用于低延展性材料中的自攻螺钉的制作方法

文档序号:5592013阅读:185来源:国知局
专利名称:用于低延展性材料中的自攻螺钉的制作方法
技术领域
本发明涉及一种如权利要求1所述的螺纹,特别是分别用于自攻螺钉或螺母的螺纹;本发明还涉及一种用于紧固装置的、如权利要求14和20分别所述的相应的螺钉和螺母。
具体地说,本发明涉及一种新颖的和改进的螺纹结构,特别是它具有非三角形或非梯形的螺纹轮廓;每个螺纹具有侧面,它们是前螺纹面和后螺纹面,其中所述的前螺纹面和后螺纹面其中至少一个设置成具有第一半径的凸曲率。
更具体地说,本发明涉及一种用在带有外螺纹或内螺纹的螺纹成形紧固装置上的、改进的螺纹结构,它用于改善在匹配元件或锚定材料中产生的内部作用力的分布,所述的匹配元件或锚定材料包括通过螺纹成形紧固装置所形成的、互补成形的内螺纹或外螺纹。这种紧固装置可用来改善连接结构的性能,该连接结构包括尤其可以归属于低延展性材料的锚定材料,以及包括一个按照本发明实施例的自攻螺钉。
背景技术
本领域的技术人员都认识到,传统的螺纹成形的自攻螺钉或螺纹滚压螺钉,当它被用在低延展性材料中以产生相配合的内螺纹时,它在安装和使用中具有有限的可靠性。
对于已知的螺纹紧固件技术,外螺纹紧固件的轮廓被专门构造成用来通过材料的移位而产生出相配合的内螺纹。简单地举例来说,当把这种外螺纹紧固件插到普通口径的导向孔中,并在外螺纹紧固件和带有普通口径导向孔的配合元件之间施加一个旋转作用时,该配合元件的普通口径导向孔的表面上冷却成形出或挤压出内螺纹。于是,一个沿着外螺纹紧固件运动方向的额定轴向力便转向作用于配合元件的普通口径导向孔的表面。理想的情况是,元件的材料不会因为内螺纹的冷却成形而从元件上被切下或剥落。为此,当通过这种螺纹成形紧固件来组装具有低延展性的材料时,材料沿着紧固件轴线方向的流动是应当避免的。
另外,一般公知的螺纹几何形状是三角形或梯形的横截面形状,它所包含的螺纹齿侧角是60°或小于60°。众所周知,使用这种几何形状的螺纹,通过一种自攻的或滚压出螺纹的螺纹成形装置,以此在诸如镁合金等低延展性的锚定材料中成形出相匹配的内螺纹,会产生匹配螺纹的结构完整性问题。
尤其是可以看到,锚定材料中所形成的内螺纹受到擦伤、锚定材料层的赘物,并产生碎屑和裂缝等不利于组装的情况。可以看到,普通口径导向孔的邻近于螺钉入口端的一部分锚定材料发生破碎或撕裂。这些效果表示在图7中,图中详细表示了现有技术的连接结构700。一个带有已知螺纹几何结构的螺钉710与一个假定具有低延展性的锚定材料720相配合。如图中所见,由于螺钉710引向锚定材料720的作用力,锚定材料向下朝着螺纹侧面移动,堆积成赘物730。低延展性材料720的这些赘物730将发生破碎或撕断,尤其是在重复性使用中,例如为了维修而多次和周期的拆卸和反复连接,就更是如此,因此产生碎屑和裂缝。
此外,当普通口径孔成为所谓“穿透孔”的形式时,例如该孔连通了锚定材料中用来容纳油或其它类似液体的型腔时,或者该普通口径导向孔侵入到含有电气设备的区域时,安装组件会发生故障,甚至可能对安装组件产生致命的损害。
本领域的技术人员还进一步认识到,这些不利的现象是在对自攻螺钉施加旋转运动,使该螺钉相对于锚定材料的导向孔产生轴向移动时,锚定材料上的应力和应变所引起的。
