用于测定并监视测量介质的含量或特性的装置和方法,特别地用于测定并监视生理血液值的制作方法

文档序号:6129248阅读:169来源:国知局
专利名称:用于测定并监视测量介质的含量或特性的装置和方法,特别地用于测定并监视生理血液值的制作方法
技术领域
本发明涉及用于测定并监视测量介质的含量或特性的装置和方法,特别地用于测定并监视生理血液值,其具有独立权利要求的前序部分的特征。当前,在医学和非医学的多种应用中都存在有监视并测量测量介质的含量或特性。举例来说,应实时测定并持续监视病人的血液的含量(例如,血糖或氧饱和度)或非医学应用(例如过程监控)的过程流体(液体或气体)的含量。
背景技术
举例来说,脉动测氧法是一种测定出动脉血液的脉动率(PR)和氧饱和百分率 (%Sp02)的方法。目前,这是一种既定的方法并使用在众多医学领域中,例如在重病特别护理中,用于监视睡眠或在手术中进行监视。在底层技术中,通常使用光传感器以较大的时钟速度来记录由LEDs产生的两个波长(典型地为660nm和940nm)。能够从可变和固定区域中不同的信号强度中提取出期望的测量值。对观察光谱区域透明的组织,当变化引起较强及特别地变化的外界光时,还生成有附加信号。不论哪种情况,这些附加信号通常由无LED照明的第三测量点获取。一个普遍的问题是在光测量技术中引入到组织中的光量是有限的。否则,将对组织造成热效应引起的损害。因此,在已知的测量方法和装置中,测量时间都相当的长。这导致了信噪比很低。然而,最佳信噪比是强制性的,特别是当测量的物质以很小的浓度存在时(例如,测量血糖时,所测量的浓度的范围约为mmo I/1)。目前,期望的是除了血红蛋白的氧饱和度,还获取其他的血液参数,以在监护病患时获得重要的参数。首先,重要的是监视血液中的气体平衡。W02008/132205A1描述了可用于测定组织中的CO2分压且可用于脉动测氧法的传感器。不同的血红蛋白衍化物是用于监视的其他重要的值。这包括测定总血红蛋白浓度(ctHb),测定碳氧血红蛋白浓度(Hbco)或其他血液值。然而,这些其他的血液值并不能通过上述的技术(两波长)来获取。用于获取这些值的前提是非常精确地测定动脉血液的光谱特性,以及在较宽的光谱范围上测定组织的光谱特性。待测量的另一血液值是血糖含量。糖尿病是世界范围内最常见的代谢疾病之一。其患病率随着饮食习惯的改变正大量增加。因此,假定2 OIO年约28 5万人(世界人口的
6.4%)患有糖尿病,则在2030年将有439万人(世界人口的7. 7%)患病。这就是为什么体液中的葡萄糖浓度是临床化学中最常测定的一个参数的原因之一。这里,人们理想上愿意使用无创伤方法来测定精确的血糖水平。用于监视病患,W02006/094169A1提出了一种用于检测其他血液参数的基于LED的测光系统,该系统具有多个(典型地8个)不同波长的LEDs,因而能够采集不同光谱节点的信号。然而,这一技术有一些缺点。LEDs被逐一地开启并被宽带传感器以一定时间间隔记录,因而当变化的外界光在传感器上产生影响并移动时其通常具有虚拟叠加的信号。由于在该技术中逐一开启多个LEDs、即节点,且主要依据彼此之间的相对信号强度进行评价,因而这种叠加具有特别大的影响。此外,LEDs具有基于温度的发射曲线,且介于20nm与30nm之间的光谱的半峰全宽通常加强LED发射,从而不能精确地限制到窄的光谱范围,即精确地限制到相关化学组分。此外,较少数量的节点与皮肤表面和组织的特性结合是因人而异的,因此仅能够在有限的程度上对血液组分进行精确分离和定量评价。仅能够根据测量生成几个节点的比率并使用该比率用于分析化学组分。然而,血液的光谱性以及特别地组织透射何种光的特性(因人而异的不同散射特性以及波长依赖性)对测量值有着较大的影响,因此使用这种方法的测量很容易出错。目前,多种改进促使了可靠地测定血液和诸如血浆和由其得到的血清的流体、以及诸如尿液的其他体液中的葡萄糖浓度。最近几年,特别地建立了多种基于酶的方法。然而,这种情况下,多数这种方法需要抽出少量的血,因而是一种部分创伤性方法。当前,咨询医师时较少测量葡萄糖,而对于特护病房中的病患,每小时都需数次测量葡萄糖值。对于胰岛素依赖型糖尿病患者,借助于测试条仪器一天进行六次自测是常用的,以获得改进的但并非理想的血糖浓度的校准。这种测量需要抽取血液,这让病人感觉不适。此外,由于血液是被压出的因而通常与组织流体并不平衡。这导致了不精确性。因此,期望的是对用于医学工程的非创伤性方法和相关装置进行改进。为了测定血糖,需要定量地测定血液中的葡萄糖浓度。已发展有允许无试剂地测定复杂体液中的葡萄糖的光谱方法。举例来说,已公开 有在近红外区域的光谱测量(NIR光谱法)。其只能探测较小的葡萄糖浓度(约2mmol/l至约30mmol/l ;目标范围5. 0_7. Ommol/1)。此外,血液中存在非常高的水含量(典型地大于80%),因而导致了 NIR光谱法中吸收较强。此外,血液包含有变化和未知浓度的其他物质,须排除交叉敏感性。如果存在着非创伤性测量,则需要在存在周围组织的身体中执行测量,且考虑或隔离不同介质的影响。此外,在非创伤性测量方法中需选择身体上的一个测量点。有利的测量点不必总是要求单独存在的血液,而是存在于组织中的血液。此外,组织被皮肤层覆盖,而皮肤层的特性因人而异,且随时间发生很大的变化。例如,皮肤的水含量浮动很大且尤其依赖于汗水的形成。此外,皮肤具有不同的结构且在多处具有皮下脂肪层,而脂肪层的水含量非常低且血液灌注度非常低,因而特别地与血糖不平衡。此外,通常需要考虑在光学测量区域上还存在着骨组织。不言而喻的是,骨组织与含量不平衡。可以不同的方式进行化学组分的基于波长的检测。可在离散的节点上实施测量。通常,被称为光度测量技术或多光谱光度测定法,两者的实施皆使用多个不同波长的光发射器或宽带“白光”,并使用多个光谱限定的接收器(滤波技术)。借由LEDs或激光器,及借由宽带照明和窄带光接收器上的滤波器可实现不同波长的光发射器。如果使用LEDs,附加的技术难点在于它们具有相对较大的辐射分布且随着发射器升温辐射分布发生变化。例如,US5086229描述了这种技术的一个例子。这些测量技术典型地具有被记录并评价的三个至约十个波长或波长范围。这种测量技术对测定血糖的应用并不是有利的。首先,采用这种测量技术需要实现多个在800nm至1200nm之间的有效波长上的节点。这些节点须满足三个条件
