电动机操纵的阀的制作方法

文档序号:5590729阅读:136来源:国知局
专利名称:电动机操纵的阀的制作方法
技术领域
本发明涉及一种装入到空气调节器、致冷机等中的电动机操纵的阀。尤其本发明涉及一种可以精确地把制冷剂流速控制到非常小的范围内的电动机操纵的阀。
背景技术
这种传统的、电动机操纵的阀的一个例子如图3所示。这里所示出的电动机操纵的阀10′设置有阀室21、阀座22(阀孔22a)和具有法兰状件23的阀体20。阀体20如此地形成,以致借助阀塞24a(阀杆24)可以调节流体如制冷剂的流速,其中阀塞24a可以移动靠近或者移动离开阀座22。借助对接焊,使底部敞开的、顶部封闭的圆柱形罩40通过下端40b与阀体20的法兰状件23(通过设置在其上的台阶部分23a)相密封连接。
阀体20的阀室21通过一侧部与制冷剂进入管61相连通,并且通过它的底部与制冷剂排出管62也连通。
转子30共轴线地设置在罩40中,其中在转子30的外圆周壁和罩40的内圆周壁之间形成预定间隙。包括有轭51、线圈架52、定子线圈53和树脂模制罩56的定子50绕着罩40的外圆周壁进行设置,从而与转子30一起构成了步进电机。
利用转子30的旋转使阀塞24a靠近或者远离阀座22的驱动机构设置在转子30和阀杆24之间。具体地说,驱动机构包括丝杠机构15,该丝杠机构包括圆柱形导向衬套26(它具有形成在它的外圆周上的固定螺纹部分25),该衬套26通过下端部26a固定到阀体20上,该丝杠机构15具有轴向中空部分,阀杆24在该中空部分内可以滑动;及圆柱形阀杆保持器32(它具有形成在它的内圆周表面上的可运动螺纹部分31,该螺纹部分31适合与固定螺纹部分25相接合),它具有敞开的下端,并且绕着阀杆24和导向衬套26的外圆周表面共轴线地设置。
更加具体地说,阀杆24的上部可滑动地插入到阀杆保持器32的上部中空部分中,借助螺母33来固定阀杆24的顶部。当借助丝杠机构15使阀杆保持器32可旋转地上下运动时,在没有随着阀杆保持器32的旋转一起进行旋转的情况下,使阀杆24相应地上下运动。
根据如上述那样进行构造的电动机操纵的阀10′,当在阀塞24a保持离开阀座22或者从阀座22抬起(阀孔22a打开)的情况下定子线圈53通过施加电流而沿着一个方向被激磁时,使转子30和阀杆保持器32相对于固定到阀体20上的导向衬套26沿着一个方向进行旋转,从而借助丝杠机构15使阀杆保持器32向下运动,因此阀塞24a与阀座22相压紧接触,因此关闭了阀孔22a。
即使在阀塞24a落座在阀座22上的时候,设置在阀杆保持器32下端部上的可运动止动器37仍然没有与固定到阀体20上的固定止动器27相接触,因此转子30和阀杆保持器32仍然可以可旋转地向下运动,而借助阀塞24a使阀孔22a保持关闭。在这种情况下,由于阀杆保持器32相对于阀杆24向下运动,因此设置在阀杆保持器32和阀杆24之间的缓冲盘簧34受到压缩。其结果是,强烈地将阀杆24的阀塞24a压紧到阀座22上,因此关闭了阀。之后,当转子30进一步旋转以使阀杆保持器32向下运动时,使可运动止动器37与固定止动器27相压紧接触,因此即使电流连续地供给到定子线圈53中,但阀杆保持器32被迫停止旋转和向下运动。
