一种石油开采用缸套及其制备方法与流程

文档序号:11195316阅读:410来源:国知局
一种石油开采用缸套及其制备方法与流程

本发明属于石油开采技术领域,具体涉及一种石油开采用缸套及其制备方法。



背景技术:

石油钻井泥浆泵的缸套为关键零部件,缸套的一端与泥浆泵液缸总成装配在一起,通过动力端的活塞杆连接着活塞在缸套内部进行高压轴向往复运动实现对钻井泥浆的吸入与排出。传统缸套主要由镶装在一起的缸内套和缸外套组成,如图1所示,缸内套a和缸外套b的轴向长度保持一致,在装配状态下,缸内套a的两端面与缸外套b的两端面保持齐平。采用这种结构的缸套,在安装过程中缸套装配端容易与配合件或其他硬性物体相接触而导致缸内套被磕碰,同时还存在因缸套内外套热镶装过盈量低或内外套接触面小而导致内套脱套的危险,对于设备的运行效率及人员安全造成极大隐患。

近年来,在深井、硬岩层、海洋钻探等复杂地质条件下钻井,大力推广的高泵压和大排量条件下的喷射钻井技术对钻进泵缸套的耐磨性、耐蚀性和抗疲劳特性提出了更高的要求,传统缸套已经不能满足使用要求,缸套易发生早期失效,致使钻井成本居高不下,耐磨性、耐腐蚀性和抗疲劳特性不足是主要原因,同时,缸套质地不够均匀,材料中存在空隙,也影响了其强度。



技术实现要素:

基于此,针对上述问题,本发明提出一种石油开采用缸套及其制备方法,从结构、材质以及制备工艺三个方面对传统缸套进行了改进,结构上的改进可保证内外套不会脱套,材质及制备工艺的改进大大提升了缸套的耐磨性、耐腐蚀性和抗疲劳特性,且生产出的缸套质地均匀,强度高。

本发明的技术方案是:一种石油开采用缸套,包括外套和内套;所述内套镶嵌在所述外套内;所述内套的两端分别设有第一环套和第二环套,第一环套和第二环套与内套为一体成型的整体式结构;所述外套的两端分别设有第一环槽和第二环槽,所述第一环套位于第一环槽内,所述第二环套位于第二环槽内。

通过在内套上设置第一环套和第二环套,外套上设置与第一环套和第二环套分别相匹配适应的第一环槽和第二环槽,将内套卡在外套内,完全避免了传统缸套脱套的风险,确保运行效率和工作人员的安全。

优选地,所述外套采用35crmo钢材质。35crmo钢具有很高的静力强度、冲击韧性及较高的疲劳极限,高温下有高的蠕变强度与持久强度,用做外套材质可提升缸套整体的耐冲击韧性、耐疲劳性和高温下的蠕变强度与持久强度。

优选地,所述内套管壁厚为4mm-8mm。目的是保证足够的支撑强度。

优选地,所述内套为高铬铸铁材质,按重量百分比内套的化学成分为:c:1.5%~1.8%,si≤0.4%,mn:0.25%~0.35%,mo:0~3.5%,cr:15%~25%,v:1.9%-3.9%,al:0.9%~1.4%,ni:0.1%5~0.25%,re:0.2%~0.3%,p≤0.05%、s≤0.05%,余量为fe。

通过合理设计高铬铸铁材质各成分的配比,极大地提升了内套的机械强度、耐磨性、耐腐蚀性和抗疲劳特性。其中,硅成分和铝成分作为变质剂,通过细化铝硅合金中的粗晶硅,将粗晶硅转变为细纤维状,消除在这些微粒周围形成的应力点,并使硅分散于铝中,从而改善铸件的机械性能,大大增强铸件产品的强度,提高机械性能,改善合金的组织,增强组织的均匀性,提高内套的耐磨性。

优选地,所述内套采用陶瓷材料,该陶瓷材料按以下重量份数的原料组成:氮化硅80-90份、碳化硅7-10份、氧化镁3-7份、氧化铝2-6份、三氧化二铁2-6份以及氟化镁1-4份。

通过合理设计陶瓷材质各成分的配比,与传统缸套相比,极大地提升了内套20的耐磨性、耐腐蚀性和抗疲劳特性。

优选地,所述氮化硅中的α相氮化硅占氮化硅总质量的92%以上。

本发明还公开了一种石油开采用缸套的制备方法,包括以下步骤:

(1)制备内套;

(2)以制备的内套为模芯,配合相应的外模构成外套模具,将冶炼好的35crmo钢水浇铸到外套模具中,浇铸温度为1560℃-1580℃,在压力为0.3mpa-0.5mpa下对钢水吹氩气5分钟-8分钟,待冷却后即在内套外形成外套,获得半成品缸套;

