冷却装置的制作方法

文档序号:5433191阅读:156来源:国知局
专利名称:冷却装置的制作方法
技术领域
本发明涉及压缩制冷装置;更具体地说,本发明涉及致冷剂压缩机及冷却装置,它们使用一种属于HFC类致冷剂的1,1,1,2-四氟乙烷(以下称为R134a)单体或HFC类致冷剂的混合致冷剂(例如,R134a、R32和R125 3种化合物的混合致冷剂;R134a、R143a和R125 3种化合物的混合致冷剂;R32和R125 2种化合物的混合致冷剂)作致冷剂并同时使用一种与该致冷剂具有相溶性的冷冻机油。
背景技术
冷藏库、自动售货机和陈列柜用的致冷剂压缩机过去多数都是使用二氯二氟甲烷(以下称为R12)作致冷剂。由于这种R12存在破坏臭氧层的问题,因此被作为氟里昂规定的对象,于是人们研究使用R134a作为R12的替换致冷剂用于冷冻机(例如,参照特开平1-271491号公报)另外,空调机等使用的一氯二氟甲烷(R22)也存在同样的问题,因此,从环境问题的观点考虑,人们希望使用HFC类的混合致冷剂。
然而,上述的R134a等HFC类致冷剂与现在使用的矿物油或烷基苯油等冷冻机油的相溶性差,使得冷冻机油向压缩机回流的性能劣化,或者使得在停止状态下突然起动时把分离的致冷剂吸上,由于这样一些原因,导致了压缩机润滑不良的问题。
为此,本发明者们对一种多元醇酯类油作为与致冷剂R134a等HFC类致冷剂具有相溶性的冷冻机油进行了研究。然而,这些多元醇酯类油用于旋转型压缩机时,会由于受热而水解并因此生成脂肪酸,这些脂肪酸会引起滑动部件的腐蚀,从而使其磨损。另外,这些由于磨耗而产生的粉末会对压缩机的电动单元的磁线等有机类材料产生不良影响,从而引起压缩机的耐久性受损害的问题。
于是,本发明者们把作为致冷剂的HFC类致冷剂和作为冷冻机油的多元醇酯类油组合起来用于旋转型压缩机并对此进行了深入的研究,结果发现,由于旋转型压缩机的滑动部件产生的摩擦热而引起用于润滑所说滑动部件的多元醇酯类油发生水解并因此产生羧酸,这些羧酸会腐蚀铁基材料,并由于与铁基材料反应而产生金属皂或淤渣,从而降低了冷冻能力。
结果,本发明者们发现,通过将特定的多元醇酯类油、特定的添加剂和特定的滑动材料进行规定的组合,可以抑制由上述滑动部件产生的摩擦热所引起的多元醇酯类油的热分解,并为此提出了专利申请(参照特愿平6-295357号)然而,按照上述发明,在使用多元醇酯类油的情况下,为了抑制水解,必须对制造工艺,也就是对水分、氯和氧的浓度进行严格的控制,而这种控制是十分麻烦的,这是它的缺点。

发明内容
本发明解决上述的问题,其目的是提供一种高性能的致冷剂压缩机,该压缩机使用一种与R134a等HFC类致冷剂具有相溶性的聚乙烯醚类油作为冷冻机油,不必进行麻烦的工艺流程控制,并且能够抑制由于滑动部件的摩擦热引起热解或水解所导致的羧酸的产生以及伴随的淤渣的产生。
1.本发明如下所述它是在一个密闭容器内安装压缩机部件,并且将HFC类单一致冷剂或其混合致冷剂以及与该致冷剂具有相溶性的冷冻机油封装入上述密闭容器内而构成,其特征在于,上述冷冻机油是以一种具有由下述通式(1)表示的构成单元的聚乙烯醚类化合物为主成分,并且在每一构成单元中,R4的构成比为,碳数1~2的烷基占40~100%,碳数3~4的烷基占0~60%, (式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
2.本发明的优选方案中,其中所说的致冷剂是1,1,1,2-四氟乙烷(R134a)单体,或者是由50重量%的二氟甲烷(R32)与50重量%的五氟乙烷(R125)混合而成的共沸混合致冷剂,或者是由44重量%的五氟乙烷(R125)与52重量%的三氟乙烷(143a)以及4重量%的1,1,1,2-四氟乙烷(R134a)混合而成的拟共沸混合物。
