振动式测量换能器和由此形成的测量系统的制作方法

文档序号:6002611阅读:176来源:国知局
专利名称:振动式测量换能器和由此形成的测量系统的制作方法
振动式测量换能器和由此形成的测量系统本发明涉及一种振动式测量换能器,该测量换能器用于测量在管线中被以可流动的方式引导的介质,特别是气体、液体、粉末或者其它可流动材料,特别用于测量在管线中流动的至少有时具有大于1000t/h、特别是大于1500t/h的质量流速的介质的密度和/或质量流速,特别地还有在一定时间间隔上累积的质量流量。另外,本发明涉及ー种具有这种测量换能器的測量系统,尤其是以在线测量装置的形式实施的測量系统。在用于测量在管线中流动的介质,例如,水性液体、气体、液体-气体-混合物、蒸汽、油、糊状物、浆液或者另ー种可流动材料的物理參数诸如,例如质量流量、密度和/或粘度的过程测量和自动化技术中,经常使用在线测量装置,该在线測量装置利用介质通过其流动的振动式测量换能器,和与此连接的測量和操作电路在介质中实现反作用力,诸如与质量流量相对应的科里奥利(Coriolis)力、与介质的密度相对应的惯性カ和/或与介质的粘度相对应的摩擦力等,并且产生从这些推导出的代表介质的具体质量流量、粘度和/或密度的测量信号。例如在EP-A 1001254、EP-A 553939、US-A 4,793,191、US-A 2002/0157479、US-A 2006/0150750、US-A 2007/0151368、 US-A 5,370,002、 US-A5, 796, OlUUS-B 6, 308, 580,US-B 6, 415, 668,US-B 6,711,958、US_B6, 920,798、US_B7,134,347,US-B 7,392,709或者WO-A 03/027616中详细地并且具体地描述了这种测量换能器,特别是实施为科里奥利、质量流量计或者科里奥利质量流量/密度计的测量换能器。每ー个测量换能器均包括换能器外罩,换能器外罩的进ロ侧第一外罩端部至少部分地利用具有恰好两个相互隔开的圆柱形或者锥形或者圆锥形的流动开ロ的第一分流器形成,并且出口侧第二外罩端部至少部分地利用具有恰好两个相互隔开的流动开ロ的第二分流器形成。在于 US-A 5, 796, OlUUS-B 7,350,421 或者 US-A 2007/0151368 中示意的某些测量换能器的情形中,换能器外罩包括形成换能器外罩的至少中间片段的相当厚壁的圆柱形、管状片段。为了引导至少有时流动的介质,在给定情形中,还有极其热的介质,測量换能器进而在每一种情形中均包括恰好两个金属的,特别是钢或者钛制的測量管,測量管被连接从而介质能够平行地流动,并且測量管位于换能器外罩内并且利用前述分流器而在其中以可振荡方式保持。最经常地,被同等地构造并且相对于彼此平行延伸的測量管中的第一个利用进ロ侧第一測量管端部通向进ロ侧第一分流器的第一流动开ロ,并且利用出口侧第二测量管端部通向出ロ侧第二分流器的第一流动开ロ,并且测量管中的第二个利用进ロ侧第一測量管端部通向第一分流器的第二流动开ロ,并且利用出口侧第二測量管端部通向第二分流器的第二流动开ロ。在每ー种情形中,每ー个分流器均另外地包括带有密封表面的凸缘,该密封表面用于将测量换能器以流体密闭方式连接到分别用于向和从测量换能器供应和移除介质的管线的管状片段。为了产生以上讨论的反作用力,使測量管被激励器机构驱动而在操作期间振动,该激励器机构用于在所谓的希望模式中根据情况产生或者维持测量管的机械振荡、特别是弯曲振荡。最经常地,特别是在作为科里奥利质量流量计和/或密度计应用测量换能器的情形中,在希望模式中的振荡至少部分地发展为横向弯曲振荡,并且在介质流过测量管的情形中,由于在其中诱发的科里奥利力,而发展为在所谓的科里奥利模式中迭加的另外的等频率振荡。因此,激励器机构,这里最经常地电动激励器机构,被以如此方式实施,使得由此,以差异方式,以此方式通过引入沿着共享作用线、然而沿着相反的方向同时地作用的激励器力,该两个測量管能够在希望模式中至少部分地、特别是还主要地被激励为反向相等的弯曲振荡。为了记录利用激励器机构激励的測量管的振动,特别是弯曲振荡,并且为了产生代表振动的振荡信号,测量换能器在每ー种情形中另外地具有对于测量管的相对运动作出反应的传感器布置,最经常地同样也是电动传感器布置。通常,传感器布置利用以差异方式——因此仅仅測量管的相对运动一一记录测量管的振荡的进ロ侧振荡传感器,以及利用以差异方式记录测量管的振荡的出ロ侧振荡传感器形成。通常被彼此等同地构造的振荡传感器中的每ー个均利用在第一測量管上保持的永久磁体和在第二測量管上保持并且被永久磁体的磁场穿透的柱形线圈形成。在操作中,利用两个测量管形成的上述管布置至少有时利用机电激励器机构激励从而以至少ー个支配性的、需要的振荡频率在希望模式中执行机械振荡。在这种情形中,被选择作为用于在希望模式中振荡的振荡频率通常是该管布置的固有瞬时共振频率,该频率继而基本上取决于测量管的尺寸、形状和材料,以及还取决于介质的瞬时密度;在给定情形中,这个希望振荡频率还能够显著地受到介质的瞬时粘度的影响。由于所被测量的介质的密度波动和/或由于在操作期间介质发生变化,需要的振荡频率在测量换能器的操作期间固有地至少在经校准的并且因此预定的希望频带内改变,该频带相应地具有预定的下限和预定的上限频率。为了限定測量管的需要的可振荡长度,并且与之相关联地,为了调节希望频率的频带,上述类型的测量换能器最经常地另外包括至少ー个进ロ侧耦接元件,该耦接元件被固定到两个测量管并且与两个分流器隔开,以形成用于两个測量管的反向相等振动,特别是弯曲振荡的进ロ侧振荡节点,以及至少ー个出口侧耦接元件,该耦接元件被固定到两个測量管并且与两个分流器以及还与进ロ侧耦接元件这两者隔开,以形成用于测量管的反向相等振动,特别是弯曲振荡的出ロ侧振荡节点。在弯曲测量管的情形中,在这种情形中,在进ロ侧和出ロ侧耦接元件之间延伸的任何測量管的挠度曲线的片段的长度,因此连接相应的測量管的所有假想截面面积的面积重心的所述测量管的假想中心线的长度,均对应于所需要的測量管的可振荡长度。利用耦接元件,该耦接元件因此属于管布置,另外地还有管布置的振荡品质因数,以及还有测量换能器的灵敏度,整体地,能够以如此方式受到影响,使得对于测量换能器的最小要求灵敏度,提供了至少ー个最小的需要的可振荡长度。与此同时,在振动式测量换能器领域中的发展已经达到了一定水平,其中所描述类型的现代测量换能器能够对于流量測量技术的宽广应用范围而言满足关于测量结果的精度和再现性的最高要求。因此,这种测量换能器,在实践中,被应用于在对于液体达100巴或者对于气体甚至超过300巴的压カ下从几个Ι/h (克每小吋)达到数t/min (吨每分钟)的质量流速。在这种情形中实现的測量准确度通常处于实际数值的大约99. 9%或者以 上,或者处于大约O. 1%的测量误差,其中得以保证的測量范围的下限能够非常容易地处于测量范围终值的大约1%。由于它们的大范围的使用机遇,エ业级的振动式测量换能器可用于标称直径(对应于将被连接到测量换能器的管线的口径,或者对应于在连接凸缘处测量的测量换能器的口径),其中标称直径处于在Imm和250mm之间的标称直径范围中,并且在每ー种情形中,对于小于3巴的压カ损失在1000t/h的最大标称质量流速下。测量管的ロ径在这种情形中处于例如在80mm和IOOmm之间的范围中。尽管以下事实,S卩,与此同时,用于在具有非常高的质量流速和与之相关联地远超过IOOmm的非常大的口径的管线中使用的测量换能器已经变得可以利用,然而对于获得还用于更大的管线ロ径,大约300mm或者更大的,或者1500t/h或者更大的质量流速的,例如用于在石化工业中或者在石油、天然气、燃料等的输送和转移领域中的应用的,具有高精度和低压损失的测量换能器,仍然存在相当大的兴趣。根据现有技术,特别是根据EP-A
I 001 254、EP-A 553 939、US-A4, 793,191、US-A 2002/0157479、US-A 2007/0151368、US-A5, 370,002、US-A 5,796,011、US-B 6,308,580、US-B 6,711,958、US-B 7,134,347、US-B 7,350,421或者WO-A 03/027616已知的,对于已经建立的测量换能器设计对应成比例放大的情形中,这导致以下事实,即,几何尺寸将是过度地大的,特别是对应于在两个凸缘的密封表面之间的距离的安装长度,和在弯曲測量管的情形中,测量换能器的最大横向延伸,特别是用于所期振荡特性的尺寸、要求承载能力、以及最大允许压カ损失。除此之外,测量换能器的空置质量也不可避免地増加,使得具有大的标称直径的传统测量换能器已经具有大约400kg的空置质量。对于例如根据US-B 7,350,421或者US-A 5,796,011构造的带有两个弯曲測量管的测量换能器,关于它们的按照比例放大为进而更高的标称直径,已经进行的研究例如表明,对于大于300mm的标称直径,按照比例放大的传统测量换能器的空置质量将远高于500kg,随之安装长度大于3000mm并且最大横向延伸大于1000mm。结果,可以认为在可以预见的未来不能预期具有远高于300_的标称直径的、具有传统设计和材料的エ业级可规模生产的测量换能器,这是由于两个原因,即技术可行性以及经济方面的考虑。从以上叙述的现有技术出发,因此本发明的ー个目的在于提供ー种具有高灵敏度和高振荡品质因数的测量换能器,该测量换能器还在大于looot/h的大的质量流速的情形中,仅仅引起尽可能小的小于3巴的、小的压カ损失,并且还具有在超过IOOmm的大标称直径下尽可能紧凑的构造,并且,并非最后地,还适合于涉及极其热的,或者极其冷的介质和/或显著波动的介质温度的应用。为了实现该目的,本发明在于ー种振动式测量换能器,该测量换能器用于记录在管线中引导的可流动介质,例如气体、液体、粉末或者其它可流动材料的至少ー个物理測量变量,和/或用于产生用于记录在管线中引导的可流动介质,特别是气体、液体、粉末或者其它可流动材料的质量流速的科里奥利力。根据本发明,该测量换能器包括例如至少部分地基本管状和/或至少部分地在外部呈圆柱形的换能器外罩,该换能器外罩的进ロ侧第一外罩端部利用具有在每ー种情形中均相互间隔开的恰好四个例如圆柱形、锥形或者圆锥形的流动开ロ的进ロ侧第一分流器形成,并且出口侧第二外罩端部利用具有在每ー种情形中均相互间隔开的恰好四个例如圆柱形、锥形或者圆锥形的流动开ロ的出口侧第二分流器形成。进而,该测量换能器包括管布置,该管布置带有准确的四个曲线的或者弯曲的(例如,至少分段地呈V形和/或至少分段地呈圆弧形)測量管,測量管形成了布置用于平行流动并且被连接到例如用于引导流动介质的同等构造的分流器的流动路径,測量管特别是仅仅利用所述分流器在换能器外罩中以可振荡方式保持和/或被同等地构造和/或至少相对于彼此成对平行的測量管。在该四个測量管中,例如关于几何形状以及还关于材料均被同等地构造的四个测量管中,第一測量管,特别地圆柱形第一測量管,利用进ロ侧第一測量管端部通向第一分流器的第一流动开ロ,并且利用出口侧第二測量管端部通向第二分流器的第一流动开ロ,至少分段地平行于第一測量管的第二測量管利用进ロ侧第一測量管端部通向第一分流器的第二流动开ロ,并且利用出口侧第二測量管端部通向第二分流器的第二流动开ロ,第三測量管利用进ロ侧第一測量管端部通向第一分流器的第三流动开ロ并且利用出口侧第二測量管端部通向第二分流器的第三流动开ロ,以及至少分段地平行于第三測量管的第四測量管利用进ロ侧第一測量管端部通向第一分流器的第四流动开ロ并且利用出口侧第二測量管端部通向第二分流器的第四流动开ロ。另外地,该测量换能器包括机电激励器机构,例如,利用一个或者多个电动振荡激励器形成的机电激励器机构,以产生和/或维持该四个測量管的机械振荡,特别是弯曲振荡。在本发明的测量换能器的情形中,測量管被如此实施并且被布置在测量换能器中,使得该管布置具有第一假想纵向截平面,该第一假想纵向截平面处于测量换能器的第一假想纵向截平面和第二假想纵向截平面之间,并且平行
于测量换能器的第一假想纵向截平面和测量换能器的第二假想纵向截平面,相对于该第一假想纵向截平面,管布置是镜面対称的,并且该管布置具有第二假想纵向截平面,该第二假想纵向截平面垂直于该管布置的第一假想纵向截平面,相对于该第二假想纵向截平面,管布置同样是镜面対称的。而且,本发明在于ー种測量系统,该测量系统用于測量至少有时例如以大于looot/h的质量流速在管线中流动的介质的密度和/或质量流速,例如,因此在一定时间间隔之上总计的总质量流量,介质例如是气态、液体、粉末或者其它可流动材料。该测量系统,例如被以在线測量装置和/或具有紧凑的构造的測量装置实施的測量系统,包括所述测量换能器,以及与测量换能器电耦接发射器电子器件,例如被布置在以机械方式与换能器外罩连接的电子器件外罩中的发射器电子器件,该发射器电子器件用于激活测量换能器,特别是它的激励器机构,并且用于评价由测量换能器传递的振荡信号。特别地,本发明因此在于所述測量系统的使用,该测量系统用于測量至少有时以大于1000t/h,例如大于1500t/h的质量流速在例如管线的エ艺线路中流动的介质的密度和/或质量流速,特别是在一定时间间隔之上总计的总质量流量,和/或粘度和/或雷诺数,介质例如是气态、液体、粉末或者其它可流动材料。根据本发明的测量换能器的第一实施例,激励器机构被以如此方式实施,使得由此四个测量管中的每ー个均能够例如甚至同时地被激励为弯曲振荡。根据本发明的测量换能器的第二实施例,激励器机构被以如此方式实施,使得第一測量管和第二測量管能够被激励为弯曲振荡,这些弯曲振荡相对于第二假想纵向截平面是反向相等的,例如,因此相对于第二假想纵向截平面对称,并且第三測量管和第四測量管能够被激励为弯曲振荡,这些弯曲振荡相对于第二假想纵向截平面是反向相等的,例如,因此相对于第二假想纵向截平面对称。根据本发明的测量换能器的第三实施例,激励器机构被以如此方式实施,使得第一測量管和第三測量管能够被激励为弯曲振荡,这些弯曲振荡相对于第二假想纵向截平面是反向相等的,例如,因此相对于第二假想纵向截平面对称,并且第二測量管和第四測量管能够被激励为弯曲振荡,这些弯曲振荡相对于第二假想纵向截平面是反向相等的,例如,因此相对于第二假想纵向截平面对称。根据本发明的测量换能器的第四实施例,激励器机构被以如此方式实施,使得能够激励管布置内在的第一类型的固有弯曲振荡模式,在该第一类型的弯曲振荡模式中,第一測量管和第二測量管在每ー种情形中关于与相应的测量管相关联的静态平衡位置,相对于第二假想纵向截平面反向相等地,例如因此相对于第二假想纵向截平面对称地,执行弯曲振荡,例如在每ー种情形中关于平行于假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,并且在该第一类型的弯曲振荡模式中,第三測量管和第四測量管在每ー种情形中关于与相应的测量管相关联的静态平衡位置,相对于第二假想纵向截平面反向相等地,例如因此相对于第二假想纵向截平面对称 地,执行弯曲振荡,例如在每ー种情形中关于平行于假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,这样使得相对于第二假想纵向截平面,第一測量管的所述弯曲振荡因此与第三測量管的所述弯曲振荡反向相等,并且相对于第二假想纵向截平面,第二測量管的所述弯曲振荡因此与第四測量管的所述弯曲振荡反向相等。进ー步改进本发明的这个实施例,激励器机构被以如此方式实施,使得能够激励管布置内在的第二类型的固有弯曲振荡模式,例如因此与第一类型的弯曲振荡模式同时地激励,在该第二类型的弯曲振荡模式中,第一測量管和第二測量管在每ー种情形中关于与相应的测量管相关联的静态平衡位置,相对于第二假想纵向截平面反向相等地,例如因此相对于第二假想纵向截平面对称地,执行弯曲振荡,例如在每ー种情形中关于平行于假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,并且在该第二类型的弯曲振荡模式中,第三測量管和第四測量管在每ー种情形中关于与相应的测量管相关联的静态平衡位置,相对于第二假想纵向截平面反向相等地,例如因此相对于第二假想纵向截平面对称地,执行弯曲振荡,例如在每ー种情形中关于平行于假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,这样使得相对于第二假想纵向截平面,第一測量管的所述弯曲振荡因此与第四測量管的所述弯曲振荡反向相等,并且,相对于第二假想纵向截平面,第二測量管的所述弯曲振荡因此与第三測量管的所述弯曲振荡反向相等。可替代地,或者补充性地,另外提出,第一类型的弯曲振荡模式的固有频率,例如在管布置完全地填充有水的情形中测量的这种固有频率,不同于第二类型的弯曲振荡模式的固有频率,例如在管布置完全地填充有水的情形中和/或与第一类型的弯曲振荡模式的固有频率同时测量的这种固有频率,例如超出了 IOHz ;例如,以这种方式,使得第一类型的弯曲振荡模式的所述固有频率比第二类型的弯曲振荡模式的所述固有频率大了超过10Hz,或者第一类型的弯曲振荡模式的所述固有频率比第二类型的弯曲振荡模式的所述固有频率小了超过IOHz。根据本发明的第五实施例,四个测量管中的每ー个均具有測量管峰部,该测量管峰部被定义为相应的测量管距第一假想纵向截平面的最大垂直距离。根据测量换能器的第六实施例,本发明的管布置的质心处于第一假想纵向截平面以及还有第二假想纵向截平面,在每ー种情形中,垂直于管布置的假想截平面。根据本发明的测量换能器的第七实施例,管布置相对于垂直于第一假想纵向截平面以及还垂直于第二假想纵向截平面的、管布置的假想截平面是镜面対称的。