上面作为举例所述的、用于通过材料的移位而产生出匹配互补螺纹的螺纹滚压螺钉,也可以容易地应用于一个旋拧在普通螺栓上的螺纹滚压螺母。
欧洲专利0 553 907公开了一种螺纹成形螺钉800,它表示在图8中,用于在诸如镁等的低延展性材料所构成的工件中冷却成形出内螺纹。该螺钉主要是利用压力而在工件中形成内螺纹。该螺钉具有一个带有进入端和头部端的螺钉杆。在螺钉杆上设有外螺纹。该外螺纹确定了一种螺纹轮廓,其角度大约在90°-120°范围。在这种结构中,当自攻作业形成内螺纹时,主要产生了对低密度锚定材料的压力。虽然这种朝向增加螺纹轮廓角度(超过60°)的方式能够提高组装后的配合螺纹的承载能力,但它不能消除诸如与裂缝和材料破碎等相关联的损害安装组件的问题。

发明内容
因此,本发明的目的是要提供一种用于形成螺纹的螺纹紧固件上的螺纹,它在该螺纹紧固件所紧固的锚定元件的材料上提供作用力分布,从而最大可能范围地避免了由于内、外螺纹的冷却成形而从锚定元件上切下或剥落下元件材料。
本发明进一步的目的是要提供一种螺纹紧固件系统,因而螺钉上新型的螺纹几何轮廓,通过自攻原理将产生出相匹配的螺纹结构,该结构不仅能够提供比现有紧固系统提高的组装特性,而且能够减少和/或消除碎屑、裂缝和其它碎片等,这些是在由镁合金等低延展性锚定材料构成的元件中成形出相匹配的内螺纹时所明显存在的。
为此,提供一种带前螺纹面和后螺纹面的具有非三角形轮廓的螺纹,其中所述的前螺纹面和后螺纹面中至少一个设置成具有第一半径的凸曲率,非三角形螺纹轮廓的顶部也具有凸曲率并具有第二半径,其中,第一半径值与第二半径值不相等。
第一半径最好大于第二半径。这种螺纹可用于滚压成形螺纹的螺钉或螺母中,尤其是用于镁或镁合金等低延展性的材料中。
两个连续的非三角形螺纹轮廓之间的螺纹基部或根部是具有第三半径的凹曲率,从而可以降低凹口效果和应力集中,因此,设有本发明螺纹的螺钉或螺母,与现有技术中相同尺寸的螺钉或螺母相比,可以承受更大的应力。
第三半径的值最好小于第一半径的值,最好也小于第二半径的值。
另外,具有凸曲率的前螺纹面或后螺纹面至少其中之一与非三角形螺纹轮廓的顶部之间的过渡是连续的。有利的是,通过本发明的结构,作用于配合元件的螺纹力较之现有技术的螺纹有更大的分力垂直于配合元件。因此,当本发明的螺纹紧固件进行紧固时,在匹配螺纹的成形过程中,主要是压力作用于配合的材料和只有很小的剪切力作用于该配合的材料。由于低延展性材料的耐压强度大于其剪切强度,这种材料更容易承受压力,与剪切力相比,压力产生的破坏效果较小。另外,具有凸曲率的前螺纹面或后螺纹面至少其中之一、与连续的两个非三角形螺纹轮廓间的螺纹基部或底部之间的过渡是连续的。
在本发明螺纹的第一实施例中,非三角形螺纹轮廓的前螺纹面和后螺纹面成形为相互对称。在另一个特别是与较好延展性材料相关的实施例中,也可能使非三角形螺纹轮廓的前螺纹面和后螺纹面相互不对称。在不对称的情况下,按照应用场合的需要,至少在局部上也可能具有一个平的甚至是凹的螺纹面。
作为按照本发明螺纹的特征,螺距值的范围最好是螺纹公称直径的0.15-0.5倍。在叶片状(lobular)横截面螺钉的情况下,以叶片状横截面的边界圆来确定其直径。
根据前述的螺距值优选范围,用以确定螺钉或螺母上的本发明螺纹的其它参数可以推导如下-螺纹轮廓的第一半径最好是螺距值的0.8-1.2倍;-螺纹轮廓的深度是螺距值的0.4-0.65倍;-螺纹轮廓的第二半径大约等于螺距值的0.1倍;-螺纹轮廓的第三半径大约等于螺距值的0.08倍。