3.在本发明的优选方案中,在所说的冷冻机油中具有相当于该冷冻机油0.01~1.0重量%的酚类防氧化剂作为必要成分,并配合有0.01~2重量%的环氧类或碳化二亚胺类化合物。
4.在本发明的优选方案中,在所说的冷冻机油中配合有相当于该冷冻机油0.1~2重量%的磷酸酯类化合物。
5.在本发明的优选方案中,用于构成所说压缩机部件的叶片由铁基材料或熔浸了铝的碳复合材料制成,滚子由铁基材料制成。
6.在本发明的优选方案中,用于构成所说压缩机部件的叶片由一种在高速工具钢等铁基材料或者不锈钢(SUS)类材料上进行离子氮化、硫氮共渗、CrN等单独的或复合的表面处理而获得的材料制成。
7.在本发明的另一个方面,它是在一个密闭容器内安装压缩机部件,并且将HFC类单一致冷剂或其混合致冷剂以及与该致冷剂具有相溶性的冷冻机油封装入上述密闭容器内而构成,上述冷冻机油是以一种具有由下述通式(1)表示的构成单元的聚乙烯醚类化合物为主成分,并且在每一构成单元中,R4的构成比为,碳数1~2的烷基占80~100%,碳数3~4的烷基占0~20%, (式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
8.在本发明的优选方案中,其中所说的致冷剂是由下述通式(2)表示的氟代烃物组中选择的至少2种的组合物构成,ClHmFn(2)
(式中,l=1时,m=1~2、n=2~3而且m+n=4;l=2时,m=1~4、n=2~5而且m+n=6;l=3时,m=1~3、n=5~7而且m+n=8)。
9.在本发明的优选方案中,其中所说的致冷剂是由50重量%的二氟甲烷(R32)与50重量%的五氟乙烷(R125)混合而成的共沸混合致冷剂,或者是由44重量%的五氟乙烷(R125)与52重量%的三氟乙烷(143a)以及4重量%的1,1,1,2-四氟乙烷(R134a)混合而成的拟共沸混合致冷剂。
10.在本发明的优选方案中,在所说冷冻机油中具有相当于该冷冻机油0.01~1.0重量%的酚类防氧化剂作为必要成分,并配合有0.01~2重量%的环氧类或碳化二亚胺类化合物。
11.在本发明的优选方案中,在所说的冷冻机油中具有相当于该冷冻机油0.1~2重量%的磷酸酯类化合物。
12.在本发明的优选方案中,用于构成所说压缩机部件的叶片由铁基材料或浸渍了铝的碳复合材料制成,滚子由铁基材料制成。
13.在本发明的优选方案中,用于构成所说压缩机部件的叶片由一种在高速工具钢等铁基材料或者不锈钢(SUS)类材料上进行离子氮化、硫氮共渗、CrN等单独的或复合的表面处理而获得的材料制成。
14.在本发明的又一方面,本发明是在一个密闭容器内安装入压缩机部件,并且将HFC类致冷剂或其混合致冷剂以及与该致冷剂具有相溶性的冷冻机油封装入上述密闭容器内而构成,上述冷冻机油是以一种具有由下述通式(1)表示的构成单元的聚乙烯醚类化合物为主成分,并且在每一构成单元中,R4的构成比为,碳数1~2的烷基占60~100%,碳数3~4的烷基占0~40%, (式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
15.在本发明的优选方案中,其中所说的致冷剂是由下述通式(2)表示的氟代烃物组中选择的至少2种的组合物构成,ClHmFn(2)(式中,l=1时,m=1~2、n=2~3而且m+n=4;l=2时,m=1~4、n=2~5而且m+n=6;l=3时,m=1~3、n=5~7而且m+n=8)。