I.它们需要位于葡萄糖和水的吸收谱带中或外侧。2.它们需要独立于血液或组织中存在的其他物质的交叉敏感性。3.它们需要被设计为能够计算不同的散射信号和光路,并由此得出的不同的基本信号。因此,总之,为了对血糖含量进行非创伤性测量,需满足下述条件使用光谱装置必须能够测定出相较于水浓度较小的葡萄糖浓度。需要较深的穿透组织的深度(典型地多于3_)。能够排除与其他物质的交叉敏感性。能够区分来自血液和组织的值(脉动检查)。仪器的性价比较高并且是小型且便携的。光源不能太强而灼伤手指。光源优选地基于LEDs。至今,尚未能发展出能够用于糖尿病患者的非创伤性定期、安全且可靠的血糖测定的批量生产的仪器。许多先前提及的方法和装置都不适于解决这些问题或满足上述条 件。US5070874和US5360004中披露了用于测定血糖的非创伤性传感器。此外,反射测量技术是周知的。但它们被限制为难以适用于血糖测量。首先,辐射的主要部分直接来自于表面。其次,皮肤的结构因人而异且身体上各点之间的皮肤结构也不同。此外,无法可靠地定义散射特性。因此,使用反射光谱方法对要求的低物质浓度的稳定的定量测量并不利于解决上述问题。作为基础技术,医学研究中通常使用光谱法以测定有机物的浓度。常用的是抽取少量的血液并通过光度测定法或光谱测定法检测试管中血液。用于这种创伤性技术的仪器及操作仪器的复杂性是显著的。此外,存在着延时性。试管测量仅有限地用于病患监视。在光谱计量中,使用光谱仪——目前主要是使用光栅结构制成,来将宽光谱范围上的光分开,并在具有多个线性排列的光接收器(像素)的传感器上以光谱的形式记录和分析光线。另一选择是傅里叶变换方法(FTIR光谱法),优选地在近红外区域使用。这种方法对于血糖测量来说也是不理想的。首先,这种方法更适于长波辐射。其次,由于傅里叶原理其很好地适于窄带峰,但在为定量分析血液中的水和葡萄糖而需要SOOnm至1200nm范围的宽带吸收的情况下,这种方法是相对不精确并易于出错的测量方法。发明人已认识到,为测量血糖,应使用光谱范围在650nm至约1200nm之间的方法,否则组织中可能的光路就会太短,而皮肤和其他层的影响就太大。在医学工程上,该光谱范围被称为诊断窗口。该范围还促使了对皮下物质的分析。此外,已知由于组织较强的散射特性,有效光程长度严重偏离直接路径长度。用于估值的典型变量是有效光程长度相对于直接路径长度的倍数,为4至8倍。然而,虽然多个用于血糖测量的已知方法因大于1300nm的波长产生了更强的吸收带信号而在此处进行测量,但仅有少数这种用于血糖测量的已知方法被保留。Fischbacher ^(Ch. Fischbacher, K. -U. U. Jagemann, K. Danzer, U.A. Muller,L. Papenkordt,J. Schuler;Enhancing calibration modelsfornon-invasive,near-infrared spectroscopical blood glucosedetermineation;Fresenius J Anal Chem(1997)359:78-82Springer_Verlag 1997)和 Meuer 等(Non-invasive glucose determineation in the human eye;WolfgangSchrader,Petra Meuer,Jurgen Popp, Wolfgang Kiefer, Johannes-Ulrich Menzebach andBernhard Schrader;Journal of Molecular Structure, Volumes 735-736,14February2005,pages 299_306and Dissertation Petra Meuer, University of Wurzburg 2002)提出了用于测定血糖的其他方法。Fischbacher等示出可建立紧密的联系。然而,传统光谱仪器的信噪比被认为是不足的。此外,其是以反射的方式进行测量,而如上所述在组织中这是不可用的。Meuer等示出在眼球上的好的测量结果。由于使用清晰、非扩散的介质,所提出的方法也可以反射的方式使用。然而,其也清楚地示出了这种情况下商业提供的光谱技术并不能满足为可靠地测定低浓度而所需要的信噪比。其他的应用领域,其中测量介质的含量需以时间解析的方式建立,涉及在血液、心肺机中的透析或血液中的乳酸盐的测量,其中同样建立血液值(可选地,在试管中),或涉及非医学应用,其中例如过程流体被监视。举例来说,典型的非医学应用包括生产过程中流体的色彩测量。可想而知还有在燃烧过程中测量气体。举例来说,其他的应用选择为添加连续供应的原料的食品工艺。·已披露有使用实验室光谱仪以检测活体中的血液和组织成分。根据这些先前技术,目前,现代实验室光谱仪使用线传感器工作。