根据本发明的测量换能器的第八实施例,四个测量管中的每ー个均具有測量管峰部,该测量管峰部被定义为相应的测量管距第一假想纵向截平面的最大垂直距离,并且垂直于第一假想纵向截平面以及还垂直于第二假想纵向截平面的、管布置的假想截平面与四个测量管中的每ー个在其相应的测量管峰部相交叉。根据本发明的测量换能器的第九实施例,换能器外罩的中间片段例如以如下方式至少部分地利用直的,例如圆柱形,支撑管来形成,所述方式为在第一侧上第一測量管从所述支撑管向外延伸的片段和在第一侧上第二測量管从所述支撑管向外延伸的片段被换能器外罩的第一外罩帽体包围,并且在与第一侧相对的第二侧上第三測量管从所述支撑管向外延伸的片段和在第二侧上第四測量管从所述支撑管向外延伸的片段被换能器外罩的第二外罩帽体,例如与第一外罩帽体同等构造的第二外罩帽体,包围。根据本发明的测量换能器的第十实施例,另外地提出,两个分流器另外地实施并布置在测量换能器中,使得假想地连接第一分流器的第一流动开ロ与第二分流器的第一流动开ロ的测量换能器的假想第一连接轴线平行于假想地连接第一分流器的第二流动开ロ与第二分流器的第二流动开ロ的测量换能器的假想第二连接轴线延伸,假想地连接第一分流器的第三流动开ロ与第二分流器的第三流动开ロ的测量换能器的假想第三连接轴线平 行于假想地连接第一分流器的第四流动开ロ与第二分流器的第四流动开ロ的测量换能器的假想第四连接轴线延伸。进ー步改进本发明的这个实施例,另外地提出,测量换能器的第一假想纵向截平面平行于测量换能器的第二假想纵向截平面,在该第一假想纵向截平面内,第一假想连接轴线和第二假想连接轴线,例如,平行干与管线对准的测量换能器的主流动轴线延伸,在该第二假想纵向截平面内,假想第三连接轴线和假想第四连接轴线例如以如此方式延伸,使得管布置的第一假想纵向截平面处于测量换能器的第一和第二假想纵向截平面之间和/或平行于测量换能器的第一和第二假想纵向截平面。根据本发明的测量换能器的第十一实施例,另外提出,两个分流器实施并被布置在测量换能器中,使得测量换能器的第三假想纵向截平面平行于测量换能器的第四假想纵向截平面,假想第一连接轴线和假想第三连接轴线在该第三假想纵向截平面内延伸,假想第二连接轴线和假想第四连接轴线在该第四假想纵向截平面内延伸。进ー步改进本发明的这个实施例,另外地提出,管布置的第二假想纵向截平面例如在测量换能器的第三假想纵向截平面和测量换能器的第四假想纵向截平面之间延伸,以这种方式,使得管布置的第二假想纵向截平面平行于测量换能器的第三假想纵向截平面并且平行于测量换能器的第四假想纵向截平面。根据本发明的测量换能器的第十二实施例,另外提出,第一分流器的四个流动开ロ被如此布置,使得与第一分流器的流动开ロ的截面区域,特别是圆形的截面区域,相关联的假想区域重心形成假想长方形或者假想正方形的顶点,其中所述截面区域处于例如垂直于测量换能器的第一假想纵向截平面或者垂直于测量换能器的第二假想纵向截平面的、第一分流器的共享假想截面切平面中。根据本发明的测量换能器的第十三实施例,另外提出,第二分流器的四个流动开ロ被如此布置,使得与第二分流器的流动开ロ的截面区域相关联的假想区域重心形成假想长方形或者假想正方形的顶点,其中所述截面区域处于例如垂直于测量换能器的第一假想纵向截平面,或者垂直于测量换能器的第二假想纵向截平面的、第二分流器的共享假想截剖平面中。
根据本发明的测量换能器的第十四实施例,另外提出,四个测量管,特别是同样大的測量管中的每ー个均具有大于40mm,特别是大于60mm的数值的口径。进ー步改进本发明的这个实施例,另外提出,測量管被如此弯曲并且被如此布置,使得管布置的口径与高度比为大于O. 05,特别是大于O. 07和/或小于O. 35,特别是小于O. 2的数值,其中,管布置的ロ径与高度比定义为第一测量管的口径与管布置的最大横向展幅的比,管布置的最大横向展幅是从第一測量管的峰部到第三測量管的峰部测量的。根据本发明的测量换能器的第十五实施例,另外提出,第一分流器具有用于将测量换能器连接到用于向测量换能器供应介质的管线的管状片段的凸缘,特别是具有大于50kg的质量的凸缘,并且第二分流器具有用于将测量换能器连接到用于从测量换能器移除介质的管线的片段的凸缘,特别是具有大于50kg的质量的凸缘。进ー步改进本发明的这个实施例,凸缘中的每ー个均具有用于测量换能器在每ー种情形中与管线的对应的管状片段 的流体密闭连接的密封表面,其中在两个凸缘的密封表面之间的距离限定测量换能器的安装长度,特别是大于IOOOmm和/或小于3000mm的数值的安装长度。特别地,测量换能器另外被实施为,在这种情形中,对应于在第一分流器的第一流动开口和第二分流器的第一流动开ロ之间延伸的第一測量管的挠度曲线的片段的长度的第一測量管的測量管长度被选择为使得如由第一測量管的測量管长度与测量换能器的安装长度的比来定义的、测量换能器的測量管长度与安装长度比为大于O. 7,特别是大于O. 8和/或小于I. 2,和/或如由第一測量管的口径与测量换能器的安装长度的比来定义的、测量换能器的口径与安装长度比为大于O. 02,特别是大于O. 05和/或小于O. 09。对此而言可替代地或者补充性地,测量换能器被实施为使得如由测量换能器的标称直径与测量换能器的安装长度的比来定义的、测量换能器的标称直径与安装长度比小于O. 3,特别是小于O. 2和/或大于O. 1,其中标称直径对应于管线的口径,要在该管线的线路中使用测量换能器。在本发明的测量换能器的第十六实施例中,另外提出,第一測量管的測量管长度为大于1000mm,特别是大于1200mm和/或小于3000mm,特别是小于2500的数值,其中,第一測量管的測量管长度对应于在第一分流器的第一流动开口和第二分流器的第一流动开ロ之间延伸的第一測量管的挠度曲线的片段的长度。在本发明的测量换能器的第十七实施例中,另外提出,四个测量管,例如具有相等口径的四个测量管中的每ー个均被如此布置,使得该四个測量管,例如具有相等长度的测量管中的每ー个距离换能器外罩的外罩侧壁的最小横向间隔在每ー种情形中均大于零,例如,还大于3_和/或大于相应的管壁厚度的两倍;和/或在两个相邻测量管之间的最小横向间隔在姆ー种情形中大于3mm和/或大于它们相应的管壁厚度之和。在本发明的测量换能器的第十八实施例中,另外提出,流动开口中的每ー个均被如此布置,使得流动开口中的姆ー个距离换能器外罩的外罩侧壁的最小横向间隔在姆ー种情形中都大于零,例如还大于3mm和/或大于测量管的最小管壁厚度的两倍;和/或在流动开ロ之间的最小横向间隔大于3mm和/或大于测量管的最小管壁厚度的两倍。根据本发明的测量换能器的第十九实施例,另外提出,激励器机构被以如此方式实施,使得第一測量管和第二測量管能够在操作期间被激励为反向相等的弯曲振荡并且第三測量管和第四測量管能够在操作期间被激励为反向相等的弯曲振荡。在本发明的测量换能器的第二十实施例中,另外提出,总体测量换能器的空置质量与第一測量管的空置质量的质量比大于10,特别是大于15并且小于25。在本发明的测量换能器的第二十一实施例中,另外提出,第一測量管的,特别是测量管中的每ー个的空置质量M18均大于20kg,特别是大于30kg和/或小于50kg。根据本发明的测量换能器的第二十二实施例,另外提出,测量换能器的空置质量大于200kg,特别是大于300kg。在本发明的测量换能器的第二十三实施例中,另外提出,测量换能器的标称直径大于100mm,特别是大于300mm,标称直径对应于管线的口径,要在该管线的线路中使用测量换能器。以有利的方式,测量换能器另外地实施为如由测量换能器的空置质量与测量换能器的标称直径的比来定义的、測量换能器的质量与标称直径比小于2kg/mm,特别是小于lkg/mm 和 / 或大于 O. 5kg/mm。在本发明的测量换能器的第二十四实施例中,另外提出,至少关于在每ー种情形中构成它们的管壁的材料,和/或关于它们的几何管尺寸,特别是管长度、管壁厚度、管外径和/或口径,第一和第二測量管具有同等的构造。根据本发明的第二十五实施例,另外提出,至少关于在每ー种情形中构成它们的管壁的材料,和/或关于它们的几何管尺寸,特别是管长度、管壁厚度、管外径和/或口径,第三和第四測量管具有同等的构造。根据本发明的测量换能器的第二十六实施例,另外提出,关于在每ー种情形中构成它们的管壁的材料,和/或关于它们的几何管尺寸,特别是管长度、管壁厚度、管外径和/或口径,所有的四个测量管均具有同等的构造。在本发明的测量换能器的第二十七实施例中,另外提出,四个测量管的管壁至少部分地由其构成的材料是钛,和/或锆,和/或例如不锈钢,和/或高强度钢、双相钢,和/或超级双相钢,或者哈司特镍合金。在本发明的测量换能器的第二十八实施例中,另外提出,换能器外罩、分流器和测量管的管壁在每ー种情形中均由钢,例如不锈钢,构成。在本发明的测量换能器的第二十九实施例中,另外提出,激励器机构利用第一振荡激励器,特别是电动第一振荡激励器和/或相对于第二測量管以差异方式激励第一測量管振荡的第一振荡激励器形成。特别地,该激励器机构利用第二振荡激励器,例如电动第二振荡激励器和/或相对于第四測量管以差异方式激励第三測量管振荡的第二振荡激励器形成。在这种情形中,另外提出,第一和第二振荡激励器被以如此方式相互串联电连接,使得组合驱动信号激励第一和第三測量管相对于第二和第四測量管组合振荡。激励器机构的振荡激励器能够例如利用在第一測量管上保持的永久磁体和在第二測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成,并且其中第二振荡激励器利用在第三測量管上保持的永久磁体和在第四測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成。根据本发明的测量换能器的第一项进一歩的改进,该测量换能器进ー步包括第一类型的第一耦接元件,该第一耦接元件与第一分流器以及还与第二分流器隔开,在进ロ侧上被固定到四个测量管中的每ー个并且具有例如H或者X形基本形状,以调谐管布置的固有振荡模式,例如弯曲振荡模式的固有频率,以及第一类型的第二耦接元件,该第二耦接元件与第一分流器以及还从第二分流器隔开,在出口侧上被固定到四个测量管中的每ー个 具有例如H或者X形基本形状和/或与第一类型的第一耦接元件基本同等地构造,以调谐管布置的固有振荡模式,例如弯曲振荡模式的固有频率根据本发明的测量换能器的第一项进一歩的改进的第一实施例,另外提出,第一类型的两个耦接元件中的每ー个均是相对于管布置的第一假想纵向截平面対称的。根据本发明的测量换能器的第一项进一歩的改进的第二实施例,另外地提出,第一类型的两个耦接元件中的每ー个均是相对于管布置的第二假想纵向截平面対称的。根据本发明的测量换能器的第一项进一歩的改进的第三实施例,另外提出,两个第一类型的耦接元件均相对于管布置的假想截平面被对称地布置在测量换能器中,其中管布置的假想截平面垂直于管布置的第一假想纵向截平面以及还垂直于其第二假想纵向截平面。根据本发明的测量换能器的第一项进一歩的改进的第四实施例,另外提出,第一类型的两个耦接元件相对于管布置的假想截平面等距离地布置在测量换能器中,其中管布置的假想截平面垂直于管布置的第一假想纵向截平面以及还垂直于其第二假想纵向截平面。根据本发明的测量换能器的第一项进一歩的改进的第五实施例,另外提出,第一类型的两个耦接元件相对于管布置的假想截平面被布置成在测量换能器中平行地延伸,其中管布置的假想截平面垂直于管布置的第一假想纵向截平面以及还垂直于其第二假想纵向截平面。根据本发明的测量换能器的第一项进一歩的改进的第六实施例,另外提出,第一类型的两个耦接元件中的每ー个均被实施并且被置放在测量换能器中,使得它相对于管布置的第一假想纵向截平面和/或相对于管布置的第二假想纵向截平面是对称的。根据本发明的测量换能器的第一项进一歩的改进的第七实施例,另外提出,第一类型的两个耦接元件中的每ー个均被实施并且被置放在测量换能器中,使得它被实施为投影到管布置的假想截平面上的X形,其中管布置的假想截平面垂直于管布置的第一假想纵向截平面以及还垂直于管布置的第二假想纵向截平面,或者它被实施为投影到管布置的假想截平面上的H形,其中管布置的假想截平面垂直于管布置的第一假想纵向截平面和第二假想纵向截平面。根据本发明的测量换能器的第一项进一歩的改进的第八实施例,另外提出,两个第一类型的第一耦接元件以及还有第一类型的第二耦接元件利用板形元件形成。根据本发明的测量换能器的第一项进一歩的改进的第九实施例,另外提出,第一类型的两个耦接元件中的每ー个均例如被以如此方式至少分段地凸起,使得相对于管布置的假想截平面,它是至少分段地凸形的,其中管布置的假想截平面在第一类型的第一耦接元件和第一类型的第二耦接元件之间延伸并且垂直于管布置的第一假想纵向截平面以及还垂直于管布置的第二假想纵向截平面。根据本发明的测量换能器的第一项进一歩的改进的第十实施例,另外提出,第一类型的两个第一耦接元件以及还有第一类型的第二耦接元件,相对于管布置的假想截平面,即,从管布置的假想截平面看到的,是至少分段地凸形的,其中管布置的假想截平面在第一类型的第一耦接元件和第一类型的第二耦接元件之间延伸并且垂直于管布置的第一假想纵向截平面以及还垂直于管布置的第二假想纵向截平面。根据本发明的测量换能器的第一项进一歩的改进的第十一实施例,该测量换能器进ー步包括例如板形的第二类型的第一耦接元件,该第二类型的第一耦接元件用于为第一测量管的振动,例如弯曲振荡,以及还为第二测量管的与此反向相等的振动,例如弯曲振荡,形成进ロ侧振荡节点,该第二类型的第一耦接元件在进ロ侧上被固定到第一測量管和第二測量管,例如被固定到第一測量管在第一分流器和第一类型的第一耦接元件之间延伸的管片段以及还有第二測量管在第一分流器和第一类型的第一耦接元件之间延伸的管片段这两者;例如板形的和/或与第二类型的第一耦接元件同等构造的和/或平行于第二类型的第一耦接元件的第二类型的第二耦接元件,该第二类型的第二耦接元件用于为第一测量管的振动,例如弯曲振荡,以及还为第二测量管的与此反向相等的振动,例如弯曲振荡,形成出ロ侧振荡节点,该第二类型的第二耦接元件在出ロ侧上被固定到第一測量管和第二測量管,例如被固定到第一測量管在第二分流器和第一类型的第二耦接元件之间延伸的管片段以及还有第二測量管在第二分流器和第一类型的第二耦接元件之间延伸的管片段这两者;例如,板形的和/或与第二类型的第一耦接元件同等构造的和/或平行于第二类型的
第二耦接元件的第二类型的第三耦接元件,用于为第三測量管的振动,例如弯曲振荡,以及还为第四測量管的与此反向相等的振动,例如弯曲振荡,形成进ロ侧振荡节点,该第二类型的第三耦接元件在出口侧上与第一分流器以及还与第二分流器隔开地被固定到第三測量管和第四測量管,例如被固定到第三測量管在第一分流器和第一类型的第一耦接元件之间延伸的管片段以及还有第四測量管在第一分流器和第一类型的第一耦接元件之间延伸的管片段这两者;以及例如板形的和/或与第二类型的第一耦接元件同等构造的和/或平行于第二类型的第一耦接元件的第二类型的第四耦接元件,用于为第三測量管的振动,例如弯曲振荡,以及还为第四测量管的与此反向相等的振动,例如弯曲振荡,形成出ロ侧振荡节点,该第二类型的第四耦接元件在出口侧上与第一分流器以及还与第二分流器以及还与第一耦接元件隔开地被固定到第三測量管和第四測量管,例如被固定到第三測量管在第二分流器和第一类型的第二耦接元件之间延伸的管片段以及还有第四測量管在第二分流器和第一类型的第二耦接元件之间延伸的管片段这两者。根据本发明的这个实施例的测量换能器能够例如如此制造,即,首先将第二类型的第一耦接元件以及还有第二类型的第二耦接元件在每ー种情形中固定到第一測量管和第二測量管以制造第一測量管封装,以及将第二类型的第三耦接元件以及还有第二类型的第四耦接元件在每ー种情形中固定到第三測量管和第四測量管以制造第二測量管封装;并且此后首先将第一类型的第一耦接元件以及还有第一类型的第二耦接元件在每ー种情形中固定到第一測量管封装的測量管中的至少ー个,例如还可以固定到其中的每ー个,和第二測量管封装的測量管中的至少ー个,例如还可以固定到其中的每ー个。在本发明的第二项进一歩的改进中,测量换能器另外包括传感器布置,用于通过对于测量管的振动,特别是利用激励器机构激励的弯曲振荡作出反应而产生代表測量管的振动,特别是弯曲振荡的振荡信号。该传感器布置例如是电动传感器布置和/或利用相互同等构造的振荡传感器来形成。在本发明的第二项进一歩的改进的第一实施例中提出,传感器布置利用进ロ侧第一振荡传感器,特别是电动的第一振荡传感器,和/或以差异方式记录第一測量管相对于第二測量管的振荡的第一振荡传感器,以及利用出口侧第二振荡传感器,特别是电动的第ニ振荡传感器,和/或以差异方式记录第一測量管相对于第二測量管的振荡的第二振荡传感器来形成,特别是以这种方式形成,即,測量换能器的测量长度,对应于在第一振荡传感器和第二振荡传感器之间延伸的第一測量管的挠度曲线的片段的长度,大于500mm,特别是大于600mm和/或小于1200mm,和/或以这种方式形成,即,測量换能器的口径与测量长度比,如由第一測量管的口径与测量换能器的测量长度的比来定义的,大于O. 05,特别是大于O. 09。另外地,第一振荡传感器能够利用在第一測量管上保持的永久磁体和在第二測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成,并且第二振荡传感器能够利用在第一測量管上保持的永久磁体和在第二測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成。在本发明的第二项进ー步的改进的第二实施例中,另外提出,传感器布置利用进ロ侧第一振荡传感器,特别是电动的第一振荡传感器,和/或以差异方式记录第一測量管相对于第二測量管的振荡的第一振荡传感器,利用出口侧第二振荡传感器,特别是电动的第二振荡传感器,和/或以差异方式记录第一測量管相对于第二測量管的振荡的第二振荡传感器,利用进ロ侧第三振荡传感器,特别是电动的第三振荡传感器,和/或以差异方式记 录第三測量管相对于第四測量管的振荡的第三振荡传感器,以及利用出口侧第四振荡传感器,特别是电动的第四振荡传感器,和/或以差异方式记录第三測量管相对于第四測量管的振荡的第四振荡传感器形成,特别是以这种方式形成,即,測量换能器的测量长度,对应于在第一振荡传感器和第二振荡传感器之间延伸的第一测量管的挠度曲线的片段的,大于500mm,特别是大于600mm和/或小于1200mm,和/或以这种方式形成,即,测量换能器的口径与测量长度比,如由第一測量管的口径与测量换能器的测量长度的比来定义的,大于