在阀杆保持器32停止的情况下,当定子线圈53通过施加电流而沿着另一个方向受到激磁时,转子30和阀杆保持器32相对于导向衬套26沿着与前述一个方向相反的方向进行旋转。其结果是,借助丝杠机构15,使阀杆保持器32向上运动,从而使阀塞24a移离阀座22以打开阀孔22a。其结果是,从进入管61加入到阀室21中的制冷剂通过阀孔22a流入到排出管62中。在这种情况下,根据阀塞24a的升程大小来调节制冷剂的流速(详细情况请参见日本专利JPNo.2001-50415(Kokai))。
在如上述那样构造成的传统的电动机操纵的阀10′的情况下,根据阀孔22a的孔的有效面积,即根据阀塞24a离开阀座22的升程大小来确定制冷剂的流速。根据丝杠机构15的螺距和转子30的旋转速度(步进电机的步数)来确定阀塞24a的升程大小。
在这种电动机操纵的阀的情况下,阀的升程最大值(完全打开状态),换句话说是步进电机的最大步数通常事先确定,从而得到理想的最大流速。即,电动机操纵的阀如此设置,以致可以控制供给到定子中的电流,从而例如使转子最多旋转5圈。在这种情况下,如果丝杠机构15的螺距例如设置到0.6mm,那么当转子30和阀杆保持器32分别旋转一圈、两圈、三圈、四圈和五圈时,可以以0.6mm的间隔即0.6mm、1.2mm、1.8mm、2.4mm、3.0mm来改变阀塞24a的升程大小。
同时,在尤其用于致冷机(该阀在这种机器中用作膨胀阀)中的、电动机操纵的阀的情况下,由于要控制的制冷剂流速非常小,因此难以精确地控制制冷剂的流速。此外,当二氧化碳气体用作制冷剂时,需要把制冷剂的压力提高到高压(大约是传统压力的10倍高)。但是,具有这样的问题当采用高压制冷剂而阀塞如上述那样以0.6mm的间隔来升高时,制冷剂流速的波动将会变得太大。
作为解决上述问题的一个对策,可以想到的是,使阀孔的尺寸大小或者角度(孔的有效面积)最小化。但是,减小阀的孔的有效面积受到了限制,而且,即使单独地采用这种对策,也不能完全解决上述问题。
作为另一个对策,还可以想到的是,使丝杠机构15的螺距最小化(例如使0.6mm的螺距减小到0.2mm)。但是,当丝杠机构15的螺距减小时,转子每圈的升程大小变得太小了,从而产生了这样的问题用来调节旋转的固定止动器27不能合适地与可运动止动器37相接触,或者移离可运动止动器37。

发明内容
根据上述情况形成了本发明,因此,本发明的目的是提供一种电动机操纵的阀,即使采用高压制冷剂,同时如在传统的、电动机操纵的阀中所采用的那样可以采用各种零件如定子,但是在对转子的旋转调节没有产生任何麻烦的情况下,该阀也可以精确地、合适地调节制冷剂的流速。
为了实现上述目的,根据本发明,提供了一种电动机操纵的阀,该阀包括阀杆,它具有阀塞;阀体,它具有阀座,阀塞可移动地与阀座相接触;罩,它固定到阀体上;转子,它在罩内共轴线地设置;定子,它绕着罩的外圆周表面进行设置从而可旋转地驱动转子;导向衬套,它固定到阀体上并且具有轴向中空部分,阀杆在该中空部分中可以滑动;及阀杆保持器,它绕着阀杆和导向衬套的外圆周表面共轴线地设置,并且与转子成一体地进行旋转;其中阀杆与阀杆保持器成一体地进行旋转,并且相对于阀杆保持器沿着它的纵向进行运动;该电动机操纵的阀还设置有流速调节丝杠机构,从而使阀塞可移动地接触阀座,其中该丝杠机构包括形成在导向衬套内圆周表面上的第一固定螺纹部分和形成在阀杆外圆周表面上的第一可运动螺纹部分,该第一可运动螺纹部分适合与第一固定螺纹部分相接合;及设置有旋转调节丝杠机构,该丝杠机构包括形成在导向衬套外圆周表面上的第二固定螺纹部分和形成在阀杆保持器的内圆周表面上的第二可运动螺纹部分,第二可运动螺纹部分适合与第二固定螺纹部分相接合。