实验室光谱仪通常与玻璃光纤连接器一起工作,因而需将用于照明和捕获光纤的复杂的光学波导从测量点(组织上的传感器)向上路由至具有光谱仪的仪器单元。然而,时间解析的测量仅能实现较差的信噪比,这是由于同时产生实际上较显著的光损(特别当在光线中进行耦合时)。因此,这种实验室光谱仪的应用同样不利于监视或测量血液值,例如氧饱和度或血糖的测定。单色仪系统和FTIR光谱仪不能满足用于组合光谱分析和脉动监视的时间要求。玻璃光纤仅能捕获小部分的有效光。因此在测量时这种单元通常需要较长的积分时间。EP522674A2披露了用于测定胚胎中的血氧饱和度的血氧计。为此,使用了光谱仪且通过玻璃光纤将来自测量点的测量光传输至该光谱仪。US2006/0167348披露了使用传统FTIR光谱仪生成活体的红外光谱的实践。为此,也提出通过玻璃光纤传输测量光。W02009/043554披露了用于从活的组织采集光谱测量信号的方法和测量设备。然而,并未示出测量光如何被耦合至传感器布置。由于光谱仪需要分光且身体的皮肤表面仅能暴露在有限的光强下,因而这些测量至今不能以时间解析的方式实施,即脉动解析的方式。然而,需要区分测量值的脉动成分和组织成分。此外,被附着至身体的传感器或至少其部分不能超过特定的尺寸,以免在长期监视的实践中对病患造成麻烦。W003/071939中提出了用于以时间解析的方式记录测量值的光谱光度测量的系统。使用各不同的光谱滤波器依次测量宽带光源。这种系统非常庞大且复杂。此外,总是仅在单个波长上记录时间解析信息而波长被连续地记录。因此,还可用在不同光谱范围中并用于监视血糖的该系统并不适于长期监视脉动和血液参数。US5879294提出了一种系统,其中对组织中的发色团进行光谱测量。使用光谱的二阶导数进行评价,并在节点(典型地每一物质两个)上进行评价。例如,这就是为何其能够测定组织中的氧饱和度。这种方法是静态实施的,即不能脉动解析或时间解析地定量测定发色团。W02007/048989A1中解释了据此的用于监视组织氧浓度(StO2浓度)的方法。 此外,为监视病患(例如用于建立氧饱和度),需要区分血液(血红蛋白)中的成分和组织(肌红蛋白)中的成分。血红蛋白和肌红蛋白修正的光谱特性非常地相似,但在高度光谱解析检测的情况中是不同的。US5931779中描述了能够进行区分的方法。相比之下,测量血糖时区分组织和血液并不是强制的。因此,测量血糖时脉动解析的测量并不是强制的。如果血液中和组织中的血糖含量是平衡的,则能获得精确值(如果是没有诸如皮下脂肪和骨头的较佳血液灌注的组织)。然而,脉动成分使得能够检查是否是平衡的。在活体血液分析领域中的另一困难约束在于相关血液、组织和皮肤成分在500nm至850nm光谱范围上大大减弱的吸收度或摩尔吸光度,但在医学上这对监视病患是重要的。因此,包含在皮肤中的血红蛋白和黑色素对可见光谱具有较大的吸收系数,而对于极近红外范围(VNIR)具有显著地低的吸收系数。测量血糖时,优选地典型在800nm至1200nm的波长范围上进行测定,此时组织中具有较低的吸收度,因此测量血糖时该问题影响较小。然而,在血液值的活体测量的情况中同样存在着类似的问题,例如在糖尿病患者的情况中,或在非医学测量和在诸如管道的难以进入的机器部分处监视过程参数的情况中。在这些应用的情况下同样需要时间解析测量,但具有较大尺寸的实验室光谱仪难以被引入至测量点。因此,所有已知的方案都存在缺点。特别地,没有一种光谱系统能够一起满足涉及脉动测量,涉及根据脉动成分(动脉血液)和静态成分(静脉血液和组织、肌红蛋白)进行有区分的活体血液分析且为了在病患身上连续使用而最小化传感器单元,涉及非创伤性血糖测量或涉及以有限的空间占用量在测量点上对测量介质的含量进行测量的所有要求。上述总结的种种局限显示出至今无法在活体中以时间解析方式和/或采用具有小的空间要求并耐用的装置实施检测。

发明内容
因此,本发明的目的之一在于避免已知的缺点,特别地,研发了一种装置和方法,其不具有上文列出的局限且特别地能够在活体中以时间解析方式实施期望的分析,即以对动脉血参数和基于组织的参数进行生理区分的方式。此外,使得能够对活体中血糖进行时间解析测量,和对试管中的血液进行测量,或在非医学领域应用中以可靠的方式、甚至在难以进入的测量点处实施其他的时间解析测量。根据本发明,借由具有独立权利要求的特定部分的特征的装置和方法,实现了上述目的及进一步的目的。用于光谱仪或光度检测的理论基础由比尔-朗伯定律给出。可用于在光线透射吸收分子的方案中测定吸收分子的浓度Ci。h=hie^I 1 )其中Ιλ是通过待检测物质后的光强强度,1“是辐射的光强,μ α,λ是基于波长(λ )的总吸收系数,以及I是穿过物质的路径长度。由于组织的散射特性,这种情况下可预计有效光程长度,但在该光谱范围和应用的情况中可将其忽略。对其进行代数操作,得到该普遍定律必须被进一步多元化,因为诸如人体血液的物质包含多种化学成分物质(分子化合物)且这些物质的吸收系数以基于波长的方式发生变化。在具有η种物质的情况下,可得到μαΛ⑴假定光程长度对所有波长都是相同的,对m个波长可得出下式
·
'f Iii V
In —-5-「Ir I
’ I =-| ;: : .(4}
J hm) …
In I L ^
_ \ ),还可以下述方式描述这种关系I (λ) = -IA(A)C(5)或者C = -i A(I)"51(a).(6)