O.05,特别是大于O. 09。在这种情形中,以有利的方式,第一和第三振荡传感器能够被以如此方式相互串联电连接,使得组合振荡信号代表第一和第三測量管相对于第二和第四测量管的组合的进ロ侧振荡,和/或第二和第四振荡传感器能够被以如此方式相互串联电连接,使得组合振荡信号代表第一和第三測量管相对于第二和第四測量管的组合的出口侧振荡。可替代地或者补充性地,第一振荡传感器能够进一歩利用在第一測量管上保持的永久磁体和在第二測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成,并且第二振荡传感器能够利用在第一測量管上保持的永久磁体和在第二測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成,和/或第三振荡传感器能够利用在第三測量管上保持的永久磁体和在第四測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成,并且第四振荡传感器能够利用在第三測量管上保持的永久磁体和在第四測量管上保持的并且被永久磁体的磁场穿透的柱形线圈形成。根据本发明的測量系统的第一实施例,另外提出,四个测量管例如在第一类型的弯曲振荡基本模式中,在操作期间同时地执行由激励器机构激励的弯曲振荡。进ー步改进本发明的这个实施例,另外提出,通过提供利用第一振荡激励器产生并且作用于第一測量管上的激励器力与同时利用第一振荡激励器产生并且作用于第二測量管上的激励器力反向,例如还是反向相等的,激励器机构在第一类型的第一弯曲振荡模式中实现测量管的振荡,特别是弯曲振荡。根据本发明的測量系统的第二实施例,另外提出,激励器机构包括至少第一振荡激励器,例如,在例如与其固定的第一和第二測量管上以差异方式作用的第一振荡激励器,和/或用于将利用发射器电子器件馈送到激励器机构中的电激励功率转换成机械激励器力的电动的第一振荡激励器,例如,激励器力具有对应于管布置的固有振荡模式的固有频率的至少ー个信号频率,实现第一測量管的可变的和/或周期的弯曲振荡和相对于管布置的第二假想纵向截平面与第一測量管的所述弯曲振荡反向相等的、第二測量管的弯曲振荡。进ー步改进本发明的这个实施例,另外提出,第一振荡激励器利用在第一測量管上,例如在測量管峰部的区域中,保持的永久磁体,和在第二測量管上,例如在測量管峰部的区域中,保持的并且被永久磁体的磁场穿透的柱形线圈形成。可替代地或者补充性地,激励器机构还能够进一歩包括第二振荡激励器,例如,在例如与其固定的第三和第四測量管上以差异方式作用的第二振荡激励器,和/或电动的第二振荡激励器,和/或与第一振荡激励器同等构造的第二振荡激励器,和/或与第一振荡激励器串联电连接的第二振荡激励器,用于将利用发射器电子器件馈送到激励器机构中的电激励功率转换成机械激励器力,例如,激励器力具有对应于管布置的固有振荡模式的固有频率的至少ー个信号频率,实现第三測量管的可变的和/或周期的弯曲振荡和相对于管布置的第二假想纵向截平面与第三測量管的所述弯曲振荡反向相等的、第四測量管的弯曲振荡。在这种情形中,第二振荡激励器能够利用在第三測量管上,例如,在測量管峰部的区域中,保持的永久磁体,和在第四測量管上,、例如,在測量管峰部的区域中,保持的并且被永久磁体的磁场穿透的柱形线圈形成。根据本发明的測量系统的第三实施例,另外提出,发射器电子器件利用被供应到激励器机构的至少ー个电驱动器信号,例如,具有可变最大电压电平和/或可变最大电流电平的驱动器信号,例如,具有对应于管布置的固有振荡模式的固有频率的至少ー个信号频率的、可变的和/或至少有时地周期的驱动器信号,而将电激励功率馈送到激励器机构中;并且激励器机构将电激励功率,特别是取决于该至少ー个驱动器信号的电压电平和电流电平的功率,至少部分地转换成第一測量管的弯曲振荡和相对于管布置的第二假想纵向截平面与第一測量管的弯曲振荡反向相等的、第二測量管的弯曲振荡,以及还转换成第三测量管的弯曲振荡和相对于管布置的第二假想纵向截平面与第三测量管的弯曲振荡反向相等的、第四測量管的弯曲振荡。进ー步改进本发明的这个实施例,另外提出,该至少ー个驱动器信号例如被以如此方式馈送到第一振荡激励器,使得利用第一驱动器信号提供的可变的第一激励器电压驱动的第一激励器电流通过它的柱形线圈流动。可替代地,或者补充性地,该至少一个驱动器信号能够具有信号频率相互不同的多个信号分量,其中第一驱动器信号的信号分量中的至少ー个,例如关于信号功率的支配性信号分量,具有对应于管布置的固有振荡模式的固有频率,例如,其中四个测量管中的每ー个均执行弯曲振荡的第一类型的弯曲振荡模式的固有频率的信号频率。根据本发明的測量系统的第四实施例,另外提出,发射器电子器件,基于在激励器机构中转换的电激励功率,产生代表流动介质的粘度的粘度測量数值;和/或发射器电子器件,基于由测量换能器传递的振荡信号,产生代表流动介质的质量流速的质量流量測量数值和/或代表流动介质的密度的密度測量数值。本发明的基本思想在于,替代如通常在具有大标称直径的传统测量换能器的情形中使用的、带有介质通过其平行流动的两个测量管的管布置,使用带有介质通过其平行流动的四个弯曲的,例如V形或者圆弧形的,測量管的管布置,并且从而在一方面,使得能够最佳地利用有限的空间供给,而在另一方面,能够在宽測量范围之上,特别是还在远超1000t/h的、非常高的质量流速的情形中确保可接受的压カ损失。而且,与具有仅仅两个测量管的、具有相等的标称直径和相等的空置质量的传统测量换能器相比,由四个测量管的总截面给出的、管布置的有效流动截面能够直接超过20%地増加。除了别的以外,另外地,本发明的ー个优点在于,通过应用弯曲的測量管,例如,由于测量管的热相关膨胀或者由于因为管布置而被引入测量换能器中的夹持カ引起的持续的机械应力,在管布置内在很大程度上得以防止或者至少被保持为非常低,并且结果,即使在极其热的介质的情形中,或者在温度梯度作为时间的函数在管布置内强烈波动的情形中,也可靠地获得了測量准确度,以及还有测量换能器的结构完整性。而且,由于管布置的对称特性,由弯曲測量管的弯曲振荡引起的那些横向力也能够在很大程度上得以平衡,该横向力,除了别的以外,如在起初提及的EP-A I 248 084和US-B 7,350,421中所讨论的那样,基本垂直于测量换能器,或者它的管布置的纵向截平面作用并且对于振动式测量换能器的測量准确度而言能够是非常破坏性的。另外地,与带有仅仅ー个或者两个弯曲的測量管的传统测量换能器相比,在前述类型的测量换能器的情形中,整体上,能够探测到测量换 能器的増加的振荡品质因数,这特别地是例如由于分流器的实际上非期望的变形而使从测量换能器到与其连接的管线中的振荡性能量的耗散显著減少的結果。而且,根据本发明的测量换能器的測量管的振荡,与传统测量换能器相比,还以显著更小的程度受到压カ振动和声音的影响。本发明的测量换能器的进ー步的优点另外地在于以下事实,S卩,诸如关于所使用的材料、结合技术、制造步骤等,主要的成熟的结构设计能够得以应用,或者应该仅被稍微地修改,由此制造成本总体也非常与传统测量换能器的那些相当。结果,将在以下事实中发现本发明的进ー步的优点,即,由此不仅产生了用于实现具有可管理的几何尺寸和空置尺寸的、也具有超过150mm的大标称直径、特别是具有更大的250mm的标称直径的、比较紧凑的振动式测量换能器的机会,而且另外地,这还能够以经济上合理的方式实现。本发明的测量换能器因此特别适合于測量在具有更大的150mm、特别是300mm或者更大的口径的管线中引导的可流动介质。另外地,该测量换能器还适合于测量还至少有时大于1000t/h、特别是至少有时大于1500t/h的质量流量,诸如能够在应用于测量石油、天然气或者其它石化材料的情形中发生的。现在将基于在附图中呈现的实施例的示例更加详细地解释本发明及其其它有利的实施例。等同的部分在图中被赋予相同的附图标记;当要求避免混乱时或者当在其它情形中看起来是合理的时,在随后的图中省略了已经提及的附图标记。根据附图中的各图,以及还单独地根据从属权利要求,其它有利的实施例或者进ー步的改进,特别是还有首先仅被各个解释的本发明的方面的组合,将变得是更加清楚的。特别地,附图中的各图如下地示出

图1、2 :在透视并且还部分地剖切的侧视图中,例如用作科里奥利流量/密度/粘度測量装置的在线测量装置;图3a、b :图I的在线测量装置在两个不同的侧视图中的投影;图4a :在透视侧视图中,具有利用四个弯曲的測量管形成的管布置并且在图I的在线测量装置中安装的振动式测量换能器;图4b :在透视侧视图中,图4a的管布置;图5a、b :在两个不同的侧视图中,图4a的测量换能器的投影;
图6a、b :在两个不同的侧视图中,图4b的管布置的投影;和图7a、b:概略地图4b的管布置的振荡模式(V模式;X模式),在每ー种情形中被投影到所述管布置的假想截平面上。图1、2概略地示出了測量系统1,特别是作为科里奥利质量流量和/或密度測量装置实施的測量系统,特别用于记录在管线(未示出)中流动的介质的质量流量m并且用于以瞬时地代表这个质量流量的质量流量测量值来表示。介质能够实际上是任何可流动材料,例如粉末、液体、气体、蒸汽等。可替代地或者作为补充地,測量系统I在给定情形中还能够被用于测量介质的密度P和/或粘度H。特别地,该测量系统被提供用于测量在具有大于250mm的口径,特别是300mm或者更大的口径的管线中流动的介质,诸如石油、天然气或者其它石化材料。特别地,该测量系统还 被提供用于测量使得以大于1000t/h、特别是大于1500t/h的质量流速流动的、前述类型的流动介质。这里以在线测量装置,即能够被插入管线的线路中的測量装置,的形式示出的测量系统I为了这种意图包括在操作期间被测量的介质通过其流动的振动式测量换能器
11;以及测量换能器11电连接的发射器电子器件12 (这里未被详细地示出),用于操作测量换能器并且用于评价由测量换能器传递的振荡信号。以有利的方式,例如,利用一个或者多个微处理器和/或利用ー个或者多个数字信号处理器形成的发射器电子器件12能够例如被如此设计,使得在測量系统I的操作期间,它能够经由数据传输系统,例如硬连线现场总线系统,和/或经由无线电以无线方式,与其上级测量数值处理単元,例如可编程逻辑控制器(PLC)、个人计算机和/或工作站,交换测量和/或其它操作数据。而且,发射器电子器件12能够被如此设计,使得能够例如也经由前述现场总线系统向其馈送外部能量供应。对于测量系统I被设置成耦接到现场总线或者其它通信系统的情形,发射器电子器件12,例如还有可现场地和/或经由通信系统编程的发射器电子器件,能够另外包括相应的通信接ロ,用于数据通信,例如用于将测量数据发送到已经提及的可编程逻辑控制器或者上级过程控制系统,和/或用于接收用于测量系统的设置数据。图4a、4b、5a、5b、6a、6b不出用于适合于测量系统I的振动式测量换能器11、特别是用作科里奥利质量流量、密度和/或粘度换能器的测量换能器的实施例的示例的不同的表现,在操作期间,在待被測量介质,例如粉末、液体、气态或者蒸汽介质,通过其流动的管线(未示出)的线路中应用测量换能器11。如已经提及的,测量换能器11用于在通过那里流动的介质中产生这种机械反作用力,特别是取决于质量流速的科里奥利力、取决于介质的密度的惯性カ和/或取决于介质的粘度的摩擦力,该机械反作用力在测量换能器上以可測量方式,特别地以可被传感器记录的方式作出反应。利用以本领域技术人员已知的方式对应地在发射器电子器件中实现的评价方法,根据描述介质的这些反作用カ推导,例如介质的质量流速m (从而,质量流量)、和/或密度和/或粘度能够得以測量。测量换能器11包括换能器外罩Y1,该换能器外罩在这里是部分地基本管状的,并且因此还在外部是部分地圆柱形的,用于记录至少ー个测量变量的测量换能器11的其它部件被容纳在该换能器外罩中以针对外部环境影响,因此尘土或者水射流或者还有在外部作用于测量换能器上的任何其它种类的力而受到保护。换能器外罩Y1的进ロ侧第一外罩端部利用进ロ侧第一分流器20i形成,并且换能器外罩T1的出ロ侧第二外罩端部利用出口侧第二分流器202形成。在这方面,被形成为外罩的一体部件的这两个分流器ZO1JO2中的姆ー个均包括恰好四个例如圆柱形或者锥形或者圆锥形的流动开ロ 201A、201B、201C;、201D,或者202A、202B、202e、202D,每ー个流动开ロ均被相互间隔开和/或每ー个均被实施为内锥。而且,例如由钢制造的分流器ZO1JO2中的每ー个均设置有例如由钢制造的凸缘0!或者62,以将测量换能器11连接到用于向测量换能器供应介质的管线的管状片段,或者连接到用于从测量换能器移除介质的这种管线的管状片段。根据本发明的一个实施例,该两个凸缘6ρ62中的每ー个均具有大于50kg、特别是大于60kg和/或小于IOOkg的质量。为了无泄露地、特别是在每ー种情形中以流体密闭方式连接测量换能器与管线的对应的管状片段,每ー个凸缘在每ー种情形中均另外包括相应的尽可能平坦的密封表面61A或者62A。在两个凸缘的两个密封表面61A、62A之间的距离因此为了实用的意图限定测量换能器11的安装长度L11。对应于将在其线路中使用测量换能器的管线的口径,根据为测量换能器11提供的标称直径D11以及为此在给定情形中的有关エ业标准,凸缘的尺寸,特别是关于它们的内径、它们相应的密封表面以及用于容纳对应的连接螺栓的凸缘孔,得以确定。由于特别地对于测量换能器期望的大的标称直径,根据本发明的一个实施例,它的安装长度L11大于1200mm。然而,另外提出,测量换能器11的安装长度被保持为尽可能 小,特别是小于3000mm。直接地根据图4a清楚的并且诸如在这种测量换能器的情形中非常一般的,凸缘6ρ62能够为此目的被布置成尽可能靠近分流器ZO1JO2的流动开ロ,从而根据情况在分流器中提供尽可能短的进ロ或者出口区域,并且因此整体地提供测量换能器的尽可能短的安装长度L11,特别是小于3000_的安装长度Ln。为了实现尽可能紧凑的测量换能器并且特别地还在超过1000t/h的期望的高质量流速的情形中,根据本发明的另ー个实施例,测量换能器的安装长度和标称直径的尺寸被如此确定和相互匹配,使得测量换能器的标称直径与安装长度比Dn/Ln小于O. 3,特别是小于O. 2和/或大于O. 1,测量换能器的标称直径与安装长度比D11Zl11如由测量换能器的标称直径D11与测量换能器的安装长度L11的比来定义。在这里示出的实施例的示例中,换能器外罩T1的至少ー个中间片段71A利用直的——这里还是圆柱形并且首先三个部分的——管形成,从而为了制造换能器外罩T1,例如,能够使用还被标准化的,因此成本有效的焊接或者鋳造的标准管,例如,铸钢或者煅钢。如另外直接从图I和2的组合清楚的,换能器外罩T1的中间片段71A在这种情形中例如还能够利用具有大致为将被连接到测量换能器,因此对应于测量换能器的标称直径D11的管线的口径的管,特别是关于将被连接的管线的口径、壁厚度和材料相对应的并且至此还对应地关于允许操作压カ匹配的管形成。特别地对于管状中间片段,以及还有在进口和出口区域中被与相应的凸缘连接的分流器在每ー种情形中均具有相同内径的情形,换能器外罩能够另外地还被以如此方式形成,使得凸缘在形成中间片段的管的端部上形成或者被焊接,并且分流器利用具有流动开ロ的板,特别是稍稍与凸缘隔开并且沿着轨道焊接到内壁的板,和/或利用激光焊接形成。为了传送至少有时通过管线和测量换能器流动的介质,本发明的测量换能器另外包括管布置,管布置具有在换能器外罩10中被以可振荡方式保持的、准确的四个弯折的或者弯曲的,例如至少分段地呈圆弧形的和/或如这里概略地示出的至少分段地呈V形的测量管IS1US2US3US4t5该四个測量管,在此情形中,具有相等长度并且成对平行的測量管,在每ー种情形中,均与被连接到测量换能器的管线连通,并且至少有时地,特别地还同时地在操作期间使其在适合于确认物理测量变量的至少ー个主动激励振荡模式,即所谓的希望模式中振动。在该四个測量管中,第一測量管IS1利用进ロ侧第一測量管端部通向第一分流器20i的第一流动开ロ 201A并且利用出口侧第二測量管端部通向第二分流器202的第一流动开ロ 202A,第二測量管IS2利用进ロ侧第一測量管端部通向第一分流器20i的第二流动开ロ 201B并且利用出口侧第二測量管端部通向第二分流器202的第二流动开ロ 202B,第三測量管183利用进ロ侧第一測量管端部通向第一分流器20i的第三流动开ロ 20i。并且利用出口侧第二測量管端部通向第二分流器202的第三流动开ロ 202C,并且第四測量管IS4利用进ロ侧第一測量管端部通向第一分流器20i的第四流动开ロ 201D并且利用出口侧第二測量管端部通向第二分流器202的第四流动开ロ 202D。该四个測量管IS1US2US3US4如此被连接到分流器2(V202,特别是同等构造的分流器ZO1JO2,以形成平行的并且实际上以使得测量管能够相对于彼此以及还相对于换能器外罩振动,特别是弯曲振荡的方式连接的流动路径。另外,提出了该四个测量管IS1US2US3US4RR利用所述分流器ZO1JO2而被以可振荡方式保持在换能器外罩Y1中,这里,即,在它的中间片段71A上。