一种复层极限电流型氢气传感器及其制备方法

文档序号:6155331阅读:204来源:国知局
专利名称:一种复层极限电流型氢气传感器及其制备方法
技术领域
本发明属于化学气体传感器技术领域,具体涉及一种复层极限电流型氢气传感器及其制 备方法。
背景技术
高品位的铝及铝合金是近代尖端技术及国防工业的重要材料。在铝熔炼及铸造时,由于 熔体直接暴露在大气中,气氛中的水分很容易与熔体发生反应而吸氢。铝液凝固时,氢的溶 解度会降至原来的二十分之一以下,氢将析出,造成许多气孔;剩余的氢又使材料氢脆。因 此气孔严重影响铝材的深加工性能及耐腐蚀性能等,是飞机零件、磁鼓、光盘中的覆盖层等 所不能容许的。为控制脱氢过程,要求迅速准确地测定铝液中氢含量。长期以来人们致力于测氢技术的研究开发。目前较成熟的技术包括减压法(Straube-Pfeiffer),空隙率分析法,气体循环法。目前广泛使用的气体循环法存在仪器价格高,操作复杂且,分析时间长和不便于携带等问题,特别是不能实现H2的连续、在线检测和控制。电化学传感器的优点是选择性强,响应快速,而且可实现在线连续测定。目前用于氢气 测定的电化学传感器可分为两类浓差电池型和极限电流型。浓差电池型氢传感器可表示为pl(H2) H+ conductor p2(H2)。这个电池的电动势遵守 能斯特方程U=RT/2Fln(p2(H2)/pl(H2))。在这里U是电池的电动势,R是气体常数,T是绝 对温度,F是法拉第常数,p2(H2)和pl(H2)分别是氢在测量电极和参比电极上的分压。根据 熔体中氢的浓度和氢的分压间的关系S二A/T+B+l/21ogp2(H2)可计算熔体中氢含量。式中S 表示熔体中氢的浓度,A和B是常数,p2(H》是气氛中氢的分压。Iwahara等人用SrCe03、 BaCeCb和CaZr03基质子传导材料作为固体电解质,以氢气或水合盐作参比电极制备了这类 氢气传感器,得到了非常稳定的电动势[Yajima N, Iwahara H, Fukatsu N, et al.,Joumal of Japan Institute of Light Metal, 42 (1992)263]。郑敏辉等[郑敏辉,陈祥,金属学报,30 (1994)B238.]使用 SrCe03型质子导体为电解质,Ca/CaH2作-参比电极,得到了可连续工作60小时的氢气传感 器,但由于Ca/CaH2参比电极不稳定和密封问题的存在,影响其推广和应用。Yajima等人以 钙钛矿结构的CaZro.9ln(u03为固体电解质,以1%氢为参比电极构成了氢气传感器,在铝熔体 中实验结果与Telegas法很好地符合[K. Ktahira, H. Matsumoto, H. Iwahara, Sensors and Actuators B, 73(2001) 130]。日本TYK公司将这种氢气传感器实现了商品化。据报道这种测头 响应快,检测的浓度范围宽(0-1.0ml/100g),其准确度可以达到2%。但由于使用气体参比电极,明显存在仪器复杂、操作不便及安全等问题。英国剑桥大学Fray等人在此基础上开发 了以CaZro.9In(n03为固体电解质,Zr/ZrHx为参比电极的氢传感器[D P Lapham and D J Fray, Ionics, 8(2002)391]。传感器的稳定性高、重现性好、结构简单。由于浓差电池型氢气传感器 的信号与氢的分压成对数关系,因此在整个测定内,信号变化较小,不够敏感。
而极限电流型氢传感器具有以下优点 一是灵敏度高、控制精度好;二是对温度依赖小; 三是不需要参比电极;四是制备简单、易于微型化。目前,极限电流型氢传感器已研制出了 小孑L扩散型传感器[Noboru Taniguchi, Tomohiro Kuroha, Chiharu Nishimura. Solid State Ionics, 176 (2005) 2979]。但小孔扩散型传感器在长时间使用时容易造成小孔尺寸的改变甚至堵塞, 从而影响其敏感性能和工作稳定性,而且加工工艺相对复杂,价格较高。