16.在本发明的优选方案中,其中所说的致冷剂是由23重量%的二氟甲烷(R32)、25重量%的五氟乙烷(R125)和52重量%的1,1,1,2-四氟乙烷(R134a)混合而成的拟共沸混合致冷剂。
17.在本发明的优选方案中,在所说冷冻机油中具有相当于该冷冻机油0.01~1.0重量%的酚类防氧化剂作为必要成分,并配合有0.01~2重量%的环氧类或碳化二亚胺类化合物。
18.在本发明的优选方案中,在所说的冷冻机油中配合有相当于该冷冻机油0.1~2重量%的磷酸酯类化合物。
19.在本发明的优选方案中,用于构成所说压缩机部件的叶片由铁基材料或浸渍了铝的碳复合材料制成,滚子由铁基材料制成。
20.在本发明的优选方案中,用于构成所说压缩机部件的叶片由一种在高速工具钢等铁基材料或者不锈钢(SUS)类材料上进行离子氮化、硫氮共渗、CrN等单独的或复合的表面处理而获得的材料制成。
21.在本发明的又一方面,本发明为一种冷却装置,它由致冷剂压缩机、冷凝器、减压装置、蒸发器通过配管连接而构成,在上述密闭容器内封装入HFC类致冷剂或其混合致冷剂以及与该致冷剂具有相溶性的冷冻机油,上述冷冻机油以聚乙烯醚类化合物为主成分,并且在每一构成单元中,R4的构成比为,碳数1~2的烷基占40~100重量%,碳数3~4的烷基占0~60重量%,
(式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
以下根据附图示出的实施例来解释本发明。


图1是表示本发明一个实施例的旋转型压缩机的纵剖视图。
图2是本发明旋转型压缩机的横截面图。
图3是阿姆斯拉型试验机的说明图。
图4是实验室规模试验机的说明图。
图5是冷却装置的致冷剂回路图。
对符号的说明1密闭容器3旋转压缩单元10 滚子12 叶片18 油具体实施方式
图1是旋转型压缩机的纵剖视图。图2是沿图1的旋转型压缩机的A-A线剖开的剖视图。在图1和图2中,1是密闭容器,在该容器内,上侧安装有电动单元2,下侧安装有由该电动单元驱动的旋转压缩单元3。电动单元2由定子5和设置在该定子内侧的转子6构成,该定子5具有由有机类材料绝缘的线圈4。旋转压缩单元3由气缸7、滚子10、叶片12、上部轴承13和下部轴承14构成,该滚子10由旋转轴8的偏心部9驱动沿着气缸7的内壁旋转,弹簧11挤压叶片12压靠在转子周面上并将气缸7内部分隔成吸入侧和排出侧,上部轴承B和下部轴承14封住气缸7的开口并支持着旋转轴8。
在上部轴承13处设置有与气缸7的排出侧相连通的排出孔15。另外,在上部轴承13处安装有用于开闭排出孔15的排出阀16,并安装有用于覆盖该排出阀的排出消声器(マフラ)17。
滚子10如下所述由铸铁等铁基材料制成,叶片12由铁基材料或由铝和碳的复合材料或者由一种在高速工具钢等铁基材料或不锈钢类材料上进行离子氮化、硫氮共渗、CrN等单独的或复合的表面处理而获得的材料制成。
在密闭容器1内的底部封装入HFC类的单体或其混合致冷剂,例如1,1,1,2-四氟乙烷(R134a)单体,或者是由50重量%的二氟甲烷(R32)与50重量%的五氟乙烷(R125)混合而成的共沸混合致冷剂(以下称为R410A),或者是由44重量%的五氟乙烷(R125)与52重量%的三氟乙烷(143a)和4重量%的1,1,1,2-四氟乙烷(R134a)混合而成的拟共沸混合致冷剂(以下称为R404A),以及由23重量%的二氟甲烷(R32)与25重量的五氟乙烷(R125)和52重量%的1,1,1,2-四氟乙烷(R134a)混合而成的拟共沸混合致冷剂(以下称为R407C等)。
作为冷冻机油使用的油是一种与上述致冷剂具有相溶性的冷冻机油。