例如,不锈刚,在给定情 形中,还有高强度不锈钢、钛、错或者钽,或者由此形成的合金或者还有超级合金,诸如,例如哈司特镍合金、铬镍铁合金等适合作为用于測量管的管壁的材料。而且,用于该四个测量管18ρ182、183、184的材料然而还能够实际上是通常为此应用的任何其它材料或者至少适合于此的材料,特别是具有尽可能小的热膨胀系数和尽可能高的屈服点的材料。可替代地,或者补充性地,根据本发明另外的实施例,至少第一和第二測量管IS1US2关于它们的管壁的材料,和/或关于它们的几何管尺寸,特别是測量管长度、管壁厚度、管外径和/或口径,具有同等的构造。另外地,至少第三和第四測量管183、184关于它们的管壁的材料,和/或关于它们的几何管尺寸,特别地測量管长度、管壁厚度、管外径和/或口径,也具有同等的构造,从而結果,该四个測量管18ρ182、183、184至少配对地具有基本同等的构造。优选地,四个测量管IS1.182、183、IS4关于它们的管壁的材料,和/或关于它们的几何管尺寸,特别地測量管长度、管壁厚度、管外径、它们的弯曲线和/或口径的形式,具有同等的构造,特别是以这种方式,即,結果,该四个測量管18ρ182、183、184 (空置的或者均质介质均匀地通过那里流动)中的每ー个的至少ー个最小弯曲振荡共振频率均基本等于其余的其它测量管的相应的最小弯曲振荡共振频率。在本发明的测量换能器的情形中,如直接还从图2、4a和4b的组合清楚的,測量管另外地被实施并且被布置在测量换能器中,使得管布置具有位于第一測量管IS1和第三测量管IS3之间以及还在第二測量管IS2和第四測量管IS4之间的第一假想纵向截平面XZ,相对于该第一假想纵向截平面XZ,管布置是镜面対称的,并且该管布置此外具有垂直于它的假想第一纵向截平面XZ并且在第一測量管IS1和第二測量管IS2之间以及还在第三測量管IS3和第四測量管IS4之间延伸的第二假想纵向截平面YZ,相对于该第二假想纵向截平面YZ,管布置同样是镜面対称的。由此,不仅由在管布置内的測量管的可能的热相关膨胀产生的应カ被最小化,而且可能由在管布置内的弯曲的測量管的弯曲振荡诱发并且基本垂直于两个前述假想纵向截平面的交叉线作用的横向力,并非最后地,此外,还在起初提及的EP-AI 248 084和US-B7,350,421中提及的基本垂直于第一假想纵向截平面XZ指向的那些横向力也能够在很大程度上得以抵消。特别地还从图4a、4b、5a、5b清楚的,在这里示出的实施例的示例中,四个测量管中的每ー个均具有被定义为相应的测量管距第一假想纵向截平面XZ的最大垂直距离的測量管峰部。还直接从图4a-6b的组合清楚的,在其余包括的,该管布置具有垂直于第一假想纵向截平面XZ以及还垂直于第二假想纵向截平面YZ的假想截平面XY。在本发明的有利的实施例中,该管布置另外地被如此实施,使得管布置的质心位于假想截平面XY中,或者管布置相对于假想截平面XY是镜面対称的,例如以这种方式,即假想截平面XY与该四个測量管中的每ー个在其相应的测量管峰部相交叉。
为了测量换能器另外的对称化并且因此还为了其构造的另外的简化,根据本发明另外的实施例,两个分流器ZO1JO2另外被如此实施并且被如此布置在测量换能器中,使得还如在图4a和4b中概略地给出的,假想地连接第一分流器20i的第一流动开ロ 201A与第二分流器202的第一流动开ロ 202A的、测量换能器的假想第一连接轴线\平行于假想地连接第一分流器20i的第二流动开ロ 201B与第二分流器202的第二流动开ロ 202B的、测量换能器的假想第二连接轴线Z2延伸,并且假想地连接第一分流器20i的第三流动开ロ 20i。与第二分流器202的第三流动开ロ 202。的、测量换能器的假想第三连接轴线Z3平行于假想地连接第一分流器20i的第四流动开ロ 201D与第二分流器202的第四流动开ロ 202B的、测量换能器的假想第四连接轴线Z4延伸。如在图4a和4b中所示,分流器另外地被如此实施并且被如此布置在测量换能器中,使得,连接轴线Z1. Z2, Z3, Z4还平行于基本与管线对准的和/或与管布置的两个假想纵向截平面TL、YZ的前述交叉线一致的测量换能器的主流动轴线し进而,两个分流器ZO1JO2能够另外地还被如此实施并且被如此布置在测量换能器中,使得第一假想连接轴线\和第二假想连接轴线Z2在其内延伸的、测量换能器的第一假想纵向截平面平行于假想第三连接轴线Z3和假想第四连接轴线Z4在其内延伸的、测量换能器的第二假想纵向截平面χζ2。而且,根据本发明的另外的实施例的测量管另外地被如此实施并且被如此布置在测量换能器中,使得此外还从图3a和4a的组合清楚的,管布置的假想第一纵向截平面XZ位于测量换能器的前述第一假想纵向截平面TL,和测量换能器的前述第二假想纵向截平面XZ2之间,例如还使得管布置的第一纵向截平面XZ平行于测量换能器的第一和第二纵向截平面XZ1, XZ20另外地,測量管被如此实施并且被如此布置在测量换能器中,使得同样地还有管布置的第二假想纵向截平面YZ在测量换能器的第三假想纵向截平面YZ1和测量换能器的第四假想纵向截平面YZ2之间延伸,例如以这种方式,即管布置的第二假想纵向截平面YZ平行于测量换能器的第三假想纵向截平面Y4并且平行于测量换能器的第四假想纵向截平面YZ2。在这里示出的实施例的示例中,如直接地从图4a、4b、5a、5b和6a的组合清楚的,管布置另外地被如此实施并且被如此置放在换能器外罩中,使得结果,不仅管布置的第一和第二假想纵向截平面XZ、YZ的共享交叉线与纵向轴线L平行或者一致,而且第一纵向截平面XZ和截平面XY的共享交叉线也平行于与纵向轴线L垂直的测量换能器的假想横向轴线Q,并且第二纵向截平面YZ和截平面XY的共享交叉线平行于与纵向轴线L垂直的測量换能器的假想竖直轴线H。在本发明的另外的有利的实施例中,第一分流器2(^的流动开ロ另外地被如此布置,使得属于第一分流器的流动开ロ的——这里是圆形的——截面区域的那些假想区域重心形成假想长方形或者假想正方形的顶点,其中所述截面区域再次位于垂直于测量换能器的纵向轴线L,例如在管布置的第一纵向截平面XZ内延伸的或者与提及的测量换能器的主流动轴线平行或者甚至一致的纵向轴线,或者垂直于测量换能器的纵向截平面延伸的第一分流器的共享假想截平面中。另外地,第二分流器202的流动开ロ也被如此布置,使得与第二分流器202的流动开ロ的截面区域,这里同样是圆形的,相关联的假想区域重心形成假想长方形,或者正方形的顶点,其中所述截面区域,同样位于垂直于所提及的测量换能器的主流动,或者还有测量换能器的纵向轴线L,或者垂直于测量换能器的纵向截平面延伸的第二分流器的共享假想截平面中。在本发明另外的实施例中,測量管被如此弯曲并且被如此被布置在测量换能器中,使得管布置的口径与高度比D18/Q18大于O. 05,特别是大于O. 07和/或小于O. 35,特别是小于O. 2,其中管布置的口径与高度比D18/Q18由第一測量管的口径D18与管布置的最大横向展幅Q18的比来定义,管布置的最大横向展幅Q18是从第一测量管的峰部到第三測量管的峰部测量的或者从第二測量管的峰部到第四測量管的峰部测量的。为了实现尽可能紧凑的测量换能器,特别地还对于提及的测量换能器应该具有250mm或者更大的大标称直径和/或測量管横向上相当地展开的情形,如另外直接从图I和2的组合清楚的,能够以有利的方式,另外通过提出利用管和外罩帽体形成换能器外罩T1而形成换能器外罩7,。在这里,为了简化操控,管例如首先具有三个部分,由此被结合到一起的三个个体片段,并且具有用于帽体的对应横向开ロ。如示意的,管具有例如将与其连接的管线的口径,因此对应于测量换能器的标称直径D11的口径。外罩帽体71B、7i。,特别是同等构造的外罩帽体被横向地固定到,例如焊接到最終形成换能器外罩的中间片段的管,并 且横向地从中间片段延伸以封装測量管的该片段。在两个外罩帽体71B、7i。中——如从图l-4a的组合清楚的——例如第一外罩帽体71B盖住第一測量管在第一侧上从中间片段-持别地还为管布置用作支撑框架,并且因此被形成为支撑管的中间片段——向外延伸的的片段,和第二测量管在第一侧上从中间片段向外延伸的片段,并且第二外罩帽体T1。,例如与第一外罩帽体同等构造的第二外罩帽体,盖住第三測量管在与第一侧相对的第二侧上从中间片段向外延伸的片段和第四測量管在第二侧上从中间片段向外延伸的片段。由此,測量管18ρ182、183、184,或者由此形成的测量换能器11的管布置,如直接从图1、2和4a的组合清楚的,完全被换能器外罩T1以及与其横向固定的两个外罩帽体包住,这里换能器外罩T1是利用中间片段,特别还是用作支撑管的中间片段形成的。对于换能器外罩利用管状中间片段和与其横向固定的外罩帽体形成的前述情形,在本发明的另外的实施例中,四个测量管18p 182、183、184和换能器外罩T1——特别地还为了最小化总测量换能器的安装质量——被相互匹配并且另外地被如此确定尺寸,使得支撑管与測量管测量换能器的内径比大于3和/或小于5,特别是小于4,支撑管与測量管测量换能器的内径比由形成为支撑管的换能器外罩的中间片段的最大内径与第一測量管的口径D18的比来定义。而且,用于换能器外罩T1的材料可以是钢,诸如结构钢或者不锈钢,或者还有其它适当的或者通常适合于这种意图的高強度材料。对于エ业测量技术的大多数应用,特别地还在石化エ业中,另外,不锈钢,例如还有双相钢、超级双相钢或者另ー种(高強度)不锈钢的测量管也能够满足关于机械强度、耐化学性的要求以及热要求,从而在应用换能器外罩T1的多个情形中,分流器2(^20”以及还有測量管18ρ182、183、184的管壁在每ー种情形中能够由在每ー种情形中具有足够高的质量的钢制成,这尤其是关于材料和制造成本,以及还有测量换能器11在操作期间的热相关膨胀行为,可以是有利的。而且,换能器外罩T1另外以有利的方式还能够被如此实施并且被如此确定尺寸,使得在例如通过裂纹形成或者爆裂可能损坏ー个或者多个测量管的情形中,向外流动的介质能够在期望的时间中被完全保持在换能器外罩Y1的内部中直至要求的最大正压力,其中如例如还在起初引用的US-B7,392,709中提及的,这种危急状态还能够利用对应的压カ传感器和/或基于在操作期间由所提及的发射器电子器件12在内部产生的操作參数而得以记录和发信号。为了简化测量换能器,或者由此形成的整体的在线测量装置的输送,另外地,如例如还在起初提及的US-B7, 350,421中给出的,能够在外部固定在换能器外罩上的进ロ侧和出口侧上设置输送孔眼。如起初已经提及的,通过使得测量管%、182、183、184例如同时地在主动激励振荡模式,所谓的希望模式中振荡,在所要测量的介质中在测量换能器11中实现了測量要求的反作用力。为了激励測量管的振荡,特别地还在希望模式中的那些振荡,測量换能器进、ー步包括激励器机构5,激励器机构5利用作用于测量管IS1US2US3US4上的至少ー个机电——例如电动——振荡激励器形成。激励器机构5用于引起測量管中的每ー个均至少有时可操作地在希望模式中执行振荡,特别是弯曲振荡,并且以足够大的振荡振幅維持这种振荡,以在介质中产生并且记录适合于具体測量或者这些需要的振荡的上述反作用力。该至少ー个振荡激励器,并且因此由此形成的激励器机构,在这种情形中,特别地用于——例如利用至少ー个电驱动器信号——将从发射器电子器件馈送的电激励功率Prai转换成例如脉动或者谐波激励器力Fex。,该力尽可能同时地、均匀地,然而在相反的意义上,作用在至少两个测量管例如第一和第二測量管上,并且在给定情形中还从该两个测量管以机械方式进一步耦合到另两个測量管上,并且从而实现在希望模式中的振荡。通过转换被馈送到激励器机构中的电激励功率Pex。而产生的激励器作用力Fex。,能够以本领域技术人员本质上已知的方式,例如利用被设置在发射器电子器件12中并且最后传递驱动器信号的操作电路,例如,利用在操作电路中实现的电流和/或电压控制器关于它们的幅值,哟以及例如同样利用在操作电路中设置的相位控制环(PLL)关于它们的频率进行调谐;为此,还比较例如US-A 4,801,897或者US-B 6,311,136。在本发明另外的实施例中,因此,另外提出,发射器电子器件,为了产生激励器力,利用例如经由连接线而被供应到振荡激励器,和因此激励器机构的至少ー个电驱动器信号,例如,至少有时周期的驱动器信号,而将要求的电激励功率馈送到激励器机构中。驱动器信号是可变的,具有对应于管布置的固有振荡模式,例如,所述V模式或者所述X模式的固有频率的至少ー个信号频率。例如,该至少一个驱动器信号还能够具有信号频率相互间不同的多个信号分量,其中的至少ー个信号分量(例如,关于信号功率支配性的信号分量)具有对应于四个测量管中的每ー个均执行弯曲振荡的管布置的固有振荡模式——例如,因此所述第一类型的弯曲振荡模式——的固有频率的信号频率。而且,例如,为了使得馈入的激励功率适合于对于足够的振荡振幅而言瞬时实际需要,能够另外有利的是,使得至少ー个驱动器信号相对于最大电压电平(电压振幅)和/或最大电流电平(电电流振幅)是可变的,例如以这种方式,即例如激励器电流流过利用所述驱动器信号提供的可变激励器电压驱动的至少ー个振荡激励器的柱形线圈。特别地还对于最終利用测量换能器形成的測量系统应该被用于测量质量流量的情形,主动激励測量管进行振荡的目标特别地在于利用在希望模式中的測量管振动在流动介质中诱发足够强的科里奥利力,从而結果,測量管中的每ー个的另外的变形——因此对应于管布置的更高阶振荡性模式,所谓的科里奥利模式——均能够利用对于测量而言足够的振荡振幅来实现。例如,测量管18ρ182、183、184能够利用被保持于此的机电激励器机构,特别是在利用该四个測量管IS1US2US3US4形成的管布置的瞬时机械固有频率下,被激励为特别是同时的弯曲振荡,在此情形中它们一至少主要地一一横向地偏转,并且如本领域技术人员从图3a、3b、6a、6b、7a、7b的组合直接清楚的,使其相对于彼此基本相反等同地振荡。这特别是以这样的方式进行的,即,測量管18ρ182、183、184中的每ー个均在操作期间同时执行振动,该振动至少有时地和/或至少部分地在每ー种情形中均被形成为关于连接相应的测量管的第一和在每ー种情形中相关联的第二測量管端部的假想振荡轴线的弯曲振荡,假想振荡轴线在每ー种情形中平行于所述连接轴线Z1. Z2, Z3, Z4,其中在这里示出的实施例的示例中四条振荡轴线相互平行,以及还平行于假想地连接两个分流器并且通过测量换能器的质心的总的测量换能器的假想纵向轴线L。換言之,如在具有一个或者多个弯曲的測量管的振动式测量换能器的情形中非常通常的,能够在每一种情形中引起測量管至少分段地以末端被夹持的悬臂方式,从而因此以关于在每一种情形中平行于假想连接轴线Z1, Z2, Z3, Z4中的至少两条的假想振荡轴线的悬臂弯曲振荡进行振荡。在本发明的ー个实施例中,激励器机构另外地被以这种方式实施,即,由此,第一測量管IS1和第二測量管IS2能够被激励为执行相对于第二假想纵向截平面YZ反向相等的,特别地还相对于第二假想纵向截平面YZ対称的弯曲振荡,并且第三測量管IS3和第四測量管IS4能够被激励为执行相对于第二假想纵向截平面YZ反向相等的,特别地还相对于第二假想纵向截平面YZ对称 的弯曲振荡。对此而言可替代地或者补充性地,根据本发明另外的实施例的激励器机构另外地被以如此方式实施,使得由此第一測量管IS1和第三測量管IS3能够被激励为执行相对于第二假想纵向截平面YZ反向相等的,例如,还相对于第二假想纵向截平面YZ対称的弯曲振荡,并且第二測量管IS2和第四測量管IS4能够被激励为执行相对于第二假想纵向截平面YZ反向相等的,例如,相对于第二假想纵向截平面YZ对称的弯曲振荡。在本发明另外的实施例中,測量管IS1US2US3US4M外至少部分地,特别是主要地利用激励器机构5在操作期间被激励为具有弯曲振荡频率的希望模式弯曲振荡,该弯曲振荡频率例如等于包括该四个測量管18ρ182、183、184的管布置的瞬时机械共振频率,因此对应于管布置的弯曲振荡模式的瞬时固有频率,或者至少处于这种固有或者共振频率的附近。弯曲振荡的瞬时机械共振频率,在这种情形中,如已知的那样,以特殊的量度取决于测量管18ρ182、183、184的尺寸、形状和材料以及还取决于通过测量管流动的介质的瞬时密度,并且因此能够在测量换能器的操作期间在数千赫数宽的希望频带内改变。在以瞬时共振频率激励測量管的情形中,因此,在一方面,基于瞬时激励的振荡频率,通过该四个测量管流动的介质的平均密度能够瞬时地容易地得以确认。在另一方面,也这样地,为了维持在希望模式中激励的振荡而瞬时要求的电カ能够被减小。特别地,由激励器机构驱动引起该四个测量管IS1US2US3US4M外地、至少有时地以基本相等的振荡频率,特别是在每ー种情形中同一固有机械固有频率,并且因此共享的固有机械固有频率进行振荡。以有利的方式,利用该四个測量管18ρ182、183、184形成的管布置的振荡行为以及还有控制激励器机构的驱动器信号另外被如此相互匹配,使得至少在希望模式中激励的该四个測量管IS1.182、183、184的振荡如此发展,使得第一和第二測量管IS1US2——例如,以两个调音叉尖的方式一基本彼此相反等同地,因此至少在假想截平面XY中带有例如180°的相对相移地振荡,并且第三和第四测量管183、184也同样地基本彼此相反等同地振荡。对于带有正被讨论的类型的测量换能器的測量系统的研究已经另外地令人惊讶地示出,作为希望模式,特别地还为了确认在测量换能器中传送的介质的质量流速以及密度,特别地,该管布置内在的固有振荡性模式是适合的一在以下被称作弯曲振荡,第一类型的基本模式或者还被称作V模式振荡——其中,如还在图7a中概略示出地,第一測量管和第二測量管关于在每ー种情形中与相应的测量管相关联的静态平衡位置相对于第二假想纵向截平面YZ执行反向相等的弯曲振荡,并且其中第三測量管和第四測量管关于在每一种情形中与相应的测量管相关联的静态平衡位置相对于第二假想纵向截平面执行同样的反向相等的弯曲振荡,并且实际上,从而——相对于第二假想纵向截平面YZ——第一测量管的所述弯曲振荡还与第三測量管的所述弯曲振荡反向相等,并且——相对于第二假想纵向截平面YZ——第二測量管的所述弯曲振荡还与第四測量管的所述弯曲振荡反向相等。