本发明提供了一种复层极限电流型氢气传感器,采用电子/质子混合传导材料作为致密扩 散障碍层取代小孔制备电流型氢气传感器有望解决上述问题。该复层极限电流型氢气传感器 可以测定气相中氢气浓度,可用于对气相环境中的氢气浓度进行检测和控制。

发明内容
本发明的目的在于根据现有氢气传感器中的不足,提供一种新型复层极限电流氢气传感 器及其制备方法。
本发明的技术方案与技术特征为
本发明为一种复层极限电流型氢气传感器的制备方法。其特征在于该复层极限电流型氢 气传感器由致密的质子导体和致密的质子/电子混合导体组成,其重量百分比为质子导体 50 80%,质子/电子混合导体50 20%。该复层极限电流型氢气传感器制备包括以下步骤 质子导体粉体的制备;质子/电子混合导体粉体的制备;复层传感器的制备。
作为电解质的质子导体具有钙钛矿结构,质子导体的化学组成为AB^Rx03,其中A是 Ca、 Sr或Ba; B是Ce、 Zr、 Nb、 Ti中的一种或多种;R是Sc、 Y、 La、 Pr、 Nd、 Dy、 Ho、 Er、 Lu、 Gd、 In中的一种或多种,x为摩尔数,x取值范围0《x《0.3。
作为扩散阻的质子/电子混合导体具有透氢功能,质子/电子混合导体的化学组成为 AB!.xR,x03,其中A是Ca、 Sr或Ba; B是Ce、 Zr、 Nb、 Ti中的一种或多种;R'是Sm、 Eu、 Tb、 Yb、 Tm、 Mn、 Ti中的一种或多种,x为摩尔数,x取值范围0《x《0.3。
质子导体粉体的制备质子导体粉体采用固态反应法制备。按质子导体的化学组成进行
原料称取获得配合料,将配合料与氧化锆研磨体球、无水乙醇按质量比1: 2: 0.5的比例混
匀后放入聚四氟乙烯球磨罐中,湿法球磨10h后获得桨料,将桨料自然晾干待乙醇挥发后放
5入电阻炉中焙烧,焙烧气氛为空气气氛,焙烧温度为1000 1250°C,焙烧10h后降温冷却至 常温,在焙烧后粉体中加入粘结剂PVB (聚乙烯醇缩丁醛)1% (重量百分比,外加),将其 再次按前述方法湿法球磨10h,出磨晾干后获得质子导体粉体。.
质子/电子混合导体粉体的制备质子/电子混合导体采用固态反应法制备。按质子/电子 混合导体的化学组成进行称取原料获得配合料,将配合料与氧化锆研磨体球、无水乙醇按质 量比1: 2: 0.5的比例混匀后放入聚四氟乙烯球磨罐中,球磨10h后获得浆料,将浆料自然
晾干后放入电阻炉中焙烧,焙烧气氛为空气气氛,焙烧温度为分别于1000-1250°C,焙烧10h 后降温冷却至常温,在焙烧后粉体中加入粘结剂PVB (聚乙烯醇縮丁醛)1% (重量百分比, 外加),将其再次按前述方法湿法球磨10h,出磨晾干后获得质子/电子混合导体粉体。
复层传感器的制备氢传感器的制备采用共压共烧法。将质子/电子混合导体粉体放进钢
模中,在5MPa压强下初步压制,再于其上加入质子导体粉体(其重量百分比为质子导体 50 80%,质子/电子混合导体50 20%),在以15MPa压强将两种粉体共压成型复层坯体, 复层坯体为直径15mm的圆片。然后采用冷等静压力机将片形复层坯体以300MPa压强进一 步加压密实。将加压密实后的片形复层坯体在155(TC烧结10h,烧结过程的升温及降温速率 均为rC/min。用400目细砂纸将烧结后片形复层烧结体的两个平面打磨后涂上银浆,再将其 于80(TC焙烧lh后制得具有致密扩散障碍层的复层极限电流型氢传感器。
该传感器的工作原理具有致密扩散障碍层的复层极限电流型传感器由氢离子传导的固 体电解质和一层透氢膜(电子/氢离子混合导体)复合而成,在混合导体表面和固体电解质的 外表面分别引出与外电源连接的两根电极引线。利用外电源将界面处的氢抽出,而氢又在浓 度差的推动下,通过扩散障碍层扩散进入到界面。当氢通过障碍层的扩散速度成为整个氢迁 移过程的限速环节时,泵氢电流便到达极限值。显然,极限电流的大小与环境中的氢浓度直 接有关,此即为具有致密扩散障碍层的复层极限电流型氢感器的测氢工作原理。
本发明的优点在于传感器两极处于相同的气氛中,因而可以制成片式或其它形状;这 种新型的复层极限电流型氢传感器避免了小孔尺寸改变和堵塞等问题,可以大大提高了传感 器的工作性能,而且使得加工制备简化、工作可靠、使用方便。