在优选实施例中,流速调节丝杠机构的螺距小于旋转调节丝杠机构的螺距。
在另一个优选实施例中,阀塞沿着轴向可运动地插入到形成在阀杆下端部的圆柱形部分中,并且与设置在该圆柱形部分中的止动部分相接合,该圆柱形部分在其中设置有缓冲弹簧,以推动阀塞向下运动。
在另一个优选实施例中,电动机操纵的阀还包括旋转调节止动机构,该止动机构包括连接到导向衬套或者阀体上的固定止动器和连接到阀杆保持器上的可运动止动器,并且与固定止动器相压紧接触。
根据本发明的电动机操纵的阀,即使采用高压制冷剂,同时采用与传统电动机操纵的阀相同的各种零件如定子,在不对转子的旋转调节产生任何麻烦的情况下,也可以精确地、合适地调节制冷剂的流速。


图1是纵向剖视图,它示出了本发明的电动机操纵的阀的一个
具体实施例方式
参照附图来详细地解释本发明的一个实施例。
图1示出了本发明的电动机操纵的阀的一个实施例,其中与图3所示的电动机操纵的阀10′相同的零件或者部分用相同的标号来表示。
图1所示的电动机操纵的阀10设置有阀室21;阀座22(阀孔22a);阀体20,它具有法兰状件23并且构造成利用针状阀塞24A来调节制冷剂的流速,其中阀塞24A可以运动以靠近或者远离阀座22;罩40,借助焊接,它通过下端40b与阀体20气密地接合;转子30,它共轴线地设置在罩40内,其中在转子30的外部圆周壁和罩40的内部圆周壁之间形成预定间隙;及定子50,它绕着罩40的外部圆周表面进行设置,从而可旋转地驱动转子30。
阀体20的阀室21通过它的一个侧部与制冷剂进入管61相连通,从而把作为制冷剂的高压二氧化碳(气体)加入到阀室21中,并且通过它的底部还与制冷剂排出管62相连通。
定子50包括轭51,它由磁性材料形成;几个上部和下部定子线圈53,它们通过线圈架52缠绕在轭51上;及树脂模制罩56。电动机(在这个实施例中是步进电机)包括转子30;定子50;及定子线圈53。在这个实施例中,定子50由与传统采用的定子相同的定子来形成。如此地控制电流供给到定子50,以致转子30最大可以旋转5圈。
至于说转子30的材料,可以采用稀土塑性磁铁如Nd-Fe-B型磁体。
罩40可以由非磁性金属如不锈钢形成,并且形成封闭端圆柱形结构,该结构具有半球形顶部40a,该顶部40a借助深冲压等方法来制造。
罩40的下端40b(法兰部分)与台阶部分23a气密连接,该台阶部分23a形成在不锈钢法兰状件23上,该法兰状件23借助对接焊(焊接部分用K来表示)固定到阀体20的上部,从而确保罩40的内部处于密封状态。
在罩40的内部设置着黄铜阀杆24,它具有阀塞24A;衬套26,它具有下端部26a,该下端部26a伸入(拧入)和固定到形成于阀体20中的孔42上,该衬套还具有轴向中空部分,阀杆24在该中空部分内可以进行滑动;及圆柱形阀杆保持器32,它绕着阀杆24和导向衬套26的外部圆周表面共轴线地设置并且可以与转子30成一体地进行旋转。
阀塞24A沿着轴向可运动地插入到形成于阀杆24下端部的圆柱形部分24B中,并且与压紧固定到圆柱形部分24B上的套圈38相接合。以压缩状态把缓冲盘簧34设置在圆柱形部分24B的内部,从而推动阀塞24A向下运动。
在这个实施例中,阀塞24A的未端部(下端部)薄于图3所示的传统阀塞24a的未端部,因此阀孔22a的直径相应地更小(例如,大约1.5mm的传统尺寸大小减小到例如这个实施例的0.5mm)。