在V模式中,第一和第二測量管,或者第三和第四測量管的反向相等的弯曲振荡(这里同样被形成为关于,在每ー种情形中,平行于假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡并且使得管布置在截平面XY上的投影有时地呈现V形(比较图7a)),在对称地构造的管布置并且均匀地通过管布置流动的情形中,另外地相对于第二假想纵向截平面YZ对称地发展。作为用于带有四个弯曲的測量管的测量换能器的希望模式的V模式的特定适应性,在这种情形中,也特别能够,特别归因于对于测量换能器的振荡性行为而言——空间地以及还在时间上考虑地——在这种情形中,整体上,非常有利地在测量换能器中,特别还在两个分流器的区域中引起应カ分布,以及还引起同等有利的,因此非常小的,测量换能器 总体地以及特别地还有分流器的振荡相关变形。除了前述V模式,管布置另外还具有第二类型的固有弯曲振荡模式——在以下被称为X模式——其中——如在图7b中概略示出地——第一測量管和第二測量管关于在每一种情形中相关联的静态平衡位置相对于第二假想纵向截平面YZ执行反向相等的弯曲振荡,并且其中第三測量管和第四測量管关于在每ー种情形中相关联的静态平衡位置相对于第二假想纵向截平面YZ执行反向相等的弯曲振荡,这与V模式中的弯曲振荡相反,然而,以下方式,即一相对于第二假想纵向截平面YZ—一第一測量管的所述弯曲振荡还与第四测量管的所述弯曲振荡反向相等,并且一相对于第二假想纵向截平面YZ—第二測量管的所述弯曲振荡还与第三測量管的所述弯曲振荡反向相等。在对称地构造并且均匀地通过管布置流动的情形中,而且在X模式中的弯曲振荡(这里,继而,作为关于在每ー种情形中平行于假想连接轴线中的至少两条的假想振荡轴线形成的悬臂弯曲振荡,并且使管布置在截平面XY上的投影有时呈现X形(比较图7b))也同样相对于第二假想纵向截平面YZ是对称的。为了在测量换能器的尽可能宽的操作范围(其特征在于,在操作期间除了别的以外,波动密度、质量流速、在测量换能器中的温度分布等)上确保独立的,特别还被限定的V模式或者X模式的激励,根据本发明另外的实施例,利用四个测量管形成的管布置,因此由此形成的测量换能器,被如此确定尺寸,使得能够例如在管布置完全地填充有水的情形中测量的第一类型(V模式)的弯曲振荡模式的固有频率f18V不同于特别是在管布置完全地填充有水的情形中,并且相应地与第一类型(V模式)的弯曲振荡模式的固有频率f18V同时地,能够测量的第二类型(X模式)的弯曲振荡模式的固有频率f18X,例如,使得两个所述弯曲振荡模式(V模式,X模式)的固有频率f18V、f18X相互偏离IOHz或者更大。特别地还对于大于150mm的大标称直径的情形,管布置被如此实施,使得第一类型的弯曲振荡模式的所述固有频率f18V大于第二类型的弯曲振荡模式的所述固有频率f18X超过10Hz。根据本发明另外的实施例,激励器机构因此被以如此方式实施,使得由此第一測量管IS1和第二測量管IS2能够在操作期间被激励为反向相等的弯曲振荡,并且第三測量管183和第四测量管IS4能够在操作期间被激励为反向相等的弯曲振荡,特别地还被激励为在它的瞬时固有频率f18V下的、对应于第ー类型(V模式)的弯曲振荡模式的弯曲振荡,和相应地,在它的瞬时固有频率f18V下的、对应于第二类型(X模式)的弯曲振荡模式的弯曲振荡,后ー弯曲振荡,在给定情形中,还是与对应于第一类型(V模式)的弯曲振荡模式的弯曲振荡同时的在本发明另外的实施例中,特别地还为了激励第一和第二測量管和/或第三和第四測量管的反向相等的弯曲振荡,激励器机构5利用特别地以差异方式作用在第一測量管IS1和第二測量管IS2上的第一振荡激励器S1形成。另外地,提出了特别地以差异方式作用在測量管IS1US2US3US4中的至少两个上的电动类型的振荡激励器用作第一振荡激励器510相应地,第一振荡激励器S1另外特别地以线圈插入布置的方式,利用在第一測量管上保持的永久磁体和在第二測量管上保持并且被永久磁体的磁场穿透的柱形线圈形成,在此情形中,柱形线圈与永久磁体共轴地布置并且永久磁体被实施为插进线圈内的衔铁。为了在同时实现尽可能対称的构造时増加激励器机构的效率和相应地为了増加由此产生的激励器力,在本发明进一歩的改进中,激励器机构另外包括特别地以电动和/或以差异方式作用在第三測量管183和第四测量管IS4上的第二振荡激励器52。第二振荡激励器52,以有利的方式,至少就它与第一振荡激励器的作用原理类似地工作而言,以与第一振荡激励器S1同等的构造实施,例如因此同样是电动类型。在另外的实施例中,第二振荡激励器52,因此利用在第三測量管上保持的永久磁体和在第四測量管上保持并且被永久磁体的磁场穿透的柱形线圈形成。激励器机构5的两个振荡激励器5p52能够以有利的方式,相互串联电连接,特别是以这种方式,即公共的驱动器信号因此激励測量管IS1US3US2US4的同时振荡,例如,在V模式中和/或在X模式中的弯曲振荡。特别地对于较早述及的情形而目,其中在Vネ旲式中的两个弯曲振汤以及还有在Xネ旲式中的弯曲振汤应该利用两个振汤激励器5p52主动地激励,能够有利地如此确定振荡激励器5i、52的尺寸并且如此将它们应用于管布置,使得由此第一振荡激励器S1的传输因子至少在包括V模式和X模式的频带内不同于第二振荡激励器52的传输因子,例如,以这种方式,即所述传输因子相互间偏离10%或者更大,其中,第一振荡激励器S1的传输因子由在其中馈送的电激励功率与实现由此产生的測量管的振荡的激励器力的比来定义,第二振荡激励器52的传输因子由在其中馈送的电激励功率与实现由此产生的測量管的振荡的激励器力的比来定义。这使得例如还能够特别地还在两个振荡激励器5p52的顺序切換和/或向两个振荡激励器5p52供应单一共享驱动器信号的情形中实现V和X模式的分别的激励,并且能够在电动振荡激励器
中以非常简单的方式得以实现,例如通过应用具有不同阻抗,或者不同匝数的柱形线圈和/或通过不同地确定永久磁体的尺寸,或者不同磁性材料的永久磁体。这里应该另外地提及的是,虽然这里在实施例的示例中示出的激励器机构的振荡激励器,或者多个振荡激励器,在每ー种情形中,例如,在中心处作用在相应的测量管上,但是可替代地或者补充性地,还能够使用替代地,例如,以在 US-A 4, 823, 614,US-A 4,831,885 或者 US-A 2003/0070495 中提出的激励器机构的方式作用在具体測量管的进ロ侧上和出口侧上的振荡激励器。如根据图2、4a、4b、5a和5b清楚的,并且在具有所讨论类型的测量换能器的情形中一般的,在测量换能器11中另外设置了对于测量管IS1US2US3或者IS4的振动、特别是进口和出ロ侧振动、特别是利用激励器机构5激励的弯曲振荡,作出反应的传感器布置19,例如,电动传感器布置,从而产生振荡信号,该振荡信号代表振动,特别是测量管的弯曲振荡,并且例如关于频率、信号幅度和/或相对于彼此和/或相对于驱动信号的相位位置分别受到将被记录的測量变量诸如介质的质量流速和/或密度和粘度的影响。在本发明另外的实施例中,传感器布置利用进ロ侧第一振荡传感器Ig1,特别是电动的第一振荡传感器和/或以差异方式记录至少第一測量管IS1相对于第二測量管IS2的振荡的第一振荡传感器,以及出ロ侧第二振荡传感器192,特别是电动的第二振荡传感器和/或以差异方式记录至少第一測量管IS1相对于第二測量管IS2的振荡的第二振荡传感器形成,所述两个振荡传感器分别传递对于测量管18ρ182、183、184的运动,特别是它们的横向偏转和/或变形作出反应的第一和第二振荡信号。这特别地以如此方式进行,使得由传感器布置19传递的振荡信号中的至少两个 具有相对于彼此的相移,该相移对应于或者取决于通过测量管流动的介质的瞬时质量流速;以及在每ー种情形中信号频率,该信号频率取决于在測量管中流动的介质的瞬时密度。该两个振荡传感器19i、192,例如相互同等构造的振荡传感器,能够为了这种意图——诸如在具有所讨论的类型的测量换能器的情形中非常一般的——在测量换能器11中距第一振荡激励器基本等距离地放置。而且,传感器布置19的振荡传感器就它们具有与激励器机构5的至少ー个振荡激励器同等的构造而言,能够至少类似于激励器机构5的作用原理来工作,例如,因此同样是电动类型。在本发明的改进中,传感器布置19另外也利用进ロ侧第三振荡传感器193,特别是电动的振荡传感器和/或以差异方式记录第三測量管183相对于第四測量管IS4的振荡的振荡传感器,以及出ロ侧第四振荡传感器194,特别是电动的第四振荡传感器194和/或以差异方式记录第三測量管183相对于第四測量管IS4的振荡的电动振荡传感器形成。为了另外地改进信号质量,以及还为了简化接收测量信号的发射器电子器件12,进而,第一和第三振荡传感器19ρ193能够相互串联电连接,例如以这种方式,即组合振荡信号代表第一和第三測量管IS1US3相对于第二和第四測量管182、184的组合的进ロ侧振荡。可替代地或者作为补充地,第二和第四振荡传感器192、194也能够相互串联电连接,例如以这种方式,即两个振荡传感器192、194的组合振荡信号代表第一和第三測量管IS1US3相对于第二和第四測量管182、184的组合的出ロ侧振荡。关于前述情形,其中传感器布置19的振荡传感器,特别是相互同等构造的振荡传感器,应该以差异方式并且电动地记录测量管的振荡,第一振荡传感器Ig1利用被保持在第一测量管——这里在进ロ侧上将被记录的振荡区域中——的永久磁体和被该永久磁体的磁场穿透并且被保持到第二測量管一这里相应地同样在进ロ侧上将被记录的振荡区域中——的柱形线圈形成,并且第二振荡传感器192利用被保持在第一測量管——在出ロ侧上将被记录的振荡区域中——的永久磁体和被该永久磁体的磁场穿透并且被保持到第二測量管_这里相应地同样在出口侧上将被记录的振荡区域中一一的柱形线圈形成。同等地,另外还在给定情形中设置的第三振荡传感器193能够对应地利用被保持在第三測量管的永久磁体和被保持在第四測量管的并且被永久磁体的磁场穿透的柱形线圈形成,并且在给定情形中设置的第四振荡传感器194利用被保持在第三測量管的永久磁体和被保持在第四测量管并且被该永久磁体的磁场穿透的柱形线圈形成。在这里另外应该指出,虽然在于ー个实施例的示例中示意的传感器布置19的振荡传感器的情形中,振荡传感器在每ー种情形中均是电动类型的,因此,在每ー种情形中,均利用被固定到測量管之一的柱形磁线圈和对应地固定到相对安置的測量管的插入其中的永久磁体形成,但是另外地本领域技术人员已知的其它振荡传感器诸如光电子传感器也能够被用于形成该传感器布置。进而,诸如在具有所讨论类型的测量换能器的情形中非常一般地,补充该振荡传感器,其它的,特别是辅助传感器或者记录干扰变量的传感器能够被设置在该测量换能器中,例如用于记录由外部力和/或管布置中的非対称性引起的总测量系统的运动的加速度传感器、用于记录一个或者多个测量管和/或换能器外罩的膨胀的应变计、用于记录在换能器外罩中的支配性静态压力的压カ传感器和/或用于记录一个或者多个测量管和/或换能器外罩的温度的温度传感器,由此例如测量换能器发挥功能的能力和/或由于横向灵敏度或者外 部干扰引起的、测量换能器对于主要地将被记录的测量变量、特别是质量流速和/或密度的灵敏度的变化能够得到监视,并且在给定情形中对应地得到补偿。为了确保测量换能器对于质量流量的尽可能高的灵敏度,根据本发明另外的实施例,測量管和振荡传感器被如此布置在测量换能器中,使得测量换能器的测量长度L19大于500mm,特别是大于600mm,其中测量换能器的测量长度L19对应于沿着第一測量管的挠度曲线测量的在第一振荡传感器W1和第二振荡传感器192之间的距离。特别地为了形成尽可能紧凑然而尽管如此对于质量流量尽可能敏感的测量换能器,根据本发明另外的实施例,与测量换能器的安装长度L11匹配的振荡传感器19ρ192被如此布置在测量换能器中,使得由测量换能器的测量长度与安装长度的比来定义的测量换能器的测量长度与安装长度比L19/Ln大于O. 3,特别是大于O. 4和/或小于O. 7。可替代地,或者补充性地,根据本发明另外的实施例,与測量管匹配的振荡传感器,被如此置放在测量换能器中,使得由第一測量管的口径D18与所述及的测量换能器的测量长度L19的比来定义的测量换能器的口径与測量长度比D18/L19大于O. 05,特别是大于O. 09。如在这种测量换能器的情形中通常地,传感器布置19另外被以适当的方式,例如,经由连接线硬线连接,与在发射器电子器件中对应设置的測量电路,例如,利用至少ー个微处理器和/或利用至少ー个数字信号处理器形成的測量电路,耦接。測量电路接收传感器布置19的振荡信号,并且由此在给定情形中,还考虑到利用馈送到激励器机构中的至少ー个驱动器信号,并且因此还在其中转换的电激励功率,产生起初提及的测量值,该测量值能够代表例如所要测量的介质的质量流速、总计质量流量和/或密度和/或粘度,并且在给定情形中,能够被现场地显示和/或还被以数字測量数据的形式发送到附属于测量系统的数据处理系统并且对应地得到进ー步处理。特别地,測量电路和由此形成的发射器电子器件,另外基于在激励器机构中转换的电激励功率,被提供和设计用于产生例如周期重现的和/或在询问时给出的、代表流动介质的粘度的粘度測量值,和/或基于由测量换能器传递的振荡信号,例如产生周期重现的和/或在询问时给出的、代表流动介质的质量流速的质量流量測量值,和/或例如周期重现的和/或在要求时给出的、代表流动介质的密度的密度測量值。以差异方式作用的振荡激励器或者振荡传感器的上述应用,除了别的以外还引起以下优点,即,为了操作本发明的测量换能器,还能够使用这样确立的測量和操作电路,诸如已经具有广泛应用的,例如已经在传统的科里奥利质量流量和/或密度測量装置中应用的。包括在其中实现的測量和操作电路的发射器电子器件12进而能够被容纳在例如単独的电子器件外罩72中,该电子器件外罩与测量换能器分开地布置或者如在图I中所示例如在换能器外罩T1上在外部直接固定到测量换能器I上,从而形成単一紧凑装置。在这里示意的实施例的示例的情形中,因此,另外地,用于保持电子器件外罩I2的颈状过渡件被置放在换能器外罩Y1上。能够另外地在过渡件内布置用于在测量换能器11,特别是在其中置放的振荡激励器和传感器,与所述发射器电子器件12之间的电连接线路的馈通。例如,利用玻璃和/或塑料封装化合物,该馈通被制造为被以密闭方式密封和/或是耐压的。如已经多次述及的,在线测量装置和因此还有测量换能器11被特别地提供用于测量还在具有大于250mm的大口径的管线中的大于1000t/h的高质量流量。对此加以考虑地,根据本发明另外的实施例,如已经述及地对应于将在其线路中使用测量换能器11的管线的口径的、测量换能器11的标称直径被选择为大于50mm,然而特别是大于100mm。另外地,根据测量换能器的进ー步的实施例,提出了測量管IS1US2US3US4中的每ー个均在每ー种情形中具有对应于大于40_的具体管内径的口径D18。特别地,測量管18ρ182、183、IS4另外地被如此实施,使得每ー个均具有大于60mm的口径D18。关于此可替代地或者作为其补充,根据本发明的另ー个实施例,測量管IS1US2US3US4M外地被如此确定尺寸,使得它们在每ー种情形中均具有至少IOOOmm的測量管长度L18。在这里示意的具有相等长度测量管IS1US2US3US4的实施例的示例中,測量管长度L18在每ー种情形中均对应于在第一分流器的第一流动开口和第二分流器的第一流动开ロ之间延伸的第一測量管的挠度曲线的片段的长度。特别地,測量管18p 182、183、IS4在这种情形中被如此设计,使得它们的測量管长度L18在每ー种情形中均大于1200mm。相应地,至少对于所述及的測量管18ρ182、183、IS4由钢构成的情形,在通常使用的超过Imm的壁厚的情形中,结果质量在每ー种情形中均为至少20kg,特别是大于30kg。然而,尝试保持测量管18ρ182、183、184中的每ー个的空置质量小于50kg。考虑到以下事实,S卩,如已经述及地,在本发明的测量换能器的情形中,測量管18” 182、183、184中的每ー个重量均足足大于20kg,并且在这种情形中,诸如直接根据以上尺寸规格清楚的,能够容易地具有101或者更大的容量,然后包括该四个測量管IS1.182、183、184的管布置能够至少在高密度介质通过其流动的情形中达到远超80kg的总质量。特别地在应用具有较大口径D18、大的壁厚和大的测量管长度L18的測量管的情形中,由測量管18ρ182、183、184形成的管布置的质量然而能够直接还大于IOOkg或者至少在介质,例如油或者水,通过其流动时大于120kg。由此,整体地,测量换能器的空置质量M11还远大于200kg,并且在标称直径D11显著地大于250mm的情形中,甚至大于300kg。结果,本发明的测量换能器能够容易地具有大于10,特别是大于15的总体测量换能器的空置质量M11与第一测量管的空置质量M18的质量比Mn/M18。在所述及的高的测量换能器空置质量M11的情形中,为了尽可能最优地采用整体地为此应用的材料并且因此为了尽可能有效率地整体地利用通常还非常昂贵的材料,根据另外的实施例,测量换能器的标称直径D11,相对于它的空置质量M11,被如此确定尺寸,使得测量换能器11的质量与标称直径比Mn/Dn小于2kg/mm,然而,特别是尽可能小于lkg/mm,其中测量换能器11的质量与标称直径比Mn/Dn如由测量转换器换能器11的空置质量M11 与测量转换器换能器11的标称直径D11的比所来定义的。然而,为了确保足够高的测量换能器11的稳定性,测量换能器11的质量与标称直径比Mn/Dn至少在使用上述传统材料的情形中,被尽可能地选择为大于0.5kg/mm。另外地,根据本发明的另外的实施例,为了另外地改进所安装材料的效率,所述质量比Mn/M18被保持为小于25。为了形成无论如何也尽可能紧凑的有足够高的振荡品质因数和尽可能小的压降的测量换能器,根据本发明的另外的实施例,測量管相对于上述测量换能器11的安装长度L11,被如此确定尺寸,使得测量换能器的口径与安装长度比D18/Ln大于O. 02,特别是大于