(3)退火:将所述半成品缸套以220℃/h-250℃/h的速率加热至830℃-850℃,并保温2h-3h,再以60℃/h-80℃/h的速率缓慢冷却至500℃,最后出炉油冷至常温;严格控制退火参数,目的是消除残余应力,稳定尺寸,减少变形与裂纹倾向,细化晶粒,调整组织,消除组织缺陷;

(4)渗碳:将退火后的半成品缸套和固体渗碳剂放入密闭的渗碳箱中,将渗碳箱放入加热炉中加热至950摄氏度至990摄氏度,并保温1h-2h,然后出炉油冷至常温;渗碳在不均匀奥氏体状态下进行,其渗层表面碳浓度可高达3%~4%,以获得细小颗粒碳化物均匀、弥散分布的高浓度渗碳层,由于高浓度渗碳层含有很高数量的弥散分布的碳化物,故显示出比普通渗碳更优异的耐磨性、耐蚀性,更高的接触与疲劳强度,较高的冲击韧度、较低的脆性及较好的回火稳定性;

(5)淬火并低温回火处理:将渗碳后的半成品缸套进行两次淬火处理,每次淬火处理后均进行3次低温回火处理,得到成品缸套。

优选地,所述步骤(1)中制备内套包括以下过程:

a1、配料冶炼:按内套采用高铬铸铁材质时的所述配方进行配料,将配料在电弧炉内熔炼,熔炼温度为1670℃-1720℃;

a2、浇注:将冶炼获得的高铬铁水浇注在内套模具中,获得半成品内套,浇注温度为1370℃-1400℃;

a3、热处理:将所述半成品内套进行退火处理,退火温度680℃-800℃度,退火时保温时间为40h-50h,保温结速后随炉冷却,然后进行正火回火处理,正火温850℃-980℃,并用油冷的方式冷却到410℃-480℃后再次进行回火处理,回火温度610℃-650℃,每次回火保温时间控制在15h~24h,完成后炉冷到室温,获得成品内套。

优选地,所述步骤(1)中制备内套包括以下过程:

b1、球磨:按照内套采用陶瓷材料时的配方进行配料,将配料置于球磨机中球磨,球磨时加入水、粘结剂和分散剂,得到浆料;

b2、造粒:将步骤b1得到的浆料进行喷雾干燥造粒,得到造粒粉;所得造粒粉过筛除铁后,加湿、陈腐,待用;

b3、成型:取步骤b2中陈腐待用的造粒粉装入内套模具中,采用冷等静压成型工艺,得到内套生坯;

b4、烧成:将步骤b3所得内套生坯装入窑中烧成,烧成温度为1710℃-1750℃,出窑即得成品内套。

优选地,步骤(4)中所述固体渗碳剂包括质量比为10:1:1的木炭粒、碳酸钡和碳酸钠,且3mm-6mm粒径的木炭粒占总木炭粒重量的80%,1mm-3mm粒径的木炭粒占总木炭粒重量的20%。

本发明的有益效果是:

(1)从结构、材质以及制备工艺三个方面对传统缸套进行了改进,结构上的改进可保证内外套不会脱套,材质及制备工艺的改进大大提升了缸套的耐磨性、耐腐蚀性和抗疲劳特性,且生产出的缸套质地均匀,强度高;

(2)通过在内套上设置第一环套和第二环套,外套上设置与第一环套和第二环套分别相匹配适应的第一环槽和第二环槽,将内套卡在外套内,完全避免了传统缸套脱套的风险,确保运行效率和工作人员的安全;

(3)在内套的使用材质上做了进一步改进,内套采用高铬铸铁材质或是陶瓷材质,并给出了其具体配方,这两种配方的高铬铸铁材质内套和陶瓷材质内套在耐腐蚀性、耐磨性和抗疲劳特性等方面均有极大地提升;

(4)设计了与缸套结构和材质相适应的制备方法,生产出的缸套质地均匀,强度高。

附图说明

图1是传统缸套的结构示意图;

图2是实施例所述石油开采用缸套的结构示意图;

图3是外模的结构示意图;

图4是内套模具的结构示意图;

附图标记说明:

10外套,20内套,21第一环套,22第二环套,30外模,40内套模具。

具体实施方式

下面结合附图对本发明的实施例进行详细说明。

实施例:

如图2-4所示,一种石油开采用缸套,包括外套10和内套20;所述内套20镶嵌在所述外套10内;所述内套20的两端分别设有第一环套21和第二环套22,第一环套21和第二环套22与内套20为一体成型的整体式结构;所述外套10的两端分别设有第一环槽和第二环槽,所述第一环套21位于第一环槽内,所述第二环套22位于第二环槽内。