为了使阀塞24A可移动地与阀座22相接触,第一固定螺纹部分28形成在导管衬套26上部的内圆周表面上,同时第一可运动螺纹部分29形成在阀杆24的扩大部分24b的上部的外圆周表面上,从而使第一可运动螺纹部分29与第一固定螺纹部分28相接合。通过第一固定螺纹部分28和第一可运动螺纹部分29的结合,构成流速调节丝杠机构11。
阀杆保持器32在顶部中央部分32c处设置有孔32e,具有图2所示D形切口部分(斜部42a)的阀杆旋转套42的下部可运动地插入到该孔32e中。此外,阀杆24的上部较薄部分24c压配合到阀杆旋转套42中。因此,阀杆24可以与阀杆保持器32成一体地进行旋转,同时相对于阀杆保持器32沿着轴向进行运动。
此外,导向衬套26在中间部分的外圆周表面上设置有第二固定螺纹部分25,阀杆保持器32在下端部的内圆周表面上设置有第二可运动螺纹部分31,该螺纹部分31适合与第二固定螺纹部分25相接合。通过第二固定螺纹部分25和第二可运动螺纹部分31的结合,构成了旋转调节丝杠机构12。
顺便说一下,导向衬套26在它的一侧壁上还设置有平衡孔32a,从而平衡阀室21和罩40之间的内部压力。阀杆保持器32在它的顶部上也设置有回位弹簧35,在螺纹部分脱开时,该回位弹簧35进行工作,从而恢复旋转调节丝杠机构12的螺纹部分的接合。
阀杆保持器32通过支撑环36与转子30相连接。这个实施例中的支撑环36由黄铜环来形成,在形成转子30时,把该黄铜环插入到转子30中。把阀杆保持器32的上部突出部压紧到支撑环36上,从而相互成一体地连接转子30、支撑环36和阀杆保持器32。
构成一个旋转调节止动机构的固定止动器27固定地连接到导向衬套26,构成另一个止动机构的可运动止动器37固定地连接到阀杆保持器32上。
在这个实施例中,旋转调节丝杠机构12的螺距例如设置成0.6mm(它与传统的丝杠机构15相同),流速调节丝杠机构11的螺距例如设置成0.2mm。
根据如上所述那样构造成的电动机驱动的阀10,当在阀塞24a保持离开阀座22或者保持从阀座22升起(阀孔22a打开)的情况下定子线圈53通过施加电流而沿着一个方向被激磁时,使转子30和阀杆保持器32相对于固定到阀体20上的导向衬套26沿着一个方向进行旋转。因此,阀杆保持器32在由旋转调节丝杠机构12所产生的每一圈旋转中向下运动例如0.6mm,同时,例如在由流速调节丝杠机构11所产生的每一圈旋转中,阀杆24向下运动0.2mm,因此阀塞24A与阀座22进行压紧接触,从而关闭阀孔22a。
即使在阀孔22a关闭时,设置在阀杆保持器32下端部的可运动止动器37仍然没有与固定到阀体20上的固定止动器27相接触,因此转子30和阀杆保持器32仍然可旋转地向下运动,而阀孔22a借助阀塞24a保持关闭。在这种情况下,由于阀杆24相对于阀塞24A向下运动,因此设置在阀杆24和阀塞24A之间的缓冲盘簧34受到压缩,从而吸收阀杆24的下降力。之后,当转子30进一步旋转以使阀杆保持器32向下运动时,使可运动止动器37与固定止动器27相压紧接触,因此即使电流连续地施加到定子线圈53上,但是阀杆保持器32和阀杆24的旋转和向下运动可被迫停止。