0.05和/或小于O. 09,特别是小于O. 07,其中测量换能器的口径与安装长度比D18/Ln如由至少第一測量管的口径D18与测量换能器11的安装长度L11的比来定义的。可替代地或者作为补充,測量管18p 182、183、184相对于上述测量换能器的安装长度L11,被如此确定尺寸,使得测量换能器的測量管长度与安装长度比L18/Ln大于O. 7,特别是大于O. 8和/或小于
1.2,其中测量换能器的測量管长度与安装长度比L18/Ln如由至少第一測量管的以上參考的測量管长度L18与测量换能器的安装长度L11的比来定义的。为了调谐管布置的振荡特性,特别地在一方面还为了尽可能简单并且同等地有效 实现所述V模式与X模式关羽它们的固有频率f18V、f18X的充分分离;以及,在另一方面,还为了改进四个測量管的机械耦接以均衡该四个測量管同时执行的振荡,至少主动激励的希望模式的弯曲振荡,例如,还在由于部件公差而存在可能的不等性的情形中,在本发明另外的实施例中,测量换能器进ー步包括第一类型的第一耦接元件2も,与第一分流器以及还与第二分流器隔开,并且在进ロ侧上固定到四个测量管中的每ー个,例如,具有基本X形基本形状或者如在图4a或者4b中概略地给出的基本H形基本形状的第一耦接元件2も,用于调谐管布置的固有振荡模式的固有频率;以及第一类型的第二耦接元件242,与第一分流器以及还与第二分流器隔开,并且在出口侧上固定到四个测量管中的每ー个,例如,在给定情形中也具有基本X形或者基本H形基本形状,与第一类型的第一耦接元件21基本同等构造的第二耦接元件242,用于调谐管布置的固有振荡模式的固有频率。第一类型的两个耦接元件中的每ー个均能够在这种情形中另外地被如此实施并且在每ー种情形中被如此固定到測量管,使得它到所述测量换能器的假想截平面XY上的投影是X形的,或者如在图4a和4b中给出的,它到所述截平面XY上的投影是H形的。第一类型的耦接元件2A能够例如在每ー种情形中利用板形元件形成,或者,如在图4a、4b中概略地给出地,利用整体冲压的弯曲部分产生。在图4a、4b,或者5a、5b所示实施例的示例中,第一类型的两个耦接元件另外被如此实施和置放在測量管上,使得它们相对于所述测量换能器的第一假想纵向截平面XZ,或者相对于所述测量换能器的第二假想纵向截平面YZ是基本対称的,从而第一假想纵向截平面XZ和/或第二假想纵向截平面YZ在每ー种情形中还是第一类型的两个耦接元件中的每ー个的对称面。进而,在测量换能器中的第一类型的两个耦接元件还优选地相对于所述测量换能器的假想截平面XY是对称的,并且因此是等距的,并且相对于所述截平面XY平行延伸。在情形要求的情况下——例如,因为测量换能器被提供用于测量极其热的介质,或者用于在操作温度在宽范围之上波动的应用中进行测量,例如,由于反复地在现场执行的测量换能器的清洁过程(“エ艺中清洁”、“エ艺中消毒”等),并且结果,将预期測量管的值得ー提的热膨胀——第一类型的耦接元件24p242能够另外地被如此实施,使得它们与由此在每一种情形中耦接的測量管基本同等地膨胀,和/或它们至少相对于カ是足够柔性的,所述カ沿着例如与所述假想竖直轴线V—致或者平行的、通过由第二类型的特定耦接元件相互连接的两个测量管的峰部的作用线的方向延伸。能够例如通过例如基本横向于前述作用线延伸的、在特定耦接元件中对应形成的狭缝实现柔性。对于在耦接元件中形成的狭缝而言可替代地,或者补充性地,根据本发明的另ー个实施例,如直接从图4a、4b、5a、5b的组合清楚的,特别是为了沿着假想竖直轴线H的方向实现充分的挠性,第一类型的两个耦接元件中的每ー个均是弓形的。这特别地被以如此方式实现,使得如还在图4a、4b、5a、5b中示意地,第一类型的两个耦接元件中的每ー个均相对于在所述耦接元件24p242之间延伸的假想截平面XY,即如从截平面XY看到地,是至少分段地凸形的。结果,例如由于热相关应变引起的、測量管的相对间隔的小的改变得以允许,并且实际上同时在很大程度上防止显著地影响管布置的振荡性行为的机械应カ的升高。进而,在要求的情形中,例如通过在每一种情形中利用用作所谓的节点板的耦接元件——以下称作第二类型的耦接元件——在进ロ侧上和在出口侧上至少成对地以机械 方式将四个測量管18ρ182、183、184相互连接,能够最小化可能地或者至少潜在地在换能器外罩中在进ロ侧处或者在出口侧由特别是以所述及的方式振动的较大尺寸的測量管引起的机械应カ和/或振动。而且,利用这种第一类型的耦接元件,不管是通过它们的尺寸确定和/或它们的在測量管上的定位,測量管的机械固有频率并且因此还有利用四个测量管形成的管布置,包括在其上放置的测量换能器的另外的部件,的机械固有频率,因此还有分别的其V模式和其X模式的固有固有频率,并且因此还有整体上测量换能器的振荡性行为能够作为目标而受到影响。用作节点板的第二类型的耦接元件能够例如是薄板或者垫片,特别是从与測量管相同或者类似的材料制造的,它们在每ー种情形中均与将被相互耦接的測量管的数目和外部尺寸对应地设置有在给定情形中补充性地向边缘开缝的孔,从而垫片能够首先被分别安装到相应的测量管IS1,IS2和183、IS4上,并且在给定情形中,此后仍然例如通过硬焊或者焊接而被结合到相应的测量管。相应地,在本发明另外的实施例中,管布置包括第二类型的第一耦接元件241;例如板形的第二类型的第一耦接元件2も——如直接从图4a、5a、5b、6a清楚的——该第一耦接元件在进ロ侧上固定到第一測量管和第二測量管并且与第一分流器隔开,从而至少为第一測量管的振动,特别地还有弯曲振荡,例如在所述V模式中的那些,并且为第二測量管的与此反向相等的振动形成进ロ侧振荡节点;以及第ニ类型的第二耦接元件242,例如,与第一耦接元件同等构造的第二耦接元件,该第二耦接元件在出口侧上被固定到第一測量管IS1和第二測量管IS2并且与第二分流器202隔开,从而为第一測量管IS1的振动,特别地还有弯曲振荡,因此在所述V模式或者X模式中的那些,并且为第二測量管IS1的与此反向相等的振动形成出口侧振荡节点。同等地,管布置包括第二类型的第三耦接元件253 (例如,继而,板形的,并且,分别地,与第二类型的第一耦接元件24同等构造的第三耦接元件),该第三耦接元件在进ロ侧上固定到第三測量管和第四測量管,并且与第一分流器隔开,从而为第三測量管的振动,特别地所述弯曲振荡,和为第四測量管的与此反向相等的振动形成进ロ侧振荡节点;以及第ニ类型的第四耦接元件254,例如,与第二类型的第一耦接元件25i同等构造的第四耦接元件,该第四耦接元件在出口侧上固定到第三測量管和第四測量管,并且与第二分流器隔开,从而为第三測量管的振动,例如,所述弯曲振荡,并且为第四測量管的与此反向相等的振动形成出ロ侧振荡节点。如还直接从图4a、4b、5a、5b、6a、6b的组合清楚的,在本发明另外的实施例中,第ニ类型的四个前述耦接元件25i、252、253、254在每ー种情形中固定到四个测量管中的准确的两个,然而,否则不被固定到该四个測量管中的任何其它测量管,使得,結果,第二类型的第一和第二耦接元件25p252仅仅固定到第一和第二測量管并且第二类型的第三和第四耦接元件253、254仅仅固定到第三和第四測量管。由此,管布置,因此还有测量换能器,能够例如以如此方式制造,使得首先,第二类型的第一和第二耦接元件25p252在每ー种情形中固定到(此后的)第一和第二測量管IS1. IS2以形成第一測量管封装,并且第二类型的第三和第四耦接元件253、254在每ー种情形中固定到(此后的)第三和第四測量管183、184以形成第二測量管封装。然后,通过对应地将第一类型的第一和第二耦接元件2も、242固定到两个测量管封装中的每ー个,例如,在每ー种情形中,暂时地固定到第一測量管封装的測量管18pIS2中的至少ー个和第二测量管封装的测量管183、184中的至少ー个,能够在以后,例如就在将两个测量管封装插入(此后的)换能器外罩的所述管状中间片段71A中之前或者之后,将两个測量管封装结合到一起用于管布置。特别地还对于所述及的情形,其中尽管其部件,即,管布置、换能器外罩、分流器等具有较大的尺寸,测量换能器仍然被设计用于大于100_的大 标称直径,这具有以下优点,即,結果,仅仅在总体制造过程的较晚的时间点,相对展开的管布置才需要被作为一体件来处理。而且,这允许使用用于双重管布置的长期存在的传统的测量换能器技术,这带来了制造和存货成本显著減少。然而,在要求的情形中,例如还在其中测量换能器被设计用于50mm或者更小的较小标称直径的情形中,耦接元件25i、252、253、254还能够以对应的方式在每ー种情形中被固定到所有的四个测量管。在这里示出的实施例的示例中,第二类型的第一耦接元件ZS1被固定到在第一分流器20i和第一类型的第一耦接元件21之间延伸的第一測量管IS1的——这里分段地弯曲的——进ロ侧管片段,以及还有等同地在第一分流器20i和第一类型的第一耦接元件2も之间延伸的第二測量管182的进ロ侧管片段,并且第二类型的第二耦接元件252被固定到在第二分流器202和第一类型的第二耦接元件242之间延伸的第一測量管IS1的——这里同样是分段地弯曲的——出ロ侧管片段以及还等同地在第二分流器202和第一类型的第二耦接元件242之间延伸的第二測量管IS2的出口侧管片段。以类似的方式,第二类型的第三耦接元件253被固定到在第一分流器20i和第一类型的第一耦接元件21之间延伸的第三測量管183的——这里同样是分段地弯曲的——进ロ侧管片段,以及还有等同地在第一分流器
20,和第一类型的第一耦接元件21之间延伸的第四測量管IS4的进ロ侧管片段,并且第二类型的第四耦接元件254被固定到在第二分流器202和第一类型的第二耦接元件242之间延伸的第三測量管183的——这里继而是分段地弯曲的——出口侧管片段,以及还有等同地在第二分流器202和第一类型的第二耦接元件21之间延伸的第四測量管IS4的出ロ侧管片段。这特别地具有如此方式,使得——如直接地从图4a、4b、5a、5b的组合清楚的——至少第二类型的第一和第四耦接元件相互平行并且至少第二类型的第二和第三耦接元件相互平行。根据本发明另外的实施例,四个第二类型的前述耦接元件25p252,特别是相互等同地构造的耦接元件中的每ー个均例如被以如此方式另外地实施为板形,使得它在每一种情形中均具有矩形基本形状,或者,然而,如在图4a、4b中所示,更加卵形的基本形状。如另外地从图4a、4b、5a、5b的组合清楚的,四个耦接元件2V242、243、244能够另外地被如此实施并且被如此置放在测量换能器中,使得它们相对于假想纵向截平面YZ对称并且相对于假想纵向截平面XZ和相对于假想截平面XY成对地对称地布置。結果,因此,第二类型的耦接元件中的每ー个的质心均在每ー种情形中具有相同的到管布置的质心的距离。在进而更加简单并且进而更加准确地调节测量换能器的振荡性行为的意义上,当测量换能器具有如例如在US-A2006/0150750中提供并且如在图4a、4b、5a、5b中示意的用作节点板的前述类型的另外的其它耦接元件,例如,因此,总共8个或者12个第二类型的耦接元件时,这能够是另外非常有利的。如概略地在图5a和5b中给出的,测量管中的每ー个的管形式结合在第二类型的第一和第二耦接元件(因此也就是在应用8个或者更多的这种耦接元件的情形中在进ロ侧和出口侧各最靠近于管布置的质心的这种耦接元件,在很大程度上也就是在第二类型的在进ロ侧和出口侧各最内部的耦接元件)之间的最小距离限定了測量管中的每ー个的各ー个需要的振荡长度L18x。相应的测量管的需要的振荡长度L18x,在这种情形中如还在图5a和5b中概略地给出地,在这种情形中,对应于在第二类型的两个耦接元件25p252之间延伸的所述测量管的弯曲线的片段的长度,其中根据本发明另外的实施例,第二类型的耦接元件被如此置放在测量换能器中,使得结果测量管IS1US2US3US4中的每ー个的需要的振荡长度均小于3000mm,特别是小于2500mm和/或大于800mm。可替代地,或者补充性地,另外提出,如此构造測量管并且如此布置第一类型的耦接元件,使得所有的四个测量管IS1.182、
183、184结果均具有相同的需要的振荡长度L18x。根据本发明另外的实施例,另外地,至少在于第二类型的第一耦接元件和第二类型的第二耦接元件之间延伸的区域中,第一測量管和第二測量管——从而因此在它们的分别的需要的振荡长度中——相互平行,并且第三測量管和第四測量管也至少在于第二类型的第三耦接元件和第二类型的第四耦接元件之间延伸的区域中——从而因此它们的分别的需要的振荡长度一一相互平行。为了形成连同尽可能小的压降一起地具有足够高的振荡品质因数和高灵敏度的尽可能紧凑的测量换能器,根据本发明另外的实施例,測量管18ρ182、183、184与所述需要的振荡长度匹配,被如此确定尺寸,使得测量换能器的口径与振荡长度比D18/L18x大于O. 03,特别是大于O. 05和/或小于O. 15,其中测量换能器的口径与振荡长度比D18/L18x由第一測量管的口径D18与第一測量管的需要的振荡长度L18x的比来定义。对此而言可替代地,或者补充性地,根据本发明另外的实施例,測量管IS1US2US3US4与测量换能器的上述安装长度L11匹配,被如此确定尺寸,使得测量换能器的振荡长度与安装长度比L18x/Ln大于O. 55,特别是大于O. 6和/或小于I. 5,其中测量换能器的振荡长度与安装长度比L18xZl11由第一測量管的需要的振荡长度L18x与测量换能器的安装长度L11的比来定义。根据本发明另外的实施例,振荡传感器与需要的振荡长度匹配,被如此布置在测量换能器中,使得測量换能器的测量长度与振荡长度比L19/L18x大于O. 3,特别是大于O. 4和/或小于O. 95,其中测量换能器的测量长度与振荡长度比L19/L18x由所述测量换能器的测量长度L19与第一測量管的需要的振荡长度L18x的比来定义。而且,还能够进而根据在本受让人的未被预先公开的国际申请PCT/EP2010/058797和PCT/EP2010/058799中提出的,用于为振动式测量换能器确定最佳测量长度或者最佳测量长度与振荡长度比的准则,更加准确地确定测量长度L19,和/或测量长度与振荡长度比し1ノし1&£。特别地还在大于O. I的尽可能高的标称直径与安装长度比Dn/Ln和小于I. 5的尽可能低的振荡长度与安装长度比L18x/Ln的情形中,为了减轻可能的测量换能器对于压力的交叉灵敏度,以有利的方式,另外地,能够在测量管上使用环形加强元件,环形加强元件中的每ー个均被如此置放在測量管18ρ182、183、184中的准确地ー个之上,使得它沿着它的特别是圆形轨道、假想周边线之ー围绕其紧握;为此,还比较起初述及的US-B 6,920,798。特别地,当在測量管IS1US2US3或者IS4中的每ー个之上放置至少四个这种加强元件,特别是同等构造的加强元件时,在这种情形中,这能够是有利的。加强元件能够在这种情形中例如被如此置放在测量换能器11中,使得安装在同一測量管上的两个邻接的加强元件相互间具有一定间隔,该间隔等于所述测量管的管道外径的至少70%,然而至多这种管道外径的150%。在这种情形中,已经证明相邻加强元件相互间的特别适当的间隔位于相应的測量管18ρ182、183,或者184的管道外径的80%到120%的范围中。通过应用四个,而不是诸如关于这里的两个通过其流动的平行的弯曲測量管,则能够在一方面,在特别是小于3巴的可接受的压降下以超过99. 8%的測量准确度还对于大的质量流速或者以远超250_的大标称直径成本有效地制造所描述类型的测量换能器,并且在另一方面,充分地在使得尽管具有大的标称直径但是制造、输送、安装以及还有操作仍然能够总是以经济合理的方式进行的范围内保持这种测量换能器的安装质量以及还有空置质量。特别地还为了进ー步改进本发明,实现通过以上解释的测量——単独地或者还相 组合地——具有所讨论类型的测量换能器还能够在大标称直径的情形中被如此实施并且被如此确定尺寸,使得如由所述及的测量换能器的空置质量与管布置的总质量的比来定义的测量换能器的质量比能够被直接保持为小于3,特别是小于2. 5。
权利要求