具体地说,它是一种具有由下述通式(1)表示的构成单元的聚乙烯醚类化合物为主成分,并且在每一构成单元中,
R4的构成比为碳数1~2的烷基占40~100重量%,碳数2~3的烷基占0~60%而组成的油,或者,R4的构成比为碳数1~2的烷基占80~100重量%,碳数2~3的烷基占0~20重量%而组成的油,以及,R4的构成比为碳数1~2的烷基占60~100重量%,碳数2~3的烷基占0~40重量%而组成的油, (式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
另外,作为防氧化剂,相对于冷冻机油,以0.01~1.0重量%的酚类防氧化剂(例如DBPC)作为必要成分,另外配合0.01~2重量%的环氧类或碳化二亚胺类化合物作为酸捕集剂。
另外,作为极压添加剂或耐磨耗材料,相对于冷冻机油,可以配合0.1~2重量%的磷酸酯类化合物,例如磷酸三甲苯酯(TCP)。
另外,作为上述环氧化物的缩水甘油醚,可以从己基缩水甘油醚、2-乙基己基缩水甘油醚、异十八烷基缩水甘油醚等物组中选择。
另外,上述的碳化二亚胺可以从通式R1-N=C=N-R2表示的,其中的R1、R2为烷基或被烷基取代的芳基的化合物组中选择。
于是,冷冻机油18对于作为旋转型压缩单元3的滑动部件的滚子10和叶片12的滑动面起润滑作用。
流入旋转压缩单元3的气缸7内并被滚子10和叶片12协同地压缩的致冷剂,如上所述,是一种与属于聚乙烯醚类油的冷冻机油18具有相溶性的134a单体,或410A,或407C或404A等致冷剂。
19是吸入管,它安装在密闭容器1上,其作用是将致冷剂引向气缸7的吸入侧;20是排出管,它安装在密封容器1的上壁,它被旋转压缩单元3压缩通过电动单元2把致冷剂排出到密闭容器1之外。
在如此构成的旋转型压缩机中使用的冷冻机油组合物中,来自吸入管19而流入汽缸7内吸入侧的致冷剂被滚子10和叶片12协同地压缩并在打开排出阀16时通过排出孔15而排出到排出消声器17内。在该排出消声器内的致冷剂通过电动单元2而从排出管20排出到密闭容器1之外。冷冻机油18被供给到旋转压缩单元3的滚子10和叶片12等滑动部件的滑动面上,从而对其进行滑润。另外,在气缸7内被压缩的致冷剂不会泄漏到低压侧。
下面逐一地说明各实施例和比较例。
另外,图3是使用阿姆斯拉型磨耗试验器进行磨耗试验的说明图。
其中,21是与叶片21相当的固定片,该固定片的顶端由半径4.7mm的曲面形成,并经受100kg的荷重L。22是相当于滚子的旋转片,该旋转片的直径为45mm,在它与固定片21的压接部不断地供给多元醇酯类油,每分钟供应120CC,另外,按照每分钟400转的速度旋转20小时。
(表1)在表1中示出,使用一台阿姆斯拉型磨耗试验器,按照下述组合进行磨耗试验所获得的结果。
表1

叶片(比较例) 高速工具钢(SKH51)组成C0.8~0.9,Si0.4以下Mn0.4以下,P0.03以下S0.03以下,Cr3.8~4.5Mo4.5~5.5,W5.5~6.7V1.6~2.2,Cu0.25以下
Ni0.25以下(实施例1)铝和碳的复合材料具体地是一种浸渍了铝的碳复合材料(碳-铝)组成C55,Al36,Si6,其他(Mg等)3(每一种都是重量%)(实施例2)在高速工具钢等铁基材料上进行硫氮共渗表面处理,具体地是在与下述成分的SKH55相当的材料上进行等离子体硫氮共渗表面处理组成C2.14,Si0.32,Cr4.21,Mn0.32,W11.5,V7.0,Co8.0,Mo2.53,Fe余量(每一种都是重量%)(实施例3)在SUS类材料上进行硫氮共渗的表面处理,具体地是在具有下述成分的SUS440类材料上进行等离子体硫