在阀杆保持器32和阀杆24停止的情况下,当定子线圈53通过施加电流而沿着另一个方向受到激磁时,转子30、阀杆保持器32和阀杆24沿着与前述一个方向相反的方向进行旋转。其结果是,借助旋转调节丝杠机构12的作用,例如在旋转调节丝杠机构12的每一圈中阀杆保持器32向上运动0.6mm(在5圈之后,最大升程距离是3.0mm),从而使可运动止动器37移离固定止动器27,同时在每一圈中阀杆24向上运动0.2mm(在5圈之后,最大升程距离是1.0mm)。其结果是,阀塞24A移离阀座22以打开阀孔22a。其结果是,从进入管61加入到阀室21中的制冷剂通过阀孔22a流入到排出管62中,因此可以根据阀塞24a的升程大小来调节制冷剂的流速。
如上所述,由于这个实施例的电动机操纵的阀被构造成包括流速调节丝杠机构11和旋转调节丝杠机构12,同时流速调节丝杠机构11的螺距减小到旋转调节丝杠机构12的螺距的大约1/3,因此,即使采用了高压的制冷剂,现在在对转子的旋转调节没有产生任何麻烦的情况下,也可以精确地、合适地调节制冷剂的流速。
权利要求
1.一种电动机操纵的阀,该阀包括阀杆,它具有阀塞;阀体,它具有阀座,阀塞可移动地与阀座相接触;罩,它固定到阀体上;转子,它在罩内共轴线地设置;定子,它绕着罩的外圆周表面进行设置从而可旋转地驱动转子;导向衬套,它固定到阀体上并且具有轴向中空部分,阀杆在该中空部分中可以滑动;及阀杆保持器,它绕着阀杆和导向衬套的外圆周表面共轴线地设置,并且与转子成一体地进行旋转;其特征在于,阀杆与阀杆保持器成一体地进行旋转,并且相对于阀杆保持器沿着它的纵向进行运动;该电动机操纵的阀还设置有流速调节丝杠机构,从而使阀塞可移动地接触阀座,其中该丝杠机构包括形成在导向衬套内圆周表面上的第一固定螺纹部分和形成在阀杆外圆周表面上的第一可运动螺纹部分,该第一可运动螺纹部分适合与第一固定螺纹部分相接合;及设置有旋转调节丝杠机构,该螺钉机构包括形成在导向衬套外圆周表面上的第二固定螺纹部分和形成在阀杆保持器的内圆周表面上的第二可运动螺纹部分,第二可运动螺纹部分适合与第二固定螺纹部分相接合。
2.如权利要求1所述的电动机操纵的阀,其特征在于,流速调节丝杠机构的螺距小于旋转调节丝杠机构的螺距。
3.如权利要求1所述的电动机操纵的阀,其特征在于,阀塞沿着轴向可运动地插入到形成在阀杆下端部的圆柱形部分中,并且与设置在该圆柱形部分中的止动部分相接合,该圆柱形部分在其中设置有缓冲弹簧,以推动阀塞向下运动。
4.如权利要求1所述的电动机操纵的阀,其特征在于,该电动机操纵的阀还包括旋转调节止动机构,该止动机构包括连接到导向衬套或者阀体上的固定止动器和连接到阀杆保持器上的可运动止动器,并且与固定止动器相压紧接触。
全文摘要
一种电动机操纵的阀,该阀包括阀杆,它具有阀塞;阀体,它具有阀座,阀塞可移动地与阀座相接触;罩,它固定到阀体上;转子,它在罩内共轴线地设置;定子,它绕着罩的外圆周表面进行设置;导向衬套,它固定到阀体上并且具有轴向中空部分,阀杆在该中空部分中可以滑动;及阀杆保持器;其中,阀杆与阀杆保持器成一体地进行旋转,并且相对于阀杆保持器沿着它的纵向进行运动。该电动机操纵的阀还设置有流速调节丝杠机构,该丝杠机构包括第一固定螺纹部分和第一可运动螺纹部分;及设置有旋转调节丝杠机构,该螺钉机构包括第二固定螺纹部分和第二可运动螺纹部分。流速调节丝杠机构的螺距小于旋转调节丝杠机构的螺距。
文档编号F16K31/04GK1743708SQ20051009375
公开日2006年3月8日 申请日期2005年8月29日 优先权日2004年9月1日
发明者梅泽仁志, 井上靖 申请人:株式会社不二工机
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1