I据此,能够直接测定出物质的浓度。另一理论基础在于光和分子之间的量子化学作用。因而通过基于波长的光量子的吸收,激发了离散且分子特定的转动-振动跃迁或电子跃迁。由于谐波的转动-振动跃迁和分子的复合振动,或由于发光团中复杂的电子跃迁,在观察的光谱范围内发生激发。这些跃迁是波长特定和物质特定的。因此,可在不同的波长处分析不同的物质。然而,例如由于人体包含许多不同的物质且源自这些物质的信息被叠加,因而需要使用光谱方法以考虑量子化学作用,但不是基于节点的多光谱光度测定法或光度测定分析。在800nm至1200nm的光谱范围上对水和葡萄糖双物质进行谐波光谱的非常详细的观察时,例如,需考虑进一步的细节。这里水是一种非常特别的分子。首先,由于原子附加地成角度地排列,水具有强极性。此外,在流体状态下,氢键对光谱产生影响。因此,一方面,流体水的光谱强烈地依赖于温度。然而,在这种情况下可忽略,因为人体上测量点处的温度被固定在35°C至40°C的较窄的温度范围内。分子在水中的溶解产生了进一步的影响。因而,随着浓度发生改变,分子之间的力及生成的光谱也发生改变。虽然这些变化相对较小,但它们是可被探测的且在化学计量评价中需予以考虑。根据本发明的装置用于测定并监视测量介质的含量,特别地用于确定并监视生理血液值。该装置具有至少一个光源,用于生成宽带光。关于此,宽带表示生成的光的波长确定地适于分析血液或组织中或其他测量介质中的相应成分。典型地,使用至少产生频带在500nm至850nm之间的光以用于监视病患(例如,测量氧饱和度)且至少产生频带在800nm至1200nm之间的光以用于测定血糖。特别地,光源为还产生足量的用于血糖测量的NIR区域光的白光LED。光源用于将宽带光应用至至少一个测量区域。典型地,测量区域是生物表层上的点,更特别地,是人体表层上的点,例如在指尖或耳垂上的点。然而,测量区域还可以是待测介质流经的管道,例如,用于透析时传输血液的线管,或向一个进程供应流体或从其排出流体的线管。此外,装置具有用于传播或扩散根据光的波长自测量点返回的分析光的工具。一方面,分析光可以是自测量区域直接反射的光,或另一方面,其可以是在透射通过组织后自其它点再发射的分析光。此外,装置具有用于记录传播光的传感器阵列。典型地,传感器阵列为二维CMOS布置。基于应用和合适的频域,还可使用其他的二维传感器阵列,例如InGaAs传感器阵列。CMOS图像传感器是高度解析的,典型地包含百万或更多个像素(本发明使用的传感器具有I. 6MP或甚至5MP)。使用传感器阵列及典型地使用CMOS传感器阵列的优点之一在于其简便的可用性。然而,特别地,二维传感器阵列还提供了更高的测量速度和更好的信噪比。由于测量光·基于波长传播,因而测量光被成像至传感器的一行上。然而,测量光具有特定的宽度,因此传播的测量光(即光谱)可被传感器阵列上彼此相邻的多个平行的行同时捕获。由于并行地读取传感器阵列上的多个行,因而能够增加个别行的结果,即可增加个别光谱。典型地,可以通过集成阵列上高达1000个相邻的行的信号来生成光谱。为此,装置还具有用于同时捕获二维阵列上多个相邻行的信号的工具。此外,装置被设计为可增加这些相邻行的光谱。因此,根据本发明,并不是使用二维传感器来实施光谱解析测量。而是使用相邻的行以在较短时间期间内生成更多的光谱,因而生成更好的信号。并行测量被理解为几乎同时测量。当然显然传感器上的个别像素和行是被顺序地读取。然而,由于扫描频率非常高,因此能够将其称为几乎同时地测量并列的行。这实现了部分图像的读取及由此更高的速度。还能够生成更好的光谱中的信噪比。基于不同类型的应用,对信噪比的要求是不同的。在监视应用(例如,举例来说,测量血液饱和度)的情况中,多数情况下感兴趣的仅是动脉血液。而并不关注组织成分。因此,在这种监视应用中为脉动解析测量。此外,用于脉动解析测量,如有可能,信噪比应能使得可从心脏收缩和心脏舒张时测量的差异中获取充分清晰的信号。当测量诸如血糖、脂肪或酒精的血液含量时,脉动解析测量就不那么重要了。举例来说,测量血糖时,在相对较短的时间后就能获得动脉血液中的成分和组织成分的平衡。这时,脉动解析测量并不是强制的,但为对于检查测量结果一定是有利的。目前,CMOS图像传感器主要用于移动电话、监控摄像机和数码相机。在前两个应用领域中,特别地可使用高质量、微型像素物镜。这种传感器很小,典型地具有3_的图像边长。此外,其可被参数化以用于读取区域。因此,如果减少图像区域,就能获得非常高的帧频,例如超过100Hz,而高的帧频使得能够对脉动信号进行时间解析评价。对于CMOS传感器,电子器件被直接集成至该传感器。光学阵列具有诸如读取电路、可调放大器及模/数转换器的电路。这使得能够通过细电缆快速地传输数据。因而包含光谱仪、照明装置、电子器件及图像记录的整个布置具有非常小的尺寸(优选地,小于20_X 30_X 100mm,典型地约为10_X 15_X 50mm)。因此,这种装置可仅装备细电缆,且可直接附着至病患。这就能够省去玻璃光纤等。由于CMOS布置的设计仅具有几毫米的尺寸,因而在微型系统中具有足够的空间,例如在手指或耳垂上,或在可用空间受限的点上。同时图像质量非常好,且仅需少量的光,因而能够使用小的微型照明单元。先前技术中部分使用的CCD阵列常需要读取整个探测器,因而被证明难以获得足够高的帧频,因为CXDs的速率仅为几Hz。能够将CMOS传感器限制为“感兴趣区域”(ROI)从而使其更加快速,因为仅需读取需要的数据。虽然在全图像的情况下CMOS传感器也具有相对较慢的帧频,但当被限制至ROI时,典型地可获得高达200Hz的帧频。这也使得能够快速地记录光谱,从而能够以脉动解析的方式工作。最大的脉率典型地为3Hz。因而在四倍扫描的情况下,需要约12Hz。基于信号的脉动成分,可在活体内进行血液参数的测量。由于脉动成分和静态成 分之间不同,因而能够区分血液的影响和组织的影响。