用于制造具有改进的强度、延展性和可成形性的高强度钢板的方法与流程

文档序号:11109998阅读:633来源:国知局
用于制造具有改进的强度、延展性和可成形性的高强度钢板的方法与制造工艺

为了制造各种设备,例如机动车辆的车身结构构件和车身面板的部件,通常使用由DP(双相)钢或TRIP(相变诱导塑性)钢制成的板。

例如,包含马氏体组织和/或一些残留奥氏体并且含有约0.2%的C、约2%的Mn、约1.7%的Si的这样的钢的屈服强度为约750MPa,拉伸强度为约980MPa,总延伸率大于8%。这些板在连续退火线上通过以下来制造:从高于Ac3转变点的退火温度淬火至高于Ms转变点的淬火温度,随后加热至Ms点以上的过时效温度并将板在该温度下保持给定时间。然后使所述板冷却至室温。

鉴于全球环境保护,由于希望减轻汽车的重量以改进其燃料效率,期望具有改进的屈服强度和拉伸强度的板。但是这样的板还必须具有良好的延展性和良好的可成形性以及更特别地良好的延伸凸缘性(flangeability)。

在这方面,期望具有屈服强度YS为至少850MPa,拉伸强度TS为约1180MPa,总延伸率为至少14%且根据ISO标准16630:2009测量的扩孔率HER为至少30%的板。必须强调,由于测量方法的差异,根据ISO标准的扩孔率HER的值与根据JFS T 1001(日本钢铁联盟标准)的扩孔率λ的值非常不同并且没有可比性。

因此,本发明的目的是提供这样的板及其制造方法。

为此,本发明涉及用于通过热处理钢板来制造具有改进的延展性和改进的可成形性的高强度钢板的方法,所述板的屈服强度YS为至少850MPa,拉伸强度TS为至少1180MPa,总延伸率为至少14%且根据ISO标准的扩孔率HER为至少30%,其中以重量%计,所述钢板的钢的化学组成包含:

0.15%≤C≤0.25%

1.2%≤Si≤1.8%

2%≤Mn≤2.4%

0.1%≤Cr≤0.25%

Nb≤0.05%

Ti≤0.05%

Al≤0.50%

剩余部分为Fe和不可避免的杂质。所述热处理包括以下步骤:

-使所述板在高于Ac3但低于1000℃的退火温度TA下退火超过30秒的时间,

-通过使所述板以足以在刚淬火之后具有由奥氏体和至少50%的马氏体组成的组织的冷却速度冷却至275℃至325℃的淬火温度QT来使所述板淬火,所述奥氏体的含量为使得最终组织(即在处理和冷却至室温之后)可以含有3%至15%的残余奥氏体和85%至97%的马氏体加上贝氏体的总和而不含铁素体,

-将所述板加热至420℃至470℃的配分温度PT,并将所述板在此温度下保持50秒至150秒的配分时间Pt并且,

-使所述板冷却至室温。

在一个特定实施方案中,钢的化学组成为使得Al≤0.05%。

优选地,淬火期间的冷却速度为至少20℃/秒,更优选至少30℃/秒。

优选地,所述方法还包括,在将板淬火至淬火温度QT之后而在将板加热至配分温度PT之前,将板在淬火温度QT下保持2秒至8秒,优选3秒至7秒的保持时间。

优选地,退火温度高于Ac3+15℃,特别是高于850℃。

本发明还涉及钢板,以重量%计,其化学组成包含:

0.15%≤C≤0.25%

1.2%≤Si≤1.8%

2%≤Mn≤2.4%

0.1%≤Cr≤0.25%

Nb≤0.05%

Ti≤0.05%

Al≤0.5%

剩余部分为Fe和不可避免的杂质,所述板的屈服强度为至少850MPa,拉伸强度为至少1180MPa,总延伸率为至少14%且扩孔率HER为至少30%,并且组织由3%至15%的残留奥氏体和85%至97%的马氏体和贝氏体组成而不含铁素体。

屈服强度甚至可以大于950MPa。

在一个特定实施方案中,钢的化学组成为使得Al≤0.05%。

优选地,残留奥氏体中的碳的量为至少0.9%,优选至少1.0%。

优选地,平均奥氏体晶粒尺寸为至多5μm。

现在将通过唯一的附图(其是对应于实施例10的扫描电子显微镜显微照片)对本发明进行举例说明和详细描述但不引入限制。

根据本发明,通过半成品的热轧和任选地冷轧来获得板,以重量%计,所述半成品的化学组成包含:

-0.15%至0.25%,并且优选大于0.17%且优选小于0.21%的碳,以确保令人满意的强度和改进残留奥氏体(其是获得足够的延伸率所必需的)的稳定性。如果碳含量太高,则热轧板太硬而不能冷轧并且可焊接性不足。

-1.2%至1.8%,优选大于1.3%且小于1.6%的硅以使奥氏体稳定,以提供固溶强化以及延迟过时效期间碳化物的形成。

-2%至2.4%并且优选大于2.1%且优选小于2.3%的锰以具有足够的淬透性,以便获得包含至少65%的马氏体的组织,大于1180MPa的拉伸强度,以及避免具有对延展性不利的偏析问题。

-0.1%至0.25%的铬以改进淬透性和使残留奥氏体稳定,以便延迟过时效期间贝氏体的形成。

-至多0.5%的铝,其通常被添加到液态钢中用于脱氧目的。如果Al的含量高于0.5%,则退火温度将太高而不能达到并且钢将变得在工业上难以加工。优选地,Al含量限于杂质水平,即,最大0.05%。

