1或权利要求2所述的流体分流器系统,其中,从所述第三流体导管(16)进入所述MGS的入口(17)布置在所述分流器外壳的所述出口(46 ;46’)下面的竖直距离(h2)处。
4.根据权利要求1至3中的任一项所述的流体分流器系统,其中,所述MGS(13)通过液体密封(6 )流体连接到泥浆处理设备(24、18、19 )。
5.根据权利要求4所述的流体分流器系统,其中,所述MGS(13)进一步包括第一压力变送器(9),并且所述液体密封(6)包括以竖直距离间隔布置的第二压力变送器(7)和第三压力变送器(8),以及监测和控制系统(DCS),由此能确定所述液体密封密度。
6.根据前述权利要求中的任一项所述的流体系统,其中,所述第三阀(4)与用于所述液体密封(6)的水平面指示器(10)联锁。
7.根据前述权利要求中的任一项所述的流体系统,其中,所述第二流体导管(20’)向上倾斜,这样使得所述第二流体导管的出口位于比其入口(46’ )更高的高度处。
【文档编号】E21B21/08GK103649452SQ201280032299
【公开日】2014年3月19日 申请日期:2012年6月19日 优先权日:2011年6月27日
【发明者】达格·瓦维克 申请人:阿克Mh股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1