通过在内套20上设置第一环套21和第二环套22,外套10上设置与第一环套21和第二环套22分别相匹配适应的第一环槽和第二环槽,将内套21卡在外套10内,完全避免了传统缸套脱套的风险,确保运行效率和工作人员的安全。

在另一个实施例中,所述外套10采用35crmo钢材质。

在另一个实施例中,所述内套20管壁厚为4mm,也可为6mm或是8mm。

在另一个实施例中,所述内套20为高铬铸铁材质,按重量百分比内套20的化学成分为:c:1.5%~1.8%,si≤0.4%,mn:0.25%~0.35%,mo:0~3.5%,cr:15%~25%,v:1.9%-3.9%,al:0.9%~1.4%,ni:0.1%5~0.25%,re:0.2%~0.3%,p≤0.05%、s≤0.05%,余量为fe。

通过合理设计高铬铸铁材质各成分的配比,极大地提升了内套20的耐磨性、耐腐蚀性和抗疲劳特性。

在另一个实施例中,所述内套20采用陶瓷材料,该陶瓷材料按以下重量份数的原料组成:氮化硅80-90份、碳化硅7-10份、氧化镁3-7份、氧化铝2-6份、三氧化二铁2-6份以及氟化镁1-4份。

通过合理设计陶瓷材质各成分的配比,极大地提升了内套20的耐磨性、耐腐蚀性和抗疲劳特性。

在另一个实施例中,所述氮化硅中的α相氮化硅占氮化硅总质量的92%以上。

本发明还公开了一种石油开采用缸套的制备方法,包括以下步骤:

(1)制备内套20;

(2)以制备的内套20为模芯,配合相应的外模30构成外套模具,将冶炼好的35crmo钢水浇铸到外套模具中,浇铸温度为1560℃-1580℃,在压力为0.3mpa-0.5mpa下对钢水吹氩气5分钟-8分钟,且浇注时外套模具进行小振幅快频率的振动,振幅控制在0-5mm,振动频率控制在1次每秒至4次每秒,待冷却后即在内套外形成外套,获得半成品缸套;

(3)退火:将所述半成品缸套以220℃/h-250℃/h的速率加热至830℃-850℃,并保温2h-3h,再以60℃/h-80℃/h的速率缓慢冷却至500℃,最后出炉油冷至常温;

(4)渗碳:将退火后的半成品缸套和固体渗碳剂放入密闭的渗碳箱中,将渗碳箱放入加热炉中加热至950摄氏度至990摄氏度,并保温1h-2h,然后出炉油冷至常温;

(5)淬火并低温回火处理:将渗碳后的半成品缸套进行两次淬火处理,每次淬火处理后均进行3次低温回火处理,得到成品缸套。

在另一个实施例中,所述步骤(1)中制备内套20包括以下过程:

a1、配料冶炼:按内套20采用高铬铸铁材质时的所述配方进行配料,将配料在电弧炉内熔炼,熔炼温度为1670℃-1720℃;

a2、振动浇注:将冶炼获得的高铬铁水浇注在内套模具40中,获得半成品内套,浇注温度为1370℃-1400℃,浇注时控制内套模具40进行小振幅快频率的振动,振幅控制在0-5mm,振动频率控制在2次每秒至6次每秒;

a3、热处理:将所述半成品内套进行退火处理,退火温度68℃-800℃,退火时保温时间为40h-50h,保温结速后随炉冷却,然后进行正火回火处理,正火温850℃-980℃,并用油冷的方式冷却到410℃-480℃后再次进行回火处理,回火温度610℃-650℃,每次回火保温时间控制在15h~24小时,完成后炉冷到室温,获得成品内套。

在另一个实施例中,所述步骤(1)中制备内套20包括以下过程:

b1、球磨:按照内套20采用陶瓷材料时的配方进行配料,将配料置于球磨机中球磨,球磨时加入水、粘结剂和分散剂,得到浆料;

b2、造粒:将步骤b1得到的浆料进行喷雾干燥造粒,得到造粒粉;所得造粒粉过筛除铁后,加湿、陈腐,待用;

b3、成型:取步骤b2中陈腐待用的造粒粉装入内套模具40中,采用冷等静压成型工艺,得到内套生坯;

b4、烧成:将步骤b3所得内套生坯装入窑中烧成,烧成温度为1710℃-1750℃,出窑即得成品内套。

在另一个实施例中,步骤(4)中所述固体渗碳剂包括质量比为10:1:1的木炭粒、碳酸钡和碳酸钠,且3mm-6mm粒径的木炭粒占总木炭粒重量的80%,1mm-3mm粒径的木炭粒占总木炭粒重量的20%。

以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1