图1氢气传感器的示意图
图2传感器中两种材料BaCe,Yai0O3和SrCe,Tma!)503的XRD图谱
图3传感器中两种材料表面的SEM照片BaCe謹Yo.化03 (A)和SrCea95TmQ.Q503 (B)
图4传感器断面的SEM照片图5在不同氢气浓度下传感器的电流-电位特征曲线图
图6在0.8V极化电压下,传感器的电流与氢气浓度的关系曲线图
具体实施方式
实施例1
按BaCe,Yo」o03和SrCeo95TmQ.Q503化学计量比称量相应的试剂,将原料、&02球、无 水乙醇按质量比1:2:0.5的比例混匀后放入聚四氟乙烯球磨罐中,球磨10h,磨好的浆料自然 晾干后放入电阻炉中,空气气氛于130(TC预烧10h,降至常温后,备用。XRD图谱见图1。
用电子天平称取0.7g 1300。C预烧过的SrCeo.95Tmoo503质子/电子混合导体粉,将称量好 的粉沫放进钢模中,于5MPa压力下压制,然后轻轻拔出压杆,倒入0.3g 1300'C预烧过的. BaCeo.9oY(H()03质子导体粉,将两种料于15MPa共压成圆形,圆片直径约为15mm。取出圆 形片,于冷等静压力机300MPa油压成密实的圆形片,于155(TC烧结10h。两层材料表面和 断面的SEM照片如图2, 3所示。用400目砂纸把圆片的两面打磨干净,涂上银浆,80(TC焙 烧lh。制得的致密扩散障碍层极限电流型氢传感器结构如图4所示。
在70(TC氢传感器不同氢浓度下的电流-电位特征曲线见图5。由图可以看出,氢传感器 在测试温度范围内,氢浓度小于17700ppm时,具有明显的极限电流平台。极限电流及初始 出现极限电流的电压随氢浓度的增加而增加。在0.8V电压,不同温度下氢浓度与极限电流具 有线性关系(见图6)。
实施例2
按BaCe固Gd(u。03和SrCeo95Ybo.o503化学计量比称量相应的试剂,将原料、Zr02球、无 水乙醇按质量比1:2:0.5的比例混匀后放入聚四氟乙烯球磨罐中,球磨10h,自然干燥后放入 电阻炉中,空气气氛于130(TC预烧10h,降至常温后,备用。
称取0.6g 1300"C预烧过的SrCeQ.95Ybo.()503质子一 电子混合导体粉,将称量好的粉沫放进 钢模中,于5MPa压力下压制,然后轻轻拔出压杆,倒入0.5g 130(TC预烧过的BaCe().9oGdo.1003 质子导体粉,将两种料于15MPa共压成圆形,圆片直径约为15mm。取出圆形片,于冷等静 压力机300MPa油压成密实的圆形片,于1600"C烧结10h。用400目砂纸把圆片的两面打磨 干净,涂上银浆,800。C焙烧lh。制得的致密扩散障碍层极限电流型氢传感器。在600-750'C, 0.8V电压下氢传感器具有很好的响应特性,不同温度下氢浓度与极限电流具有线性关系。实施例3
按BaCeo.9。In(uo03和SrCe。.95Mn。.。503化学计量比称量相应的试剂,将原料、Zr02球、无 水乙醇按质量比1:2:0.5的比例混匀后放入聚四氟乙烯球磨罐中,球磨10h,自然干燥后放入 电阻炉中,空气气氛于1300'C预烧10h,降至常温后,备用。
称取0.6g 1300'C预烧过的SrCe,Mnao503质子一电子混合导体粉,将称量好的粉沫放进 钢模中,于5MPa压力下压制,然后轻轻拔出压杆,倒入0.5gl300'C预烧过的BaCea9oIn(uo03 质子导体粉,将两种料于15MPa共压成圆形,圆片直径约为15mm。取出圆形片,于冷等静 压力机300MPa油压成密实的圆形片,于1650'C烧结10h。用400目砂纸把圆片的两面打磨 干净,涂上银浆,80(TC焙烧lh。制得的致密扩散障碍层极限电流型氢传感器。在600-750'C, 0.8V电压下氢传感器具有很好的响应特性,不同温度下氢浓度与极限电流具有线性关系。
权利要求
1、一种复层极限电流型氢气传感器及其制备方法,其特征在于该复层极限电流型氢气传感器由致密的质子导体和致密的质子/电子混合导体组成,其重量百分比为质子导体50~80%,质子/电子混合导体50~20%。该复层极限电流型氢气传感器制备包括以下步骤质子导体粉体的制备;质子/电子混合导体粉体的制备;复层传感器的制备。