DE19518511中描述了这种影响和其可能的评价。由于二向色陷波(dichrotic notch),基频被加倍。由于对血压曲线频谱的傅里叶分析包含高达八次谐波的成分,因此从技术角度出发以50Hz的频率进行扫描是有利的。此外,快速的扫描减少了产生高频信号成分的移动伪影。如果违反了取样原理,这种干扰也会直接反映在信号的可用区域中。如果每次记录图像时,以50Hz的频率记录传感器相邻行中的1000个光谱,其由于增加或集成而光谱生成足够的数据深度和信噪比,则能够用于光谱地评价血液成分,不仅是组织成分还包括脉动成分(作为光谱,动脉血液仅具有约1%的信号)。传感器阵列被布置为使得不同波长的光入射在阵列的不同点上。此外,优选地,传播光被并行地传导至传感器的多个相邻的行上。根据本发明及其优点的装置的基本原理对不同的应用都是相同的。基于待测含量需修正频率范围。相应地,光源、传感器、衍射光栅及采用的光学单元应适于测量的场合。基于监视病患时测定血液值和基于血糖测量,将以示范的方式详细地解释本发明。装置优选地具有外壳并被设计为紧凑的装配。紧凑的装配包含至少一个光源,用于传播和分析光的工具以及传感器阵列。由于采用了这种布置,能够在测量点上将照明装置和光谱系统直接集成至传感器。照明装置和微型光谱仪可直接应用于测量区域。从而,能够省去相对更刚硬且更大的光纤。显著地,可使用更多的光。如果光线通过玻璃光纤传输至测量点,则会损失大部分能量。如果玻璃光纤耦合入组织且通过另一玻璃光纤提取返回的光线,则再次损失了大部分光。此外,如果仅退耦一个用于光谱仪的狭缝且光谱式传播开,则仅剩余少量的光用于探测。这需要已知布置中使用的技术上最好的灯具,且同时需要进行长时间的曝光。相比之下,优选地,外壳中非常小的光源(例如LED)和光谱仪被放至组织处。这增大了光输出,从而曝光时间非常短。光源、传播测量光的工具和传感器阵列使得能够在测量区域中对血液和组织进行光谱分析。在光谱学领域中有着不同的方法。一种新的方法是光谱成像领域中的方法。通过有效光栅/光学单元布置将光线光谱地分开至二维传感器阵列上。因而在传感器的一个方向上获得空间信息,而另一方向包含光谱信息。每一成像点是获取强度信息的像素,该强度信息通常具有8、12、14或16位的数据深度。CMOS图像传感器,包含了特别用于本发明的有利特性,在这一技术中普遍使用。InGaAs传感器适于更长波的频谱范围,但其仍具有将需要的电路逻辑集成至CMOS垫上的个别光电元件。根据本发明,优选地使用这种衍射光栅作为传播测量光的工具,且使用这种传感器阵列以用于记录传播光。 波分装置优选地包括色散光学元件,通常为光学光栅,更特别地,为全息光栅,在一有利实施例中,为闪耀光栅,从而在由摄像机(camera)或图像传感器捕获的衍射级上具有较高的光输出,且在适于测量SpO2浓度的500nm至850nm的波长范围上或在适于测量血糖的800nm至1200nm的波长范围上具有较高的光输出。用于测量血糖,光谱区域被定义为约800nm至1200nm。在该光谱区域中,在960nm+/-50nm的区域和1150nm+/_50nm的区域上探测到最大的信号变化。光谱呈现出与变化的水信号相关联。InGaAs传感器技术能够同时评价上述两个区域。然而,在上述光谱区域上目前商用的传感器显著地差于CMOS传感器,但是后者仅能接收最大波长为IlOOnm的光。InGaAs传感器具有极少数量的像素(典型地,100K至1000K个像素),因而具有较差的信噪比。最大的衍射效率被选择为落入这样的波长范围内,该波长范围使得所使用的传感器具有最低的灵敏度。例如,闪耀光栅可以是具有不对称的锯齿状光栅轮廓的透射式光栅,其中锯齿的侧面被分别设计为作为单个镜面,从而在期望的衍射级的方向上传输光。此外,还可使用全息光栅。例如,可使用VPH光栅(体相位全息光栅)作为特定闪耀或全息光栅。该VPH光栅是透射式光栅,两个玻璃或塑料窗格中夹有透明的光敏材料,在该材料中制备有期望的不同折射率的图案,例如采用全息曝光及由此引起的材料结构的改变所产生的。根据本发明,使用这种闪耀光栅可在较窄的预定波长范围上获得超过80%的高的衍射效率。因此,借由衍射光栅和入射狭缝可制备非常小的光谱系统,该光谱系统覆盖了整个光谱范围,且具有对基于脉动的记录来说非常重要的时间解析度。此外,由于获取二维图像,因而能够同时记录并评价许多光谱,这显著地改善了信噪比。技术的组合使得能够构造小型、高解析度且非常快速的传感器单元,这种传感器单元可直接附着至脉动测氧仪常用的身体上的点上。这使得传感器能够被附着至诸如指尖、手掌或耳垂的优选测量点上,或附着至皮肤表层。因此,特别优选地,外壳被设计为贴在病人身体的一点上,特别地贴在手指或耳垂上。在人体上的测量质量显著地依赖于选择的测量点。特别地用于测量血糖时,测量点必须被较好地血液灌注,包含较少的脂肪组织且易于被测量。因此,以上述顺序列出的下列测量点特别地适用于测量血糖透过手指、手掌或耳垂。使用手指时,应注意如有可能应在没有骨头或指甲的位置进行测量。因而可选择将光线横向地耦合入手指,且在集中在指尖的线上提取光线。所提出的技术组合促使了以下非常重要的传感器特性传感器具有的像素解析度使得能够以小于约5nm的必要光谱解析度来记录整个光谱。可选择读取传感器的一部分,并因此以高的读取速率进行记录和读取(典型地大于100Hz),从而以基于脉动的方式评价组织和血液的光谱特性。此外,装置特别优选地具有狭缝光阑。狭缝光阑设置在分析光的入口区和用于传播分析光的工具之间。狭缝光阑使得能够精确地定义测量区域。