-Nb含量限于0.05%,因为高于该值,将形成大的沉淀物并且将降低可成形性,使得14%的总延伸率更难以达到。

-Ti含量限于0.05%,因为高于该值,将形成大的沉淀物并且将降低可成形性,使得14%的总延伸率更难以达到。

剩余部分为铁和由炼钢产生的残余元素。在这方面,Ni、Mo、Cu、V、B、S、P和N至少被认为是残余元素(其是不可避免的杂质)。因此,它们的含量为Ni含量小于0.05%,Mo小于0.02%,Cu小于0.03%,V小于0.007%,B小于0.0010%,S小于0.007%,P小于0.02%且N小于0.010%。

根据本领域技术人员已知的方法通过热轧和任选的冷轧制备板。

在轧制之后,将板酸洗或清洗,然后进行热处理。

优选在组合的连续退火线上进行的热处理包括以下步骤:

-使板在高于钢的Ac3转变点,并且优选高于Ac3+15℃(即,对于根据本发明的钢高于850℃),以确保组织完全为奥氏体的,但小于1000℃,以便不使太多奥氏体晶粒粗化,的退火温度TA下退火。将板在退火温度下保持(即保持在TA-5℃与TA+10℃之间)足以使化学组成均匀的时间。该时间优选大于30秒但不需要大于300秒。

-通过使所述板以足以避免形成铁素体和贝氏体的冷却速率冷却至低于Ms转变点的淬火温度QT来淬火所述板,淬火温度在275℃与325℃之间以在刚淬火之后具有由奥氏体和至少50%的马氏体组成的组织,奥氏体含量为使得最终组织(即在处理和冷却至室温之后)可包含3%至15%的残余奥氏体和85%至97%的马氏体加上贝氏体的总和,而不含铁素体。冷却速率为至少20℃/秒,优选至少30℃/秒。需要至少30℃/秒的冷却速率以避免在从退火温度的冷却期间形成铁素体。

-将所述板再加热至420℃至470℃的配分温度PT。当通过感应加热器进行再加热时,再加热速率可以很高,但是5℃/秒至20℃/秒的再加热速率对板的最终性能没有明显影响。因此,再加热速率优选为5℃/秒至20℃/秒。优选地,在淬火步骤与将所述板再加热至配分温度PT的步骤之间,将板在淬火温度下保持2秒至8秒,优选3秒至7秒的保持时间。

-将板在配分温度PT下保持50秒至150秒的时间。将板在配分温度下保持意味着在配分期间板的温度保持在PT-10℃与PT+10℃之间。

-使所述板以优选大于1℃/秒的冷却速率冷却至室温以便不形成铁素体或贝氏体。目前,此冷却速度为2℃/秒至4℃/秒。

通过这样的处理,板具有由3%至15%的残留奥氏体和85%至97%的马氏体和贝氏体组成而不含铁素体的组织。实际上,由于在Ms点以下淬火,组织包含马氏体和至少50%。但是对于这样的钢,非常难以区分马氏体和贝氏体。这就是为什么只考虑马氏体加上贝氏体含量的总和。具有这样的组织,可以获得屈服强度YS为至少850MPa,拉伸强度为至少1180MPa,总延伸率为至少14%且根据ISO标准16630:2009的扩孔率(HER)为至少30%的板。

作为一个实例,通过热轧和冷轧制造了厚度为1.2mm的具有如下组成的板:C=0.19%,Si=1.5%,Mn=2.2%,Cr=0.2%,剩余部分为Fe和杂质。此钢的理论Ms转变点为375℃且Ac3点为835℃。

通过退火、淬火和配分(即,加热至配分温度并保持在此温度下)对板的样品进行热处理,并测量机械性能。将板在淬火温度下保持约3秒。

处理条件和所获得的性能列于表I中,其中退火类型栏指定退火是否为临界区的(IA)或完全奥氏体的(完全γ)。

表I

在此表中,TA是退火温度,QT是淬火温度,PT是配分温度,Pt是配分时间,YS是屈服强度,TS是拉伸强度,UE是均匀延伸率,TE是总延伸率,HER是根据ISO标准的扩孔率,Y是组织中的残留奥氏体的比率,γ晶粒尺寸是平均奥氏体晶粒尺寸,γ中的C%是残留奥氏体中的碳的量,F是组织中的铁素体的量且M+B是组织中的马氏体加上贝氏体的总和的量。

在表I中,实施例10是根据本发明的并且所有特性都优于最低所需特性。如附图所示,其组织包含11.2%的残留奥氏体和88.8%的马氏体加上贝氏体的总和。

涉及在临界区温度下退火的样品的实施例1至实施例6表明,即使总延伸率大于14%(这仅是样品4、5和6的情况),扩孔率仍太低。

涉及现有技术(即涉及不在Ms点(QT在Ms点以上且PT等于QT)以下进行淬火的板)的实施例13至实施例16表明,通过这样的热处理,在所有情况下当退火为临界区的且可成形性(扩孔率)不足(低于30%)时,即使拉伸强度非常好(在1220MPa以上),屈服强度也不是非常高(低于780)。

全部涉及在高于Ac3的温度下退火(即组织完全为奥氏体)的样品的实施例7至12表明,达到目标特性的唯一方法是淬火温度300℃(+/-10)且配分温度450℃(+/-10)。采用这样的条件,可以获得大于850MPa并且甚至大于950MPa的屈服强度,大于1180MPa的拉伸强度,大于14%的总延伸率和大于30%的扩孔率。实施例17表明,高于470℃的配分温度不能获得目标特性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1