通过将本发明的方案分别应用于螺纹滚压螺钉或螺纹滚压螺母,就提供了用于螺纹紧固件系统的螺钉和螺母。在这种螺纹紧固件系统中,螺钉或螺母分别包括按照本发明所设计的非三角形的外螺纹或内螺纹。
这种紧固件系统的螺钉包括本发明的外螺纹,并且具有圆形的横截面面积或称横截面。另一方面,相应的螺母具有圆形横截面的内螺纹。然而,螺钉的螺纹也可以具有非圆形的、叶片状的横截面,其中最好是三凸角的横截面。由于这种叶片状的横截面设计,在将设有本发明螺纹的螺钉旋拧入到配合元件之中或之上后,它具有较高的抗振动能力。
为了在组装时更好地进行操作,该螺钉在其尖端处有一个导入部,以便使螺钉更容易插入到螺钉将要拧入其中的配合元件的普通口径导向孔中。导入部的长度最好是螺钉螺距的2.0倍。
总之,赋予螺钉上的螺纹轮廓的本发明的特征在于,所述螺纹轮廓最好是非三角形的和/或非梯形的,以及该螺纹轮廓具有以至少两个由本发明定义的半径所展成的、确定的和结构的弧形。按照本发明所要实现的发明目的,使所述的直少两个半径与其它组装条件相结合。


通过下面结合附图对一个优选实施例的描述,本发明上面的以及其它的目的、特征和优点将变得更加清楚。应当注意,在各个附图中,诸数字标记按照该附号的最大有效数字进行标记。所有的附图旨在说明本发明的某些方面或某些实施例。此外,还应当注意,在不同的实施例中,只对区别之处进行详细描述。不言而喻,并非对所有的变化形式和实施方案都进行了描述,因此,本发明并不局限于附图所示的内容。
下面将结合附图对本发明进行详细的描述,其中图1是带有本发明实施例的螺纹的自攻螺钉的示意图;图2是螺钉体的横截面示意图,表示了图1螺钉的推荐的叶片状横截面;图3是图1螺钉的螺纹轮廓的局部放大图;,图4是图1螺钉和图3局部轮廓中的一段螺纹的详细示意图,图中表示了特定的设计参数;图5示意性表示了本发明螺纹轮廓的效果,并且涉及到所产生的作用于配合元件的材料上的额定作用力;其中的螺纹轮廓相对于螺钉中心轴线的垂线是对称的;图6示意性表示了本发明螺纹轮廓的效果,并且涉及到所产生的作用于配合元件的材料上的额定作用力;其中的螺纹轮廓相对于螺钉中心轴线的垂线是不对称的;图7是现有技术的示意图,它表示了已知结构的梯形螺纹所遇到的问题;图8是按照欧洲专利EP 0 553 907中的螺纹轮廓的现有技术的示意图,其中表示了与碎屑、裂缝和爆皮等有关的始终存在的问题。
具体实施例方式
本发明可以有各种形式的实施例,这里详细描述并以附图表示了一些特定的实施例,应当理解,本说明书旨在对本发明原理进行举例说明,而不意味着将本发明局限于这里所示和所述的内容。
因此,参见图1,该图是具有本发明实施例螺纹的滚压螺钉100的示意性侧视图。螺钉包括螺钉头110,其中包括凹部112,当所述凹部与一个合适的匹配的驱动工具相接合时,通过该驱动工具可以施加一个围绕螺钉轴线109的旋转运动。该旋转运动与下面所见的螺旋棱一起,提供了一种作用,藉此使得该螺钉旋入到与之相配合的锚定材料(未示出)中的普通口径导向孔中。用于向螺钉提供旋转运动的驱动装置并不局限于内凹的驱动系统,外凸的驱动系统也是可以采用的。
邻接于螺钉头的下方并且沿着螺钉的长度方向设置了螺钉体120,其上设有螺旋棱或称之为螺钉螺纹130。所述的螺旋棱或螺钉螺纹制造成这样的结构。它的轮廓具有详细描述的本发明的几何形状,如同随后参照图3连同图1中的圆圈D所含螺纹轮廓130的局部放大视图。