特别地,对于用于传播光的工具,狭缝光阑被布置成使得细长的图像在不同于图像延展的方向上散播开,优选地在垂直于图像延展的方向上散播开。从而在二维传感器阵列上在一个方向上获得了根据波长解析的表达,以及在另一方向上获得了测量区域的空间解析的表达。此外,装置优选地直接装备有模/数转换器。目前,CMOS图像传感器典型地包括有这种模/数转换器。然而,根据本发明,空间解析的表达并不用于空间解析的分析。通过相邻行对多个光谱的并行测量是为了用于改善信号。在目前情况下,光阑被理解为表示任何一种光学工具,其通过第一成像光学单元(物镜)裁剪出细长的带状区域的成像区域。其中,带状区域不一定是连续的,例如也可由一系列单个成像元件组成。 此外,装置优选地具有信号放大器,可从外部参数化。CMOS图像传感器通常具有了集成的这种可从外部参数化的放大器。由于在电路中对信号进行了数字转换,因此可电气地方便无损地将数字信号传输一段相对较长的距离至评价单元。光源优选地为LED。LEDs是可被快速开启(典型地为10-1000 μ s)的光源。其可在高的、但对组织来说并不危险的光功率且无散热问题的情况下运行。用于监视病患时(例如,血液中的氧饱和度),优选地使用可见(VIS)和近红外(NIR)光谱区域的光,特别地,使用极近红外区域的光,例如在500nm至850nm的VNIR区域的光。优选地借由一个LED或LEDs的组合生成这种光。例如,传统的白光LEDs适于此,通过额外叠加的荧光染料,该白光LEDs具有宽带光发射。无机荧光染料,例如具有镱或YAG中的其他稀土元素或相似的主晶格,可用于作为染料。组合不同的染料能够生成基于应用要求的整个光谱范围上的光。例如,在用于测量血糖的800nm至1200nm的范围上的光。还可以组合不同的LEDs。但这种情况下,应注意发射器必须是温度稳定的,且辐射在局部必须较好地均匀化。此外,装置优选地具有电缆连接器。特别地,装置还优选地无需用于其他光学线管以将光线导入其中或从其导出的连接器。特别地由于根据本发明的光源和根据本发明的传感器并不要求较高的电流和电压,特别地当电缆无需被屏蔽以用于模拟信号时,具有几根电线的电缆对操作根据本发明的装置来说就已足够。由于记录了整个光谱,因而能够建立并监视多个不同的生理血液值。特别地,能够评价下述参数脉搏率脉搏形状和结构血氧饱和度(SHbO2)总血红蛋白(CtHb)HbCO 浓度MetHb 浓度去氧Hb浓度
PI (灌注指数)PVI (脉搏指数pleth变化指数)组织氧饱和度StO2血糖浓度乳糖在本发明的范围内,生理血液值是为诊断或监视的目的而对病患建立的所有值,特别地是上文列出的值。此外,在非医学领域也存在着多种可能的应用,例如监视燃烧过程(通过测量过程 气体),或在添加原料的诸如食物或药品的产品制造中进行监视。特别优选地,装置被设计为应用于透射式和反射式的两种测量方式。从而,可以反射方式在可见光谱区间上且以透射方式在VNIR区间上测量血液成分,以补偿500nm至800nm区间上较强的吸收率。如果可照射足量的光(或基于测量波长),仅以透射的方式进行测量也是可行的。在500nm至800nm区间上较强的吸收率这一难题在特别地长于800nm的葡萄糖测量中就不再那么显著了。如果照射足量的光,则监视时采取纯粹的透射式测量也是可行的,例如当测量氧饱和度时。存在着实施以反射和透射的方式进行组合记录的多种选择。在用于监视病患的第一实施例中,反射式记录和透射式记录在时间上顺序地布置。可选地,光照射至皮肤的两个区域上。首先,光被照射至线型记录点的区域上且读取反射图像。接下来,光被照射至记录线外侧的一个或多个点上且传输至记录线的光被记录并读取。在评价单元中这两项信息彼此联系。特别地,为此,装置配备有计算机布置,其被设计为交替地实施透射式测量和反射式测量。此外,为此,装置具有能够将光照射至两个不同的测量点上的光源。可通过使用多个光源或合适的偏转工具来实现。在用于监视病患的第二实施例中,对反射区域和透射区域进行空间地分离。为此,装置,特别地及其外壳,具有用于分离来自反射区域和透射区域的分析光的工具。入射光被照射在位于传感器的视场中的部分皮肤上。通过对照射光的机械阻挡隔离出传感器视场的第二部分。因此仅有穿过人体组织的光可进入该区域。借由物镜对反射的和透射后由皮肤产生的光进行成像,最初,细长的光阑(狭缝)可提取大体上细长或一维的图像,随后传播该图像,更具体地是衍射,以彼此方向不同的波分方式,优选地波分的方向垂直于图像的方向。从而,可使用相对简易的工具以相对简易的方式生成二维图像,该图像提供了关于以线型方式捕获的皮肤和组织区域的波长解析的信息。由于通过图像传感器或图像变换器捕获辐射,因而随后可进行分析从而以定量和基于脉动的方式建立包含在皮肤和组织中的物质,因而短时间后就能通过活体测量的方式对血液中的成分特别是化合物作出判断。因此,根据本发明,能够结合以光谱检测和分析进行记录的传感器的时间解析和基于脉动的功能。采用这种设计,首先以反射的方式捕获光,其次以透射的方式捕获光。以类似的方式测定血糖含量,其中反射式测量不是强制的。根据本发明,狭缝可大体上相应于皮肤上的记录点的线性方向。衍射方向或波分方向于是可以垂直于该狭缝的方向,从而图像传感器的二维像素阵列的行和列可相应于这些方向。因此,以相应于诸如皮肤上的记录线的一维空间成分和与其正交的衍射方向生成图像以用于建立衍射图像及相关光谱。透镜系统有利地被设计为微型物镜。为此,可使用来自监控摄像机技术领域的兆像素物镜或使用微型物镜(例如,聚合物物镜),其已广泛应用于移动电话的照相机中。然而,可选地还可使用用于成像的其他透镜系统或消色差透镜。通过使用的非常小的传感器可很好地组合这些物镜。