2、 如权利要求l所述的体型极限电流型氢气传感器及其制备方法,其特征在于质子导体 的化学组成为AB卜xRx03,其中A是Ca、 Sr或Ba; B是Ce、 Zr、 Nb、 Ti中的一种或多种; R是Sc、 Y、 La、 Pr、 Nd、 Dy、 Ho、 Er、 Lu、 Gd、 In中的一种或多种,x为摩尔数,x取值 范围0《x《0. 3。
3、 如权利要求1所述的复层极限电流型氢气传感器及其制备方法,其特征在于质子/电 子混合导体的化学组成为AB^R,x03,其中A是Ca、 Sr或Ba; B是Ce、 Zr、 Nb、 Ti中的 一种或多种;R'是Sm、 Eu、 Tb、 Yb、 Tm、 Mn、 Ti中的一种或多种,x为摩尔数,x取值范 围0《x《0. 3。
4、 如权利要求1所述的复层极限电流型氢气传感器及其制备方法,其特征在于质子导体 粉体的制备是采用固态反应法制备。按质子导体的化学组成进行原料称取获得配合料,将配合料与氧化锆研磨体球、无水乙醇按质量比1: 2: 0.5的比例混匀后放入聚四氟乙烯球磨罐中,湿法球磨10h后获得浆料,将浆料自然晾干待乙醇挥发后放入电阻炉中焙烧,焙烧气氛 为空气气氛,焙烧温度为1000 1250°C,焙烧10h后降温冷却至常温,在焙烧后粉体中加入 粘结剂PVB (聚乙烯醇縮丁醛)1% (重量百分比,外加),将其再次按前述方法湿法球磨10h, 出磨晾干后获得质子导体粉体。
5、 如权利要求1所述的复层极限电流型氢气传感器及其制备方法,其特征在于质子/电 子混合导体粉体的制备是采用固态反应法制备。按质子/电子混合导体的化学组成进行称取原 料获得配合料,将配合料与氧化锆研磨体球、无水乙醇按质量比1: 2: 0.5的比例混匀后放 入聚四氟乙烯球磨罐中,球磨10h后获得浆料,将浆料自然晾干待乙醇挥发后放入电阻炉中 焙烧,焙烧气氛为空气气氛,焙烧温度为分别于1000-125(TC,焙烧10h后降温冷却至常温, 在焙烧后粉体中加入粘结剂PVB (聚乙烯醇縮丁醛)1% (重量百分比,外加),将其再次按 前述方法湿法球磨10h,出磨晾干后获得质子/电子混合导体粉体。
6、 如权利要求1所述的复层极限电流型氢气传感器及其制备方法,其特征在于复层传感 器的制备是采用共压共烧法。将质子/电子混合导体粉体放进钢模中,在5MPa压强下初步压 制,再于其上加入质子导体粉体,在以15MPa压强将两种粉体共压成型复层坯体,复层坯体 为直径15mm的圆片。然后采用冷等静压力机将片型复层坯体以300MPa压强进一步加压密实。将加压密实后的片型复层坯体在155o'c烧结ioh,烧结过程的升温及降温速率均为rc/min。用400目细砂纸将烧结后片型复层坯体的两个平面打磨后涂上银浆,再将其于80(TC焙 烧lh后制得具有致密扩散障碍层的复层极限电流型氢传感器。
全文摘要
本发明涉及一种复层极限电流型氢气传感器及其制备方法,属化学气体传感器技术领域。该传感器由致密的质子导体和致密的质子/电子混合导体组成。质子导体和质子/电子混合导体的组成分别为AB<sub>1-x</sub>R<sub>x</sub>O<sub>3</sub>和AB<sub>1-x</sub>R’<sub>x</sub>O<sub>3</sub>,其中A是Ca、Sr或Ba,B是Ce、Zr、Nb、Ti中的一种或多种,R是Sc、Y、La、Pr、Nd、Dy、Ho、Er、Lu、Gd、In中的一种或多种,R’是Sm、Eu、Tb、Yb、Tm、Mn、Ti中的一种或多种,0≤x≤0.3。其制备方法包括质子导体粉体制备,质子/电子混合导体粉体的制备,采用共压共烧法制备复层传感器。该传感器克服了小孔扩散型传感器的缺点,适用于气体中氢气的检测。
文档编号G01N27/407GK101655475SQ200910158850
公开日2010年2月24日 申请日期2009年7月6日 优先权日2009年7月6日
发明者周会珠, 唐晓薇, 磊 戴, 李跃华, 岭 王 申请人:河北理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1