距离螺钉头最远处并标以数字标记140的是螺纹攻入区,它设有导入部,以便在螺钉刚开始使用时,易于找到螺钉孔和插入到孔中。在该具体实施例中,这个导入部包含两个螺距145。在这个实施例中所说的螺距是指某一个螺旋上的选定点与相邻螺旋上相同位置的点之间的距离。
按照本发明的实施例,螺钉的螺纹螺距选定为螺钉公称外径108的0.15-0.5倍。
换句话说,邻接于螺钉头110的是螺钉杆120,它设有本发明的改进的螺纹轮廓130,随后将结合图3连同图1中的圆圈D所含螺纹轮廓130的局部放大视图,对该螺纹轮廓予以更详细的描述。螺纹轮廓130分别包括螺纹顶部132,以及螺纹底部或称之为根部134。图1的螺钉100在其螺钉头110的相反端具有导入端140,它能够容易地插入到图1中未示出的相应的应用件的导入孔中。这个实施例中的螺钉100的导入端140包含了螺纹轮廓130中的两圈螺纹,或者说两个完整回转,它相应于螺钉100的两个螺距的长度,其中螺距定义为两个相邻螺纹顶点132之间的、或者两个连续螺纹根部134之间的距离。按照本发明,螺纹的螺距值选定为螺纹公称外径108的0.15-0.5倍。具有本发明螺纹轮廓130的螺钉100的结构也可以包括叶片状的横截面,或者任何的能够用来在外螺纹螺钉100的组装中有效地形成内螺纹的其它形式。典型的多角形叶片状横截面螺钉的廓形,表示在图2的端视图中。
图2示意性表示了一种叶片的形状,其中沿着横截面的周边有三个相等间隔的凸角(Lobes)210,212,214。凸角的数量并不局限于三个,当它用在镁合金和其它低延展性材料中用于支撑住紧固件实体时,可以采用任何的奇数个的凸角。
在授予Phippard,jr的美国专利US 3,195,156和随后相应的国际申请中,清楚地论述了滚压螺纹自攻螺钉的叶片状横截面结构的优点。例如,所推荐的三个凸角的横截面对于某些应用中;比如汽车部件中;所发生的振动提供了更好的抵抗作用,这种振动会使得螺钉连接产生松动。
换句话说,图2示意性地表示了图1中螺钉100的叶片状横截面200的平面图。从横截面200可以清楚地看到图1的螺钉100具有三凸角210,212,214,它们布置成其中每两个凸角之间具有大致为120°的角度。相应于凸角的数量,具有所示横截面的螺钉也称作三凸角螺钉。虚线圆220对应了三凸角横截面的相应的周边。由此,三凸角的横截面对于某些应用中;比如汽车部件中;所发生的振动提供了更好的抵抗作用,这种振动会使得螺钉连接产生松动。
参见图3,它更加详细地表示了图1中圆圈D表示的螺钉100的螺纹轮廓300。点划线310相当于螺钉的对称轴线。同样在图3中,可以清楚地辨认出用在低延展性材料中的螺钉的改进的螺纹轮廓300。它具有螺纹顶部342和螺纹根部344,它们通过本发明螺钉第一实施例的对称的螺纹面320相互连接。相应于图3中由点划线310一端的箭头所示的运动方向,当螺钉插入到普通口径导向孔中之后,面朝着运动方向的螺纹面是前螺纹面322,相反的螺纹面是后螺纹面324。应当注意,随着下面对其它实施例的描述,本发明并不局限于对称结构的螺纹面320。