这些非常小的物镜中常见的失真可基于其静态性而使用软件予以补偿。举例来说,根据本发明的装置可具有三个成像光学单元或物镜。其中,第一成像光学单元生成细长或狭缝状光阑上照明区域的二维图像,该光阑优选地布置在第一成像光学单元的像平面中。第二成像光学单元将狭缝状光阑成像至例如无穷远,从而用于准直穿过空隙的光带。布置在第二成像光学单元之后的是波分装置,优选地具有光栅,其能够在第二 方向上将光色散地分开。第三物镜则生成光阑图像的逆变换,该图像已以波分的方式分裂开。从而在传感器上获得了皮肤上记录的线的波长传播图像。根据本发明,图像传感器可以位于对于相应的应用优化的波长区间上,例如,其可仅覆盖相对较小的立体角区域。第一成像光学单元对光阑的狭缝上待分析的区域进行成像,因而光阑有效地遮罩了记录线外侧的区域。因此,原理上,使用光阑还使得能够通过该布置来照明比接下来以光谱方法检测的、受光阑限制的区域稍大的区域。LED照明源优选地以脉冲的方式进行控制。从而能够降低外来光的影响。此外,可使用内部黑值平衡。新生产的CMOS传感器具有内部黑值。边缘上的像素被黑色覆盖。其也被内部地读取并用于内部的黑值归一化。虽然这样并不能纠正外来光的问题,但可以纠正温度变化或馈送的电子器件变化所引起的常见的传感器漂移的问题。从而能够以很短的曝光时间和较高的光强来记录图像。也正因此,外来光的影响非常的小。如果外来光会产生影响,在每一种情况中,都可以附加地记录无LED照明和具有极大减少的ROI (感兴趣区域;检测频谱)的背景图像,并采用该背景图像对图像进行校正。在使用传感器之间,在评价单元中存储有固定的白光照明图像。在等式(I)中,其相应于1。(入)。在每一次记录后,总共约有500至1000个相邻的空间解析的谱线以较大的数据深度加入至光谱,根据上述等式5生成值I (λ)。此外,生成添加的光谱的二阶导数a。其可直接用于确定需要的浓度。当评价基于时间的值时,还可以——正如在脉搏测氧仪中常用的——根据脉动成分确定用于动脉血液成分的值。如果可选择以脉动解析的方式建立光谱数据,对于确定血糖,还能够分别集成心脏收缩和舒张的光谱并通过简单地求差来获得动脉血液的清晰的光谱,并因此确定出体内动脉血液中的血糖成分而非组织中的血糖成分。记录的光谱根据手指(或其他测量点)压上传感器的压强而发生变化。如果分析光谱的二阶导数则可避免该压强依赖性。此外,二阶导数还能够测量仅关于动脉血液的吸收率。因此避免了周围组织中散射光的影响。在某些情况下,接触压强对光谱的影响比动脉血液的吸收率要大。因此重要的是能够在保持不被接触压强影响的情况下进行测量。当分析二阶导数时这是可能的。还可以对不同的区域求和,或对不同的评价对局部范围有区别地照明并分析不同的部分。对脉动信息有利的是组合并评价波分信息的相对较大区域,特别地在520nm至570nm的区域上。由于脉动存在于整个光谱区域上,可选地可以对用于评价的所有像素进行求和。因此,例如,在扫描频率为50Hz的情况下,典型地可以以每像素12位数据深度来集成500000个像素,因此可得到非常大的数据深度并能够探测脉动所产生的非常微弱的光强变化。依据脉冲信息,根据下式,可根据脉冲幅度与固定的不随时间变化的组织和静脉血的吸收率的比率得到灌注系数PI W = -X 100% { )
DCAC是基于脉动信号的幅度,DC是最大吸收信号。该PI值不依赖于波长但·可以是成比例的(scaled),这可以根据文献“The wavelengthdependence of pulseoximetry” (Damianou,D. ;Crowe, J. A. ;Pluse Oximetry:A Critical Appraisal, IEEEColloquium;Volume 1996,issue 124,29May 1996, pages 7/1-7/3)。在变化的情况下,该测量值提供了病人状态的不同的临床相关变化的早期迹象。另一重要的测量变量是“脉搏指数变化系数”(PVI),其建立了呼吸和脉搏之间的联系。在多个呼吸周期中由下式确定PVI :
PT PfPVI = —^*100*%,(8)
W-可按照“The light-tissue interaction of pulse oximetry”(Mannheimerph.D. ;Anesth. Analg.2007Dec;105 (6Suppl):S 10-7. Review)中,或“LEDBased SensorSystem for Non-Invasive Measurment of the Hemoglobin,,(U. Timm,E. Lewis,D.McGrath,J.Kraitl and H. Ewald;13th InternationalConference on BiomedicalEngineering; volume 23,Springer BerlinHeidelbergj 2009)中所描述的方式计算 %Sp02浓度和总血红蛋白值。在评价时,相较于传统测氧仪,能够比较两个光谱区域。例如,介于640nm至680nm之间的光谱频道可被集成以生成660mn的常用信号。这样做,例如典型地能够有效地集成50000个像素以用于生成光谱测量点。然而,优选的评价是对脉动光谱的化学计量评价。根据定量的光谱分析可直接确定不同血红蛋白衍生物的浓度。二阶导数中吸收率的最大值或最小值
Hb02 542nm 576nmHb 555nm 754nmHbCO 538nm 569nmMetHb 640nm
权利要求