氮共渗的表面处理,组成C1.8~2.3,Si1以下,Cr20~24,Mo0.5~2.6,Fe余量(每一种都是重量%)(实施例4)在高速工具钢等铁基材料上进行离子氮化的表面处理,然后再进行CrN的表面处理滚子铸铁材料(以下称为E-3)组成T.C(总碳)0.56~0.64Si2.2~2.9;Mn0.6~1.0P≤0.18,S≤0.08Ni0.1~0.2,Cr≤0.20Mo0.07~0.2,Tl≤0.25Fe余量油以具有由下述通式(1)表示的构成单元的聚乙烯醚类化合物为主成分,而且在每一构成单元中,R4为碳数1~2的烷基占40~100%的化合物与R4为碳数2~3的烷基占0~60%的化合物按5∶5的比例而组成,并且,相对于该基础油,添加有0.1~2.0重量%的磷酸三甲苯酯(TCP)和0.01~10重量%的环氧化合物(EPOX){以下总称添加剂(EP)}(以下称为A型)。

(式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
致冷剂134a单体其结果如表1所示,可以确认,实施例1~3的叶片材料,其总酸值(TAN)和磨耗量(Wear quantity of TP)两种参数皆很好。
可以认为,其理由是由于旋转片22与固定片21之间的滑动面的滑动摩擦热所导致的聚乙烯醚类油的热分解被抑制的缘故。
(表2)表2示出使用阿姆斯拉型磨耗试验器,按下列组合进行磨耗试验的结果。
表2

叶片(比较例) 高速工具钢(SKH)(实施例1)铝和碳的复合材料具体地是浸渍了铝的碳复合材料(碳-铝)组成C55,Al36,Si6,
其他(Mg等)3(每一种都是重量%)(实施例2)在高速工具钢的铁基材料上进行硫氮共渗的表面处理,具体地是在具有下述成分的HAP63材料(相当于SKH54)上进行等离子体硫氮共渗表面处理组成C2.14,Si0.32,Cr4.21,Mn0.32,W11.5,V7.0,Co8.0,Mo2.53,Fe余量(每一种都是重量%)(实施例3)在SUS类材料上进行硫氮共渗的表面处理,具体地是在具有下述成分的SUS440类材料上进行等离子体硫氮共渗的表面处理,组成C1.8~2.3,Si1以下,Cr20~24,Mo0.5~2.6,Fe余量(每一种都是重量%)(实施例4)在高速工具钢等铁基材料上进行离子氮化的表面处理,然后再进行CrN的表面处理滚子铸铁材料(以下称为E-3)组成T.C(总碳)0.56~0.64Si2.2~2.9;Mn0.6~1.0P≤0.18,S≤0.08Ni0.1~0.2,Cr≤0.20Mo0.07~0.2,TI≤0.25Fe余量油以具有由下述通式(1)表示的构成单元的聚乙烯醚类化合物为主成分,而且在每一构成单元中,R4为碳数1~2的烷基占80~100%的化合物与R4为碳数2~3的烷基占0~20%的化合物按8∶2的比例而组成,并且,相对于该基础油,添加有0.1~2.0重量%的磷酸三甲苯酯(TCP)和0.01~10重量%的环氧化合物(EPOX){以下总称添加剂(EP)}(以下称为C型)。

(式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
致冷剂410A或404A其结果如表2所示,可以确认,实施例1~3的叶片材料,其总酸值(TAN)和磨耗量(Wear quantity of TP)两种参数皆很好。
可以认为,其理由是由于旋转片22与固定片21之间的滑动面的滑动摩擦热所导致的聚乙烯醚类油的热分解被抑制的缘故。另外,油的劣化可认为是由TCP而致的铁无机化,及催化作用受到抑制之故。
(表3)表3示出使用阿姆斯拉型磨耗试验器,按下列组合进行磨耗试验的结果。