在图4中,它表示了按照本发明构造的螺钉外螺纹轮廓的一个螺钉螺纹400的放大截面图,即,螺纹400对应于图1中的螺钉100的螺纹轮廓300。螺钉螺纹400的截面取自于成形在螺钉外表面上的螺纹400的相邻的两圈螺纹,或者说取自于螺纹的两次回转。螺距p标示为相邻两圈螺纹的中心460,462之间的距离,它与上面所述的关于螺纹的两个连续螺纹顶部所定义的螺距相等。将螺纹深度TD制造成螺距的0.4-0.65倍。
按照本发明,螺钉螺纹400的螺纹轮廓由半径R展成,半径R设计成使螺纹轮廓对称于假想的对称轴线PA。作为本发明螺纹的第一半径R的值设定为等于螺距p的0.8-1.2倍。
螺钉螺纹400具有从螺纹根部444延伸出来并终止于螺纹顶部442的螺纹面420。螺纹顶部442形成了螺纹面442之间的、且位于螺纹顶部442处的外凸的圆形过渡,它至少是大致外凸的。圆形的螺纹顶部442由半径r1展成,r1构成了本发明螺纹的第二半径,且设定为大致等于螺距p的0.1倍。半径r1设计成使得圆形的螺纹顶部442也对称于假想的对称轴线PA。圆形的螺纹顶部442有利地控制和减小了配合的螺纹在低延展性材料中冷却成形时所产生的剪切力。
此外,还有圆形的螺纹根部444,它形成了连续螺纹面420之间的、内凹的圆形过渡。圆形的螺纹根部444由半径r2展成,半径r2构成了本发明螺纹的第三半径,且设定为大致等于螺距p的0.08倍。半径r2设计成使得圆形的螺纹根部444也对称于假想的对称轴线PA。
显然,半径r1,r2的中心分别位于螺纹顶部442和螺纹根部444的对称轴线上。确定了外凸螺纹面420的半径R的中心,它的定位满足两个条件第一,在螺纹顶部442向螺纹面420的过渡点处,确定了螺纹面420的半径R所示圆的切线,与确定了螺纹顶部442的半径r1所示圆的切线,两者基本上是相等的;第二,在螺纹根部444向螺纹面420的过渡点,确定了螺纹面420的半径R所示圆的切线,与确定了螺纹根部444的半径r2所示圆的切线,两者基本上是相等的。在图4中,所示半径R表示出它的半径中心远离螺纹面420。连接着螺纹面420两端处过渡点的连线是该螺纹面420的割线,然后可以发现,半径R的中心点位于该割线的对称轴线上。
再参见图4,可以清楚地看出,确定了螺纹顶部442、螺纹根部444和本发明螺纹400的螺纹面420的诸半径之间的过渡,被设置成使得螺纹轮廓在其整个长度上是连续的。换句话说,在螺纹轮廓的整个长度上没有尖锐的弯折或断裂。因此,分别通过由本发明的螺纹所形成的螺钉或螺母将内部作用力引入到相应的配合元件中,就可以在最大的可能程度上避免相配材料中的应力集中。此外,螺纹顶部的半径形式以及螺纹面的外凸的轮廓形式,在锚定材料中的相配螺纹的自攻成形过程中,便于产生主要是压力的内部作用力。这一特征减小了在其它形式的螺纹轮廓设计中所存在的任何剪切力的数值。而且也消除了在镁合金锚定螺母中因剪切力减小而产生的不利影响,诸如产生出碎屑、毛刺、裂缝或表层赘物。
图5是一个示意图,表示了使用自攻原理在配合螺母中产生螺纹时,镁合金材料中产生的压缩力的方向。它表明了使用本发明的改进的轮廓结构所带来的优点。
该附图进一步表示了螺纹轮廓半径的伸展,它能够使光滑的弧形螺纹结构沿着设有螺纹的螺钉体或螺钉杆的长度都是连续的。这种连续的弧形结构能够有利地避免螺母材料的损坏,不连续的接触表面有可能发生这种损坏。