1.一种用于测定并监视测量介质的含量或特性的装置,特别地用于测定并监视生理血液值,包含 至少一个光源(20 ;20a ;20b),用于生成宽带光(2 ;2a ;2b),优选地至少包括500nm至850nm和/或800nm至1200nm,更具体地为LED,以照射测量区域(3 ;3,;3”), 用于根据其波长传播分析光(4)的工具,所述分析光(4)被至少一个测量点(3 ;3’;3”)返回的或透过该测量点, 二维传感器阵列(11),更具体地为二维CMOS阵列,用于记录传播的分析光(13),该传感器阵列被布置为使得不同波长的光入射在传感器阵列(11)的不同点上, 其中装置(I)优选地具有外壳(16),且被设计为至少包括所述光源(20 ;20a;20b)、用于传播的工具(9)和传感器阵列(11)的紧凑组件。
2.如权利要求I所述的装置,其特征在于外壳(16)被设计为接附在病患身体上的点上,更特别地接附在手指或耳垂上,或是接附在用于测量介质的线管上。
3.如权利要求I和2之一所述的装置,其特征在于所述工具具有衍射光栅(9)用于色散,更具体地为全息光栅。
4.如权利要求I至3之一所述的装置,其特征在于装置(I)具有狭缝光阑(7),布置在分析光(4)的入射区和用于传播的工具(9)之间。
5.如权利要求I至4之一所述的装置,其特征在于相对于用于传播光的工具(9),狭缝光阑(7)被布置为在与细长图像不同的方向上生成细长图像,优选地垂直于细长图像生成。
6.如权利要求I至5之一所述的装置,其特征在于装置具有模/数转换器。
7.如权利要求I至6之一所述的装置,其特征在于装置具有放大器,其优选能够被参数化。
8.如权利要求I至7之一所述的装置,其特征在于装置用于电气通信连接(29)的连接器,且其中尤其是装置不包括将光线引导至其中或从其中导出的连接器。
9.如权利要求I至8之一所述的装置,其特征在于装置被设计用于透射测量和反射测量。
10.如权利要求9所述的装置,其特征在于装置具有计算机布置(26),其被设计为能够交替地实施透射测量和反射测量,其中装置具有第一光源以用于通过照射第一测量区域(3’)实施反射测量,以及具有第二光源(20b)以照明第二测量区域(3”)来实施透射测量。
11.如权利要求9所述的装置,其特征在于装置装备有用于分离反射区域(3’)和透射区域(3”)输出的分析光(4)的工具(17)。
12.如权利要求I至11之一所述的装置,其特征在于装置被设计为扫描频率>50Hz,借由此能够建立测量的生理血液值的组织成分和脉动成分。
13.如权利要求I至12之一所述的装置,其特征在于该装置配置有优选的外部计算机布置(26,30),所述计算机布置被设计为以时间解析的方式实施测量。
14.如权利要求I至13之一所述的装置,其特征在于该装置配置有优选的外部计算机布置(26,30),所述计算机布置被设计为能够建立被捕获的谱线的二阶导数,且特别地能够基于该二阶导数建立生理血液值。
15.如权利要求I至14之一所述的装置,其特征在于二维传感器阵列(11)被布置为传播的分析光入射在该二维传感器阵列(11)的多个相邻的行上,其中装置(I)具有被设计为对相邻的行生成的谱线求和的计算机布置。
16.一种如权利要求I至15之一所述的装置与外部计算机布置(32)的组合,其中装置(I)和计算机布置(32)通过通信电缆(29)互联或能够互联。
17.一种用于测定并监视测量介质的含量或特性的方法,特别地用于测定并监视生理血液值,包含下述步骤,特别地与如权利要求I至15之一所述的装置相结合 将来自宽带光源(20 ;20a ;20b)的光(2 ;2a ;2b)照射至少一个测量区域(3 ;3,;3”), 捕获以反射和/或透射的方式返回的分析光(4), 对捕获的分析光(4)进行基于波长的传播,将捕获的分析光(4)的各个基于波长的分量成像在二维传感器阵列(11)上,更特别地成像在二维CMOS摄像机上以生成光谱, 评价生成的光谱以建立测量介质的含量或特性,特别地建立血液值, 其中,特别地事先将一外壳应用至特别为生物的测量区域(3 ;3’;3”)上,该外壳包含光源和传感器阵列。
18.如权利要求17所述的方法,其特征在于在衍射光栅(9)上传播分析光(4)。
19.如权利要求17或18所述的方法,其特征在于以反射的方式和透射的方式捕获分析光⑷。
20.如权利要求17至19之一所述的方法,其特征在于以时间解析的方式评价分析光(4)。
21.如权利要求17至20之一所述的方法,其特征在于建立捕获的谱线的二阶导数以建立生理血液值。
22.如权利要求17至21之一所述的方法,其特征在于扫描频率大于50Hz,且建立测量的生理血液值的组织成分和脉动成分。
23.如权利要求17至22之一所述的方法,其特征在于传播的分析光被成像在传感器阵列(11)的多个相邻的行上,且对各个行生成的谱线求和。
24.一种计算机程序产品,当其在计算机上执行时实施如权利要求17至22之一所述的方法。
全文摘要
本发明涉及用于测定并监视测量介质的成分或特性的装置,例如测定并监视生理血液值,其中所述装置包含光源(20),用于生成宽带测量光(2)并在测量区域(3)上发生作用,以及用于将被测量区域(3)反射的分析光(4)扇形散开的工具(9)。该装置还具有用于提取扇形光的传感器阵列(11)。传感器阵列(11)、光源(20)以及用于分散分析光(4)的工具被布置为外壳中的紧凑单元。
文档编号G01J3/28GK102946794SQ201180031147
公开日2013年2月27日 申请日期2011年6月21日 优先权日2010年6月22日
发明者A·库尔克 申请人:森斯派克有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1