表3

叶片(比较例) 高速工具钢(SKH)(实施例1)铝和碳的复合材料具体地是浸渍了铝的碳复合材料(碳-铝)
组成C55,Al36,Si6,其他(Mg等)3(每一种都是重量%)(实施例2) 在高速工具钢的铁基材料上进行硫氮共渗的表面处理,具体地是在具有下述成分的HAP63材料(相当于SKH54)上进行等离子体硫氮共渗表面处理组成C2.14,Si0.32,Cr4.21,Mn0.32,W11.5,V7.0,Co8.0,Mo2.53,Fe余量(每一种都是重量%)(实施例3) 在SUS类材料上进行硫氮共渗的表面处理,具体地是在具有下述成分的SUS440类材料上进行等离子体硫氮共渗的表面处理,组成C1.8~2.3,Si1以下,Cr 20~24,Mo0.5~2.6,Fe余量(每一种都是重量%)(实施例4) 在高速工具钢等铁基材料上进行离子氮化的表面处理,然后再进行CrN的表面处理滚子铸铁材料(以下称为E-3)组成T.C(总碳)0.56~0.64Si2.2~2.9;Mn0.6~1.0P≤0.18,S≤0.08Ni0.1~0.2,Cr≤0.20Mo0.07~0.2,T1≤0.25Fe余量油以具有由下述通式(1)表示的构成单元的聚乙烯醚类化合物为主成分,而且在每一构成单元中,R4为碳数1~2的烷基占60~100%的化合物与R4为碳数2~3的烷基占0~40%的化合物按7∶3的比例而组成,并且,相对于该基础油,添加有0.1~2.0重量%的磷酸三甲苯酯(TCP)和0.01~10重量%的环氧化合物(EPOX){以下总称添加剂(EP)}(以下称为B型)。
(式中,R1~R3可以相同或不同地各自表示氢原子或碳数1~8的烃基)。
致冷剂407C其结果如表3所示,可以确认,实施例1~3的叶片材料,其总酸值(TAN)和磨耗量(Wear quantity of TP)两种参数皆很好。
可以认为,其理由是由于旋转片22与固定片21之间的滑动面的滑动摩擦热所导致的聚乙烯醚类油的热分解被抑制的缘故。并且,油的劣化可认为因TCP之故铁的无机化、催化作用被抑制所致。
(表4)表4中示出,根据表1、2、3的评价,使用图4所示的实验室规模试验装置,按照下述的组合方式进行实机的耐久试验结果。
实验室规模试验装置由压缩机A、冷凝器B、膨胀阀C、蒸发器D通过配管连结而成,所用的试验条件如下。
高压压力 27~28Kg/Cm2·G,低压压力 46Kg/Cm2·G,运转频率 100Hz,运转时间1000小时,致冷剂 R134a、R410A、R404A、R407C各种致冷剂壳体上部温度95~100℃另外,各种材料如下。
叶片(比较例)高速工具钢(SKH)(实施例1) 铝和碳的复合材料具体地是浸渍了铝的碳复合材料(碳-铝)组成C55,Al36,Si6,
其他(Mg等)3(每一种都是重量%)(实施例2) 在高速工具钢等铁基材料上进行硫氮共渗的表面处理,具体地是在具有下述成分的HAP63材料(相当于SKH54)上进行等离子体硫氮共渗表面处理组成C2.14,Si0.32,Cr4.21,Mn0.32,W11.5,V7.0,Co8.0,Mo2.53,Fe余量(每一种都是重量%)(实施例3) 在SUS类材料上进行硫氮共渗的表面处理,具体地是在具有下述成分的SUS440类材料上进行等离子体硫氮共渗的表面处理,组成C1.8~2.3,Si1以下,Cr 20~24,Mo0.5~2.6,Fe余量(每一种都是重量%)(实施例4) 在高速工具钢等铁基材料上进行离子氮化的表面处理,然后再进行CrN的表面处理滚子铸铁材料(以下称为E-3)组成T.C(总碳)0.56~0.64Si2.2~2.9;Mn0.6~1.0P≤0.18,S≤0.08Ni0.1~0.2,Cr≤0.20Mo0.07~0.2,TI≤0.25Fe余量油表1~3中记载的A、B、C各种型号的油。