更具体地,图5表示了本发明第一实施例螺钉的一段外螺纹500,它用于在元件中冷却成形出相配合的螺纹。图中还以黑色箭头表示了在成形过程中作用在螺纹材料上的作用力。例如,所产生的作用在内、外螺纹上的作用力505,它具有沿着配合元件中的普通口径导向孔的半径方向的径向分力510,以及沿着螺钉伸展轴线方向的轴向分力520。随着曲线接近顶部,轴向分力520减小而径向压缩分力增大。
当图5的螺纹旋入到包括镁等的低延展性材料的元件中时,上面所述和图5中所示的作用力不会反过来影响到所形成的内螺纹的结构完整性。有利地避免了元件材料上产生擦伤、裂缝、表层赘物和碎屑,而且元件材料上邻近普通口径导向孔的部分也不会破碎或撕裂。此外,内螺纹的螺纹顶部附近不会形成裂缝,因而不会破碎。内螺纹的结构完整性不受损害,因而不会阻碍螺钉螺纹的旋入。
另外,由于螺纹轮廓的连续形式,所产生的作用力的分布也是连续的。因此避免了在内螺纹的底部附近形成应力断裂。所产生的作用在内螺纹上的力的径向分力值大大增加,也减小了配合元件的螺纹发生断裂或撕裂的可能性。因而显著地提高了内螺纹的承载力和可重复使用性。
图6示意性表示了本发明的一个可能的变型,该变型允许螺钉的螺纹轮廓呈不对称的形式。然而,应当清楚地指出,螺纹轮廓的前螺纹面与本发明前述的所有要素相一致;后螺纹面采用这样的形式,即沿着带有螺纹的螺钉杆长度呈连续的弧形。
与图5相比,图6是本发明的非对称螺纹结构的一个实例。在图6中示出了该螺钉实施例的一段外螺纹600,其中外凸形后螺纹面624比外凸形前螺纹面622陡峭更多。因此,通过螺纹面结构的力分解作用可以清楚地看到,极大地减小了所产生的作用力605的径向分力值610,而所产生的作用力605的轴向分力值620则大大增加。于是,作用在内螺纹上的轴向分力620在导向孔和螺钉的方向上提供了更大的压力。因此,这种螺纹轮廓可以应用于任何需要高夹持力而螺母材料的延展性又允许的场合。
本发明提出的内容能够用于由常用技术术语、例如螺母和螺栓所定义的元件的各个内外轮廓部分。利用这些原理的任何的或者所有的安装过程都将受益于本发明紧固系统的性能,以便承受较之由大致为三角形的螺纹轮廓所构成的传统系统更大的轴向作用力,而所有其它的要素都相同。
尽管这里详细地描述和表示了本发明的特定实施例,但对于本领域的技术人员来说显而易见的是在不脱离本发明的范围可以对本发明的各个方面作出各种变化和改型,其中的一些变化和改型是常规的工程或设计内容,而另一些显然也只是学习本发明以后作出的。因此,本发明的范围并不局限于这里所述的特定实施例的结构。
权利要求
1.一种螺纹,尤其是分别用于滚压的或自攻的螺钉(100)或螺母的螺纹,它具有带前螺纹面(422)和后螺纹面(424)的非三角形的螺纹轮廓(400),其中所述的前螺纹面(422)和后螺纹面(424)中至少一个设置成具有第一半径(R)的凸曲率;其特征在于,所述非三角形螺纹轮廓(400)的顶部(442)也是带有第二半径(r1)的凸曲率,其中第一半径(R)的值与第二半径(r1)的值不相等。
2.如权利要求1所述的螺纹,其特征在于,第一半径(R)大于第二半径(r1)。
3.如权利要求1或2所述的螺纹,其特征在于,设有凸曲率的前螺纹面(422)或后螺纹面(424)中至少一个与非三角形螺纹轮廓(400)的顶部(442)之间的过渡是连续的。
4.如权利要求1-3中任一项所述的螺纹,其特征在于,两个连续的非三角形螺纹轮廓(400)之间的螺纹根部(444)具有第三半径(r2)的凹曲率。