1.一种振动式测量换能器,所述测量换能器用于记录在管线中引导的可流动介质,特别是气体、液体、粉末或者其它可流动材料的至少ー个物理测量变量,和/或用于产生用于记录在管线中引导的可流动介质,特别是气体、液体、粉末或者其它可流动材料的质量流速的科里奥利力,所述测量换能器包括 -换能器外罩(7i),特别是部分地基本管状和/或部分地在外部呈圆柱形的换能器外罩,所述换能器外罩的进ロ侧第一外罩端部利用具有相互间隔开的恰好四个特别是圆柱形、锥形或者圆锥形的流动开ロ(201A,201b,201C, 201d)的进ロ侧第一分流器QO1)来形成,并且出口侧第二外罩端部利用具有恰好四个相互间隔开的特别是圆柱形、锥形或者圆锥形的流动开ロ(202A,202B,202C,202D)的出口侧第二分流器(202)来形成; -管布置,所述管布置具有恰好四个弯折的或者弯曲(特别是至少分段地V形或者至少分段地圆弧形)的测量管ぐ^バ‘取^ふ所述测量管被连接到所述分流器じ。^。》^别是同等构造的分流器,以沿着平行连接的流动路径引导流动介质,所述测量管特别是仅仅利用所述分流器(201; 202)在换能器外罩中以可振荡方式保持和/或相对于彼此同等构造和/或成对地平行的的四个测量管(IS1, IS2, IS3,184),在所述测量管中 一第一測量管(IS1)利用进ロ侧第一測量管端部通向所述第一分流器QO1)的第一流动开ロ(201A),并且利用出口侧第二測量管端部通向所述第二分流器(202)的第一流动开ロ(202A) 一第二測量管(182),特别是至少分段地平行于所述第一測量管的第二測量管,利用进ロ侧第一測量管端部通向所述第一分流器QO1)的第二流动开ロ(201B),并且利用出口侧第ニ測量管端部通向所述第二分流器(202)的第二流动开ロ(202B), 一第三測量管(183)利用进ロ侧第一測量管端部通向所述第一分流器QO1)的第三流动开ロ(201C),并且利用出口侧第二測量管端部通向所述第二分流器(202)的第三流动开ロ(202C)并且 一第四測量管(184),特别是至少分段地平行于所述第三測量管的第四測量管,利用进ロ侧第一測量管端部通向所述第一分流器QO1)的第四流动开ロ(201D),并且利用出口侧第ニ測量管端部通向所述第二分流器(202)的第四流动开ロ(202D);和 -机电激励器机构(5),特别是利用电动的第一振荡激励器(S1)和/或相对于所述第二測量管(182)以差异方式激励所述第一測量管(IS1)的振荡的第一振荡激励器(S1),和利用电动的第二振荡激励器(52)和/或相对于所述第四測量管(IS4)以差异方式激励所述第三測量管(183)的振荡的第二振荡激励器(52),和/或与所述第一振荡激励器(S1)同等构造的第二振荡激励器(52)形成的机电激励器机构,用于产生和/或維持所述四个測量管(IS1,.182,183,184)中的每ー个的弯曲振荡,特别是对应于所述管布置的固有弯曲振荡模式的弯曲振荡; -其中所述两个分流器(201; 202)被实施并且被布置在所述测量换能器中,使得, 一假想地连接所述第一分流器QO1)的所述第一流动开ロ(201A)与所述第二分流器(202)的所述第一流动开ロ(202A)的所述测量换能器的假想第一连接轴线(Z1)平行于假想地连接所述第一分流器QO1)的所述第二流动开ロ(201B)与所述第二分流器(202)的所述第二流动开ロ(202B)的所述测量换能器的假想第二连接轴线(Z2)延伸,并且 一假想地连接所述第一分流器QO1)的所述第三流动开ロ(2(^)与所述第二分流器(202)的所述第三流动开ロ(202。)的所述测量换能器的假想第三连接轴线(Z3)平行于假想地连接所述第一分流器QO1)的所述第四流动开ロ(201D)与所述第二分流器(202)的所述第四流动开ロ(202B)的所述测量换能器的假想第四连接轴线(Z4)延伸,并且-其中所述测量管被实施并且被布置在所述测量换能器中,使得, 一所述管布置具有位于所述第一測量管和所述第三測量管之间而且所述第二測量管和所述第四測量管之间的第一假想纵向截平面(XZ),所述管布置相对于所述第一假想纵向截平面是镜面対称的,并且 --所述管布置具有垂直于它的假想第一纵向截平面(XZ)并且在所述第一測量管和所述第二測量管之间而且在所述第三測量管和所述第四測量管之间延伸的第二假想纵向截平面(YZ),所述管布置相对于所述第二假想纵向截平面同样也是镜面对称的。
2.根据前述任意一项权利要求所述的测量换能器, -其中所述激励器机构被以如此方式实施,使得所述四个測量管(181;182,183,184)中的每ー个均能够特别是同时地被激励为弯曲振荡;和/或 -其中所述激励器机构被以如此方式实施,使得所述第一測量管(IS1)和所述第二測量管(IS2)能够相对于第二假想纵向截平面(YZ)被激励为反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡,并且所述第三測量管(IS3)和所述第四測量管(184)能够相对于所述第二假想纵向截平面(YZ)被激励为反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡;和/或 -其中所述激励器机构被以如此方式实施,使得所述第一測量管(IS1)和所述第三測量管(IS3)能够相对于所述第二假想纵向截平面(YZ)被激励为反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡,并且所述第二測量管(182)和所述第四測量管(184)能够相对于所述第二假想纵向截平面(YZ)被激励为反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡。
3.根据前述任意一项权利要求所述的测量换能器,其中,所述管布置具有第一类型的固有弯曲振荡模式(V模式), -其中所述第一測量管和所述第二測量管关于在每ー种情形中与相应的测量管相关联的静态静止位置相对于所述第二假想纵向截平面(YZ)执行反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡,特别是关于在每ー种情形中平行于所述假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,并且 -其中所述第三測量管和所述第四測量管关于在每ー种情形中与相应的测量管相关联的静态静止位置相对于所述第二假想纵向截平面(YZ)执行反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡,特别是关于在每ー种情形中平行于所述假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,以这种方式,使得, --相对于所述第二假想纵向截平面(YZ),所述第一測量管的所述弯曲振荡还与所述第三測量管的所述弯曲振荡反向相等,并且 --相对于所述第二假想纵向截平面(YZ),所述第二測量管的所述弯曲振荡还与所述第四測量管的所述弯曲振荡反向相等。
4.根据前述任意一项权利要求所述的测量换能器,其中,所述管布置具有第二类型的固有弯曲振荡模式(X模式),-其中所述第一測量管和所述第二測量管关于在每ー种情形中与相应的测量管相关联的静态静止位置相对于所述第二假想纵向截平面(YZ)执行反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡,特别是关于在每ー种情形中平行于所述假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,并且 -其中所述第三測量管和所述第四測量管关于在每ー种情形中与相应的测量管相关联的静态静止位置相对于所述第二假想纵向截平面(YZ)执行反向相等的弯曲振荡,特别是相对于所述第二假想纵向截平面(YZ)対称的弯曲振荡,特别是关于在每ー种情形中平行于所述假想连接轴线中的至少两条的假想振荡轴线的悬臂弯曲振荡,以这种方式,使得, --相对于所述第二假想纵向截平面(YZ),所述第一測量管的所述弯曲振荡还与所述第四測量管的所述弯曲振荡反向相等,并且 --相对于所述第二假想纵向截平面(YZ),所述第二測量管的所述弯曲振荡还与所述第三測量管的所述弯曲振荡反向相等。
5.根据前述任意一项权利要求所述的测量换能器,其中所述第一类型的弯曲振荡模式的固有频率f18v,特别是能够在管布置完全填充有水的情形中测量的固有频率,不同于所述第二类型的弯曲振荡模式的固有频率f18x,特别是能够在管布置完全地填充有水的情形中和/或与第一类型的弯曲振荡模式的固有频率f18V同时测量的固有频率,特别超出了 10HZ,特别是以这种方式,所述第一类型的弯曲振荡模式的所述固有频率f18V比所述第二类型的弯曲振荡模式的所述固有频率f18X大超过10Hz,或者所述第一类型的弯曲振荡模式的所述固有频率f18V比所述第二类型的弯曲振荡模式的所述固有频率f18X小超过10Hz。
6.根据权利要求3-5中任意一项所述的测量换能器,其中所述激励器机构被以如此方式实施,使得所述第一类型的弯曲振荡模式能够被激励。
7.根据权利要求4-6中任意一项所述的测量换能器,其中所述激励器机构被以如此方式实施,使得所述第二类型的弯曲振荡模式能够被激励,特别是与所述第一类型的弯曲振荡模式同时地被激励。
8.根据前述任意一项权利要求所述的测量换能器,其中所述两个分流器(201;202)被实施并且被布置在所述测量换能器中,使得所述测量换能器的第一假想纵向截平面(XZ1)平行于所述测量换能器的第二假想纵向截平面(XZ2),特别是以这种方式,即所述管布置的所述第一假想纵向截平面(XZ)位于所述测量换能器的所述第一和所述第二假想纵向截平面(XZ1, XZ2)之间和/或平行于所述测量换能器的所述第一和所述第二假想纵向截平面(XZ1,XZ2),其中,所述第一假想连接轴线(Z1)和所述第二假想连接轴线(Z2)(特别是平行于与所述管线对准的所述测量换能器的主流动轴线的第一和第二假想连接轴线)在所述测量换能器的所述第一假想纵向截平面(XZ1)中延伸,所述假想第三连接轴线(Z3)和所述假想第四连接轴线(Z4)在在所述测量换能器的所述第二假想纵向截平面(XZ2)中延伸。
9.根据前述任意一项权利要求所述的测量换能器,其中所述两个分流器(201;202)被实施并且被布置在所述测量换能器中,使得所述测量换能器的第三假想纵向截平面(YZ1)平行于所述测量换能器的第四假想纵向截平面(YZ2),其中所述假想第一连接轴线(Z1)和所述假想第三连接轴线(Z3)在所述测量换能器的所述第三假想纵向截平面(Y4)内延伸,所述假想第二连接轴线(Z2)和所述假想第四连接轴线(Z4)在所述测量换能器的所述第四假想纵向截平面(YZ2)内延伸。
10.根据前述任意一项权利要求所述的测量换能器,其中所述测量管被实施并且被布置在所述测量换能器中,使得所述管布置的所述第二假想纵向截平面(YZ)在所述测量换能器的所述第三假想纵向截平面(YZ1)和所述测量换能器的所述第四假想纵向截平面(YZ2)之间延伸,特别是以这种方式,即所述管布置的所述第二假想纵向截平面(YZ)平行于所述测量换能器的所述第三假想纵向截平面(YZ1)并且平行于所述测量换能器的所述第四假想纵向截平面(YZ2)。
11.根据前述任意一项权利要求所述的测量系统,其中所述四个測量管中的每ー个均具有測量管峰部,所述测量管峰部被定义为相应的测量管距所述第一假想纵向截平面(XZ)的最大垂直距离。
12.根据前述任意一项权利要求所述的测量系统,其中所述管布置具有垂直于所述第ー假想纵向截平面(XZ)并且还垂直于所述第二假想纵向截平面(YZ)的假想截平面(XY)。
13.根据前述任意一项权利要求所述的测量换能器, -其中所述管布置的质心位于所述假想截平面(XY)中;和/或 -其中所述管布置相对于所述假想截平面(XY)是镜面対称的;和/或 -其中所述四个測量管中的每ー个均具有測量管峰部,并且所述假想截平面(XY)在它相应的测量管峰部中剖切所述四个測量管中的每ー个,其中所述测量管峰部被定义为相应的測量管距所述第一假想纵向截平面(XZ)的最大垂直距离。
14.根据前述任意一项权利要求所述的测量换能器,进ー步包括 -第一类型的第一耦接元件(24i),所述第一类型的第一耦接元件(24i)与所述第一分流器以及与所述第二分流器隔开并且在所述进ロ侧上固定到所述四个測量管中的每ー个,特别是具有H或者X形基本形状的第一类型的第一耦接元件(24J,所述第一类型的第一耦接元件(2も)用于调谐所述管布置的固有振荡模式的固有频率,特别是弯曲振荡模式的固有频率,以及 -第一类型的第二耦接元件(242),所述第一类型的第二耦接元件(242)与所述第一分流器以及与所述第二分流器隔开并且在所述出口侧上固定到所述四个測量管中的每ー个,特别是具有H或者X形基本形状和/或基本与所述第一类型的第一耦接元件(24J同等构造的第一类型的第二耦接元件(242),所述第一类型的第二耦接元件(242)用于调谐所述管布置的固有振荡模式的固有频率,特别是弯曲振荡模式的固有频率。
15.根据前述任意一项权利要求所述的测量换能器, -其中所述第一类型的两个耦接元件(241; 242)中的每ー个均相对于所述管布置的所述第一假想纵向截平面(XZ)对称;和/或 -其中所述第一类型的两个耦接元件(241; 242)中的每ー个均相对于所述管布置的所述第二假想纵向截平面(YZ)对称;和/或 -其中所述第一类型的两个耦接元件(241; 242)相对于所述管布置的所述假想截平面(XY)各自对称地布置在所述测量换能器中,其中所述管布置的所述假想截平面(XY)垂直于所述管布置的所述第一假想纵向截平面(XZ)以及还垂直于所述管布置的第二假想纵向截平面(YZ);和/或 -其中所述第一类型的两个耦接元件(241; 242)相对于所述管布置的所述假想截平面(XY)等距离地各自布置在所述测量换能器中,其中所述管布置的所述假想截平面(XY)垂直于所述管布置的所述第一假想纵向截平面(XZ)以及还垂直于所述管布置的所述第二假想纵向截平面(YZ);和/或 -其中所述第一类型的两个耦接元件(241; 242)平行于所述管布置的所述假想截平面(XY)延伸地各自布置在所述测量换能器中,其中所述管布置的所述假想截平面(XY)垂直于所述管布置的所述第一假想纵向截平面(XZ)以及还垂直于所述管布置的所述第二假想纵向截平面(YZ);和/或 -其中所述第一类型的两个耦接元件(241; 242)中 的每ー个均被实施并且置放在所述测量换能器中,使得它相对于所述管布置的所述第一假想纵向截平面(XZ)和/或相对于所述管布置的所述第二假想纵向截平面(YZ)对称;和/或 -其中所述第一类型的两个耦接元件(241; 242)中的每ー个均被实施并且置放在所述测量换能器中,使得它到所述管布置的所述假想截平面(XY)上的投影是X形的,或者它到所述管布置的所述假想截平面(XY)上的投影是H形的,其中所述管布置的所述假想截平面(XY)垂直于所述管布置的所述第一假想纵向截平面(XZ)以及还垂直于所述管布置的所述第二假想纵向截平面(YZ);和/或 -其中所述第一类型的第一耦接元件(24P以及所述第一类型的第二耦接元件(242)在每ー种情形中均利用板形元件部分形成。
16.根据权利要求14-15中任意一项所述的测量换能器,其中所述第一类型的两个耦接元件(241; 242)中的每ー个均是至少分段地弓形的,特别是以这样的方式,即每ー个相对于所述管布置的所述假想截平面(XY)均是至少分段地凸形的,其中所述管布置的所述假想截平面(XY)在所述第一类型的第一耦接元件(24J和所述第一类型的第二耦接元件(24J之间延伸并且垂直于所述管布置的所述第一假想纵向截平面(XZ)以及还垂直于所述管布置的所述第二假想纵向截平面(YZ )。
17.根据权利要求14-16中任意一项所述的测量换能器,其中所述第一类型的第一耦接元件(21)以及所述第一类型的第二耦接元件(24P相对于所述管布置的所述假想截平面(XY)是至少分段地凸形的,其中所述管布置的所述假想截平面(XY)在所述第一类型的第一耦接元件(21)和所述第一类型的第二耦接元件(24J之间延伸并且垂直于所述管布置的所述第一假想纵向截平面(XZ)以及还垂直于所述管布置的所述第二假想纵向截平面(YZ)。
18.根据权利要求14-17中任意一项所述的测量换能器,进ー步包括 -第二类型的第一耦接元件(25P,特别是板形的第二类型的第一耦接元件(25J,所述第二类型的第一耦接元件(25J在所述进ロ侧上固定到所述第一測量管和所述第二测量管,所述第二类型的第一耦接元件(25P用于为所述第一測量管的振动,特别是弯曲振荡,以及还为所述第二測量管的与此反向相等的振动,特别是弯曲振荡,形成进ロ侧振荡节点; -第二类型的第二耦接元件(252),特别是板形的第二类型的第二耦接元件(252)和/或与所述第二类型的第一耦接元件(25J同等构造的第二类型的第二耦接元件(252)和/或平行于所述第二类型的第一耦接元件(25P的第二类型的第二耦接元件(252),其中,为了为所述第一測量管的振动,特别是弯曲振荡,以及还为所述第二測量管的与此反向相等的振动,特别是弯曲振荡,形成出口侧振荡节点,所述第二类型的第二耦接元件(252)在所述出口侧上固定到所述第一測量管和所述第二測量管; -第二类型的第三耦接元件(253),特别是板形的第二类型的第三耦接元件(253)和/或与所述第二类型的第一耦接元件(25J同等构造的第二类型的第三耦接元件(253)和/或平行于所述第二类型的第二耦接元件(252)的第二类型的第三耦接元件(253),其中,为了为所述第三測量管的振动,特别是弯曲振荡,以及还为所述第四測量管的与此反向相等的振动,特别是弯曲振荡,形成进ロ侧振荡节点,所述第二类型的第三耦接元件(253)在所述进ロ侧上固定到所述第三測量管和所述第四測量管并且与所述第一分流器以及所述第二分流器隔开;以及 -第二类型的第四耦接元件(254),特别是板形的第二类型的第四耦接元件(254)和/或与所述第二类型的第一耦接元件(25J同等构造的第二类型的第四耦接元件(254)和/或平行于所述第二类型的第一耦接元件(25P的第二类型的第四耦接元件(254),其中,为了为所述第三測量管的振动,特别是弯曲振荡,以及还为所述第四測量管的与此反向相等的振动,特别是弯曲振荡,形成出口侧振荡节点,所述第二类型的第四耦接元件(254)在所述 出口侧上固定到所述第三測量管和所述第四測量管并且与所述第一分流器以及所述第二 分流器以及与所述第一耦接元件隔开。