其结果如表4所示。实施例1、实施例2、实施例的各种叶片材料全都达到G(good),这是良好的结果,显示出比以往的致冷剂R-22与矿物油(Mineral)组合使用时更高水平的耐久性。
另外,如图5所示的冷却装置由致冷剂压缩机a、冷凝器b、减压装置c、蒸发器d通过配管连接在一起,以及将上述的HFC类致冷剂或其混合致冷剂(R134a、R410A、R404A、R407C)和一种与该致冷剂具有相溶性的上述冷冻机油(型号A~D)封装入上述压缩机a的密闭容器1内而构成(例如冷藏库、空调机、陈列柜等),成为一种油回流能力和冷冻能力均优良的冷却装置。
表4

*注E优秀,G良好,B差另一方面,根据以上结果,可以解释如下事项。
(1)HFC类致冷剂由于不含氯原子,所以它对滑动部件的润滑能力比CFC类或HCFC类致冷剂差。
(2)关于聚乙烯醚油的结构,根据上述HFC致冷剂的种类,通过R4中碳数1~2的烷基与碳数2~3的烷基符合于预定的构成比例,并且与此相对应地选定所需的叶片材料,即能使得在临界溶解温度的高温侧至低温侧的范围内,也就是在35℃~10℃的范围内,体系不会分离,因此可以在冷冻装置中发挥预定的冷冻能力。
具体地可参考下面表5示出的临界溶解温度的一览表。
表5临界溶解温度一览表(CST)高温侧温度/低温侧温度(单位℃)

另外,作为其他实施例,对于以下的叶片材料可以认为能够达到同样的作用效果。
例如,(1)下述组成的铝与碳的复合材料,组成C55,A36,Si6,其他(Mg等)3(每一种皆为重量%)(2)下述组成的纤维增强铝合金(Fiber Reinforced AL)组成C;55,A;36,Si6(每一种皆为重量%)(3)氧化锆等陶瓷材料(Ceramic)按照如上所述的发明,相对于特定的HFC类致冷剂,将特定结构的聚乙烯醚类油和特定的滑动材料进行规定的组合,可以抑制由于滑动部件的摩擦热导致的热分解和淤渣的产生,完全不会产生象使用以往的多元醇酯类油那样由于水解而产生的羧酸,其结果,可以提供一种不必进行麻烦的工艺控制,具有高性能的旋转式压缩机及冷却装置。
权利要求
1.冷却装置,包括致冷剂压缩机、冷凝器、减压装置和蒸发器,它们之间通过配管连接,所述致冷剂压缩机包括密闭容器和安装在其内的压缩机部件,其中HFC类致冷剂或其混合致冷剂以及与该致冷剂具有相溶性的冷冻机油封装入密闭容器,所述冷冻机油主要含有具有下式(I)的聚乙烯醚类化合物, 式中,n为1或大于1的整数,R1~R3可以相同或不同地各自表示氢原子或碳原子数1~8的烃基,R4为1-4个碳原子的烷基,并且其中R4为碳原子数1~2的烷基的单元为40~100%,其中R4为碳原子数3~4的烷基的单元为0~60%。
全文摘要
本发明涉及冷却装置,包括致冷剂压缩机,后者包括密闭容器和安装在其内的压缩机部件。密闭容器内封装有HFC类致冷剂或其混合致冷剂以及与该致冷剂具有相溶性的冷冻机油,冷冻机油主要含有具有下式(I)的聚乙烯醚类化合物,式中,各代号意义如说明书所述,并且其中R
文档编号F04C29/02GK1492032SQ0312757
公开日2004年4月28日 申请日期1997年9月30日 优先权日1996年9月30日
发明者须永高史, 渡边正人, 安藤研治, 小保方芳信, 冈岛政三, 石川和久, 高桥康树, 三, 久, 人, 树, 治, 芳信 申请人:三洋电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1