5.如权利要求4所述的螺纹,其特征在于,第三半径(r2)的值小于第一半径(R)的值,最好也小于第二半径(r1)的值。
6.如权利要求4或5所述的螺纹,其特征在于,设有凸曲率的前螺纹面(422)或后螺纹面(424)中至少一个与两个连续的非三角形螺纹轮廓(400)的底部(444)之间的过渡是连续的。
7.如权利要求1-6中任一项所述的螺纹,其特征在于,非三角形螺纹轮廓(400)的前螺纹面(422)和后螺纹面(424)成形为相互对称。
8.如权利要求1-6中任一项所述的螺纹,其特征在于,非三角形螺纹轮廓(400)的前螺纹面(422)和后螺纹面(424)相互不对称。
9.如权利要求1-8中任一项所述的螺纹,其特征在于,螺距(p)的值是螺纹公称直径的0.15-0.5倍。
10.如权利要求1-9中任一项所述的螺纹,其特征在于,螺纹轮廓(400)的第一半径(R)的值是螺纹螺距(p)的0.8-1.2倍。
11.如权利要求1-10中任一项所述的螺纹,其特征在于,螺纹轮廓(400)的深度(TD)是螺纹螺距(p)的0.4-0.65倍。
12.如权利要求1-11中任一项所述的螺纹,其特征在于,螺纹轮廓(400)的第二半径(r1)的值设定为螺纹螺距(p)的0.1倍。
13.如权利要求1-12中任一项所述的螺纹,其特征在于,螺纹轮廓(400)的第三半径(r2)的值设定为螺纹螺距(p)的0.08倍。
14.一种用于紧固系统的螺钉,其特征在于,所述螺钉(100)包括如权利要求1-13中任一项所设计的非三角形的外螺纹(130)。
15.如权利要求14所述的螺钉,其特征在于,所述螺钉(100)是滚压成形螺纹螺钉。
16.如权利要求14或15所述的螺钉,其特征在于,所述螺钉的外螺纹具有圆形的横截面。
17.如权利要求14-16中任一项所述的螺钉,其特征在于,所述螺钉(100)的外螺纹具有非圆形的、叶片状的横截面(200)。
18.如权利要求14-17中任一项所述的螺钉,其特征在于,所述螺钉(100)的外螺纹在该螺钉(100)的尖端处(140)具有导入部(145)。
19.如权利要求18所述的螺钉,其特征在于,导入部(145)的长度设定为螺钉(100)的螺纹螺距(p)的2.0倍。
20.一种用于紧固系统的螺母,其特征在于,所述螺母包括如权利要求1-13中任一项所设计的非三角形的内螺纹。
21.如权利要求20所述的螺母,其特征在于,所述螺母是滚压成形螺纹螺母。
22.如权利要求20或21所述的螺母,其特征在于,所述螺母的内螺纹具有圆形的横截面。
全文摘要
本发明涉及一种螺纹(400),尤其是分别用于滚压的或自攻的螺钉(100)或螺母的螺纹,它具有非三角形的螺纹轮廓(300),其包括前螺纹面(422)和后螺纹面(424),所述的前螺纹面(422)和后螺纹面(424)其中至少一个设置成具有第一半径(R)的凸曲率。非三角形螺纹轮廓(400)的顶部(442)也是凸曲率并具有第二半径(r1),其中第一半径(R)的值与第二半径(r1)的值不相等。
文档编号F16B25/00GK1764790SQ03826288
公开日2006年4月26日 申请日期2003年2月20日 优先权日2003年2月20日
发明者曼弗雷德·施瓦茨 申请人:康蒂扣件股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1