19.根据前述任意一项权利要求所述的测量换能器, -其中所述第二类型的第一耦接元件(25P被固定到在所述第一分流器(20J和所述第一类型的第一耦接元件(2も)之间延伸的所述第一測量管(IS1)的管片段以及在所述第一分流器(20i)和所述第一类型的第一耦接元件(21)之间延伸的所述第二測量管(IS2)的管片段; -其中所述第二类型的第二耦接元件(252)被固定到在所述第二分流器(202)和所述第一类型的第二耦接元件(242)之间延伸的所述第一測量管(IS1)的管片段以及在所述第二分流器(202)和所述第一类型的第二耦接元件(242)之间延伸的所述第二測量管(IS2)的管片段; -其中所述第二类型的第三耦接元件(253)被固定到在所述第一分流器(20J和所述第一类型的第一耦接元件(2も)之间延伸的所述第三測量管(IS3)的管片段以及在所述第一分流器QO1)和所述第一类型的第一耦接元件(21)之间延伸的所述第四測量管(IS4)的管片段;并且 -其中所述第二类型的第四耦接元件(254)被固定到在所述第二分流器(202)和所述第一类型的第二耦接元件(242)之间延伸的所述第三測量管(IS3)的管片段以及在所述第二分流器(202)和所述第一类型的第二耦接元件(21)之间延伸的所述第四測量管(IS4)的管片段。
20.根据权利要求18-19中任意一项所述的测量换能器,其中所述第一測量管,特别是所述测量管中的每ー个,的需要的振荡长度L18x小于3000mm,特别是小于2500mm和/或大于800mm,其中所述第一測量管的需要的振荡长度L18x对应于在所述第一类型的第一耦接元件和所述第一类型的第二耦接元件之间延伸的弯曲线的片段的长度。
21.根据权利要求20所述的测量换能器,其中所述测量换能器的口径与振荡长度比D18/L18x大于O. 03,特别是大于O. 05和/或小于O. 15,其中所述测量换能器的口径与振荡长度比D18/L18x由所述第一測量管(IS1)的口径D18与所述第一測量管(IS1)的需要的振荡长度L18x的比来定义。
22.根据前述任意一项权利要求所述的测量换能器, -其中所述第一測量管具有等于所述第二測量管的口径,特别是还等于所述第三測量管的口径以及等于所述第四測量管的口径;和/或 -其中所述四个測量管(IS1, IS2, IS3,184)关于它们的管壁的材料,和/或关于它们的几何管尺寸,特别是測量管长度、管壁厚度、管外径和/或口径,具有同等的构造;和/或 -其中所述四个測量管(IS1, IS2, IS3,184)的管壁的材料至少部分地包括钛和/或锆和/或不锈钢和/或双相钢和/或超级双相钢;和/或 _其中所述换能器外罩(71)、所述分流器(201,202)和所述测量管(181,182,183,184)的管壁在每ー种情形中均包括钢,特别是不锈钢和/或高強度钢。
23.根据前述任意一项权利要求所述的测量换能器,其中所述四个測量管(181;182,IS3,184),特别是同等地大的测量管,中的每ー个均具有大于40mm,特别是大于60mm,的ロ径 D18。
24.根据权利要求23所述的测量换能器,其中所述测量管(IS1,IS2, IS3,184)被弯曲并且布置,使得所述管布置的口径与高度比D18/Q18大于O. 05,特别是大于O. 07和/或小于O. 35,特别是小于O. 2,其中所述管布置的口径与高度比D18/Q18由所述第一測量管的口径D18与所述管布置的最大横向膨胀Q18的比来定义,所述管布置的最大横向膨胀Q18是从所述第一測量管(IS1)的峰部到所述第三測量管(IS3)的峰部来测量的。
25.根据前述任意一项权利要求所述的测量换能器,其中所述第一分流器QO1)具有用于将所述测量换能器连接到用于向所述测量换能器供应介质的管线的管片段的凸缘(6。,并且所述第二分流器(202)具有用于将所述测量换能器连接到用于从所述测量换能器移除介质的管线的管片段的凸缘(62)。
26.根据前述任意一项权利要求所述的测量换能器,其中所述换能器外罩U1)的中间片段(71A)至少部分地利用直的,特别是圆柱形的支撑管形成,特别是以这样的方式形成,SP所述第一測量管在第一侧上从所述支撑管向外延伸的片段和所述第二測量管在所述第一侧上从所述支撑管向外延伸的片段被所述换能器外罩的第一外罩帽体包围,并且所述第三測量管在第二侧(与所述第一侧相对)上从所述支撑管向外延伸的片段和所述第四測量管在所述第二侧上从所述支撑管向外延伸的片段被所述换能器外罩的第二外罩帽体,特别是与所述第一外罩帽体同等地构造的第二外罩帽体包围。
27.根据权利要求25-26中任意一项所述的测量换能器,其中所述凸缘(61;62)中的每ー个均具有用于将所述测量换能器与所述管线的对应应的管片段的流体密闭连接的密封表面(61A,62A),并且其中在所述两个凸缘(61;62)的所述密封表面(61A,62A)之间的距离限定所述测量换能器的安装长度L11,特别是大于1200mm和/或小于3000mm,特别是小于2500mm的安装长度。
28.根据前述任意一项权利要求所述的测量换能器,其中所述第一測量管(IS1)的測量管长度L18大于1000mm,特别是大于1200mm和/或小于3000mm,特别是小于2500mm,所述第一測量管(IS1)的測量管长度L18对应于所述第一測量管在所述第一分流器(20J的所述第一流动开ロ(201A)和所述第二分流器(202)的所述第一流动开ロ(202A)之间延伸的弯曲线的片段的长度。
29.根据权利要求27和28中任意一项所述的测量换能器,其中所述测量换能器的測量管长度与安装长度比L18/Ln大于O. 7,特别是大于O. 8和/或小于I. 2,所述测量换能器的測量管长度与安装长度比L18/Ln由所述第一測量管的所述测量管长度L18与所述测量换能器的所述安装长度L11的比来定义。
30.根据前述任意一项权利要求所述的测量换能器,进ー步包括传感器布置(19),所述传感器布置(19)对于所述测量管(IS1, IS2, IS3,184)的振动,特别是利用所述激励器机构激励的弯曲振荡,作出反应,所述传感器布置(19)特别是电动传感器布置和/或利用相互同等构造的振荡传感器(191; 192,193,194)形成的传感器布置,以产生代表所述测量管(IS1,182,183, 184)的振动,特别是弯曲振荡的振荡信号。
31.根据前述任意一项权利要求所述的测量换能器,其中所述传感器布置(19)利用进ロ侧第一振荡传感器(14),特别是电动的进ロ侧第一振荡传感器(Ig1)和/或以差异方式记录所述第一測量管(IS1)相对于所述第二測量管(IS2)的振荡的进ロ侧第一振荡传感器(19i),以及利用出口侧第二振荡传感器(192),特别是电动的出口侧第二振荡传感器(192)和/或以差异方式记录所述第一測量管(IS1)相对于所述第二測量管(IS2)的振荡的出ロ侧第二振荡传感器(192)形成。
32.根据前述任意一项权利要求所述的测量换能器,其中所述传感器布置(19)利用进ロ侧第三振荡传感器(193),特别是电动的进ロ侧第三振荡传感器(193)和/或以差异方式记录所述第三測量管(183)相对于所述第四測量管(184)的振荡的进ロ侧第三振荡传感器(193)和/或与所述第一振荡传感器(叫)串联电连接的进ロ侧第三振荡传感器(193),以及利用出口侧第四振荡传感器(194),特别是电动的出ロ侧第四振荡传感器(194)和/或以差异方式记录所述第三測量管(IS3)相对于所述第四測量管(IS4)的振荡的电动的出口侧第四振荡传感器(194)和/或与所述第二振荡传感器(192)串联电连接的出ロ侧第四振荡传感器(194)形成。
33.根据前述任意一项权利要求所述的测量换能器,其中所述第一和所述第三振荡传感器(191;193)被被以如此方式相互串联电连接,使得公共的振荡性信号代表所述第一和所述第三測量管(IS1,183)相对于所述第二和所述第四測量管(182,184)的共享的进ロ侧振荡。
34.根据前述任意一项权利要求所述的测量换能器,其中所述第二和所述第四振荡传感器(192,194)被以如此方式相互串联电连接,使得公共的振荡性信号代表所述第一和所述第三測量管(IS1,183)相对于所述第二和所述第四測量管(182,184)的共享的出ロ侧振荡。
35.根据权利要求31-34中任意一项所述的测量换能器,其中所述第一振荡传感器(Ig1)利用在所述第一測量管(IS1)上保持的永久磁体和在所述第二測量管(IS2)上保持并且被相应的永久磁体的磁场穿透的柱形线圈形成,并且其中所述第二振荡传感器(192)利用在所述第一測量管(IS1)上保持的永久磁体和在所述第二測量管(IS2)上保持的并且被相应的永久磁体的磁场穿透的柱形线圈形成。
36.根据权利要求32-35中任意一项所述的测量换能器,其中所述第三振荡传感器(193)利用在所述第三測量管(IS1)上保持的永久磁体和在所述第四測量管(182)上保持的并且被相应的永久磁体的磁场穿透的柱形线圈形成,并且其中所述第四振荡传感器(194)利用在所述第三測量管(IS1)上保持的永久磁体和在所述第四測量管(IS2)上保持的并且被相应的永久磁体的磁场穿透的柱形线圈形成。
37.根据权利要求36所述的测量系统, -其中所述第一振荡传感器的所述柱形线圈和所述第三振荡传感器的所述柱形线圈(191;193)被串联电连接,并且 -其中所述第二振荡传感器的所述柱形线圈和所述第四振荡传感器的所述柱形线圈(191;193)被串联电连接。
38.一种用于制造根据权利要求18所述的测量换能器的方法,包括如下步骤 -在每ー种情形中,将所述第二类型的第一耦接元件(25P和所述第二类型的第二耦接元件(252)固定到所述第一測量管(IS1)和所述第二測量管(IS2)以制造第一測量管封装; -在每ー种情形中,将所述第二类型的第三耦接元件(253)和所述第二类型的第四耦接元件(254)固定到所述第三測量管(IS2)和所述第四測量管(IS4)以制造第二測量管封装;以及 -在每ー种情形中,将所述第一类型的第一耦接元件(21)和所述第一类型的第二耦接元件(242)固定到所述第一測量管封装的所述测量管(IS1,182)中的至少ー个,特别是每ー个,并且固定到所述第二測量管封装的所述测量管(183,184)中的至少ー个,特别是每ー个。
39.ー种测量系统,用于测量特别是以大于1000t/h的质量流速至少有时在管线中流动的介质,特别是气体、液体、粉末或者其它可流动材料的密度和/或质量流速,特别地还測量在一定时间间隔之上总计的总质量流量,特别是作为在线測量装置和/或作为具有紧凑构造的測量装置实施的測量系统,所述测量系统包括根据权利要求I至37项之一所述的测量换能器,特别是根据权利要求38制造的测量换能器;和与所述测量换能器电耦接的发射器电子器件,特别是被布置在以机械方式与换能器外罩连接的电子器件外罩中的发射器电子器件,以激活所述测量换能器,特别是它的激励器机构,并且评价由所述测量换能器传递的振荡信号。
40.根据权利要求39所述的测量系统,其中由所述激励器机构激励的所述四个測量管同时在操作期间执行弯曲振荡,特别是在第一类型的弯曲振荡基本模式中的弯曲振荡。
41.根据权利要求39-40中任意一项所述的測量系统,其中所述激励器机构(5)包括至少第一振荡激励器,作用在所述第一和所述第二測量管,特别是以差异方式作用在所述第一和所述第二測量管,特别是与其固定的第一振荡激励器,和/或电动的第一振荡激励器,以将利用所述发射器电子器件馈送到所述激励器机构中的电激励功率转换成实现所述第一測量管(IS1)的弯曲振荡并且实现所述第二測量管(IS2)的弯曲振荡的机械激励器力,特别是具有对应于所述管布置的固有振荡模式的固有频率的至少ー个信号频率的可变的和/或周期的弯曲振荡,并且所述第二測量管(182)的弯曲振荡相对于所述管布置的所述第二假想纵向截平面(YZ)与所述第一測量管(IS1)的所述弯曲振荡反向相等。
42.根据前述任意一项权利要求所述的测量系统,其中所述第一振荡激励器(S1)利用在所述第一測量管(IS1)上保持的永久磁体,特别是在所述测量管峰部的区域中在所述第一測量管(IS1)上保持的永久磁体,和在所述第二測量管(IS2)上保持的柱形线圈,特别是在所述测量管峰部的区域中在所述第二測量管(182)上保持的并且被所述永久磁体的磁场穿透的柱形线圈形成。
43.根据权利要求41-42中任意一项所述的測量系统,其中所述激励器机构进一歩包括第二振荡激励器,特别是以差异方式作用在所述第三和所述第四測量管上,特别是与其固定的第二振荡激励器,和/或电动的第二振荡激励器和/或与所述第一振荡激励器等同地构造的第二振荡激励器,和/或与所述第一振荡激励器串联电连接的第二振荡激励器,以将利用所述发射器电子器件馈送到所述激励器机构中的电激励功率转换成机械激励器力,所述机械激励器カ实现所述第三測量管(IS1)的可变的和/或周期的弯曲振荡,特别是具有对应于所述管布置的固有振荡模式的固有频率的至少ー个信号频率的弯曲振荡,并且实现相对于所述管布置的所述第二假想纵向截平面(YZ)与所述第三測量管(IS1)的所述弯曲振荡反向相等的、所述第四测量管(182)的弯曲振荡。
44.根据前述任意一项权利要求所述的测量系统,其中所述第二振荡激励器(52)利用在所述第三測量管(IS1)上保持的永久磁体,特别是在所述测量管峰部的区域中在所述第三測量管(IS1)上保持的永久磁体,和在所述第四測量管(182)上保持的柱形线圈,特别是 在所述测量管峰部的区域中在所述第四測量管(182)上保持的并且被相应的永久磁体的磁场穿透的的柱形线圈形成。
45.根据权利要求39-44中任意一项所述的测量系统, -其中所述发射器电子器件利用被供应到所述激励器机构的至少ー个可变的和/或至少有时周期的电驱动器信号,特别是具有对应于所述管布置的固有振荡模式的固有频率的至少ー个信号频率的驱动器信号,特别是具有可变的最大电压电平和/或可变的最大电流电平的驱动器信号,将电激励功率馈送到所述激励器机构中;并且 -其中所述激励器机构将电激励功率,特别是取决于所述至少一个驱动器信号的电压电平和电流电平的电激励功率,至少部分地转换成所述第一測量管(IS1)的弯曲振荡和相对于所述管布置的所述第二假想纵向截平面(YZ)与所述第一測量管(IS1)的弯曲振荡反向相等的、所述第二测量管(182)的弯曲振荡,以及转换成所述第三测量管(IS1)的弯曲振荡和相对于所述管布置的所述第二假想纵向截平面(YZ)与所述第三測量管(183)的弯曲振荡反向相等的、所述第四測量管(184)的弯曲振荡。
46.根据权利要求45所述的测量系统,其中所述至少一个驱动器信号被馈送到所述第ー振荡激励器(W1)中,特别是以这种方式,由利用所述第一驱动器信号提供的可变的第一激励器电压驱动,第一激励器电流流过它的柱形线圈。
47.根据权利要求45或46所述的测量系统,其中所述至少一个驱动器信号具有多个信号分量,所述多个信号分量具有相互间不同的信号频率,并且其中所述第一驱动器信号的信号分量中的至少ー个(特别是相对于信号功率支配性的信号分量)具有对应于所述管布置的固有振荡模式的固有频率,特别是所述第一类型的弯曲振荡模式的固有频率的信号频率,在所述第一类型的弯曲振荡模式中所述四个測量管中的每ー个均执行弯曲振荡。
48.根据权利要求41-47中任意一项所述的測量系统,其中由于以下事实,即,利用所述第一振荡激励器产生并且作用于所述第一測量管上的激励器力与利用所述第一振荡激励器同时产生并且作用于所述第二測量管上的激励器力反向,特别是反向相等,所述激励器机构实现所述测量管的振荡,特别是在所述第一类型的第一弯曲振荡模式中的弯曲振荡。
49.根据权利要求39-48中任意一项所述的测量系统, -其中所述发射器电子器件,基于在所述激励器机构中转换的电激励功率,产生代表流动介质的粘度的粘度测量值;和/或 -其中所述发射器电子器件,基于由所述测量换能器传递的振荡信号,产生代表流动介质的质量流速的质量流量测量值和/或代表流动介质的密度的密度測量值。
50.根据权利要求1-38中任意一项所述的测量换能器或根据权利要求39-49中任意一项所述的測量系统,用于测量至少有时以大于1000t/h,特别是大于1500t/h的质量流速在エ艺线路,特别是管线中流动的介质,特别是气体、液体、粉末或者其它可流动材料的密度和/或质量流速,特别地还有在一定时间间隔之上总计的总质量流量,和/或粘度和/或雷诺数,的用途。
全文摘要
本发明涉及一种测量换能器,包括换能器外罩(71),所述换能器外罩的进口侧外罩端部利用具有相互间隔开的恰好四个流动开口(201A,201B,201C,201D)的进口侧分流器(201)形成,并且出口侧外罩端部利用具有相互间隔开的恰好四个流动开口(202A,202B,202C,202D)的出口侧分流器(202)形成;以及具有被连接到分流器(201,202)以形成运送流动介质的平行流体连接的流动路径的恰好四个弯折的测量管(181,182,183,184)的管布置,其中所述四个测量管中的每一个在每一种情形中均利用进口侧测量管端部通向分流器(201)的流动开口之一并且利用出口侧测量管端部通向分流器(202)的流动开口之一。在本发明的测量换能器的情形中,两个分流器(201,202)另外地形成并且布置在测量换能器中,使得所述管布置具有在测量管中的第一和第二个之间以及还在测量管中的第三个和第四个之间延伸的假想纵向截平面(YZ),相对于所述假想纵向截平面,管布置是镜面对称的,和在测量管中的第一个和第三个之间以及还在测量管中的第二个和第四个之间并且垂直于假想纵向截平面(YZ)的假想纵向截平面(XZ),相对于所述假想纵向截平面,管布置同样是镜面对称的。所述测量换能器的机电激励器机构(5)用于产生和/或维持所述四个测量管(181,182,183,184)的机械振荡。
文档编号G01F1/84GK102667421SQ201080058734
公开日2012年9月12日 申请日期2010年11月25日 优先权日2009年12月21日
发明者克里斯托夫·胡伯, 克里斯蒂安·许策, 恩尼奥·比托, 阿尔弗雷德·里德, 马塞尔·布朗 申请人:恩德斯+豪斯流量技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1