基于瑞利波模式的声表面波双谐振器一体化扭矩传感器的制作方法

文档序号:12508499阅读:289来源:国知局
基于瑞利波模式的声表面波双谐振器一体化扭矩传感器的制作方法与工艺

本实用新型涉及一种轴系扭矩测试技术,特别涉及一种基于瑞利波模式的声表面波双谐振器一体化扭矩传感器。



背景技术:

轴系扭矩测试是各种机械产品开发、质量检验、优化控制、工况监测和故障诊断等必不可少的内容。实现扭矩测量需要解决传感器、能量供给和信号传输三方面的问题。基于声表面波(SAW)技术的无线无源传感技术,用于转轴扭矩测量恰好避免了一般有源传感器面临的能量和信号传输难题,从而大大提高测试的简便性和可靠性。

经对现有技术文献的检索发现,文献“无线无源声表面波扭矩传感器的研究”(程卫东,董永贵-《压电与声光》–2004)报道了基于延迟线原理的无线无源声表面波扭矩传感器,但基本属于原理性介绍,且采用延迟线结构与本实用新型的谐振器结构完全不同。

经对现有技术文献的检索发现,“声表面波扭矩传感器结构设计及信号提取方法研究”、“应用于船舶传动轴扭矩检测的声表面波传感器设计”、“一种声表面波转矩传感器快速解调方法设计”等学术论文,都是侧重传感系统总体方案及其回波信号提取分析,并无公开具体敏感单元的结构和具体技术参数。



技术实现要素:

本实用新型是针对声表面波扭矩传感器设计运用的问题,提出了一种基于瑞利波模式的声表面波双谐振器一体化扭矩传感器,在选择声表面波瑞利波模式的基础上,利用压电晶体各向异性特点,通过理论建模和数值计算,提供了可以用于扭矩敏感谐振器制作的基片切型范围,同时提出了易于实现差分测量的一体化双谐振器结构,从而提高扭矩的测量便利性和精度,为扭矩传感器设计和转轴扭矩测量提供新的技术手段。

本实用新型的技术方案为:一种基于瑞利波模式的声表面波双谐振器一体化扭矩传感器,包括转轴弹性体和阅读器,转轴弹性体表面上固定有长方形石英基片,石英基片上通过IC工艺一次制作有两个正交放置的声表面波谐振器,声表面波谐振器谐振的方向分别与石英晶轴X对称成±45°,两个声表面波谐振器的IDT的两个上下电极分别通过汇流金属排连接,构成并联差分结构,转轴弹性体粘贴测量时通过工艺保障石英基片长边与转轴轴线平行,两个声表面波谐振器通过天线接收激励信号和发射谐振器的响应信号,被测转轴附近的阅读器发射激励信号和接收谐振器的回波信号,实现对扭矩的实时测量。

所述汇流金属排通过硅铝丝与天线相连以接收激励信号和发射谐振器的响应信号。

所述声表面波谐振器采用单端对的谐振器结构。

所述两个声表面波谐振器的中心频率分别为433MHz和438MHz。

本实用新型的有益效果在于:本实用新型基于瑞利波模式的声表面波双谐振器一体化扭矩传感器,对现有一般有源扭矩测量方法的改进,从而解决扭矩测量过程中的能量与信号传输问题,实现扭矩精确测量的效果。与现有装置相比,在测量方法上采用声表面波传感器技术,具有无线无源的特点,同时在声表面波谐振器的切型选择上,根据数值分析结果和最优原则,选出具有较大扭矩灵敏度系数、较小温度系数和较大机电耦合系数的石英基片切型;最后利用石英晶体的对称特性在同一块基片上一次制作两个性能更加接近的谐振器直接构成差动结构以提高扭矩敏感度并进一步减少温度等共模干扰的影响。双谐振器一体化模式既有助于实现两个谐振器特性的高度一致,也避免了连线的复杂工艺及其带来的稳定性和可靠性问题。

附图说明

图1为本实用新型基于瑞利波模式的声表面波双谐振器一体化扭矩传感器结构示意图;

图2为本实用新型实施例的双声表面波谐振器结构图;

图3为本实用新型433MHz和438MHz的双声表面波谐振器的IDT输入导纳频率图;

图4为本实用新型双声表面波扭矩传感器的扭矩载荷与频率偏移关系图。

具体实施方式

本实用新型利用了声表面波(SAW)中的瑞利波模式谐振器,通过优化选择基片切型和双谐振器一体化结构,从而实现准确扭矩测量的器件。

如图1所示基于瑞利波模式的声表面波双谐振器一体化扭矩传感器结构示意图,包括转轴弹性体6和阅读器9,转轴弹性体6表面上固定有长方形石英基片2,焊盘3通过绝缘层过渡粘贴在转轴弹性体6上,用于现场安装时天线8的连接。石英基片2上通过IC工艺一次制作有两个正交放置的声表面波谐振器1和5,谐振的方向分别与石英晶轴X对称成±45°,声表面波谐振器1的IDT(叉指换能器)的两个上下电极分别与声表面波谐振器5的IDT的两个上下电极通过汇流金属排连接,从而构成并联差分结构。石英基片2粘贴在转轴弹性体6上,扭矩载荷作用产生的应变会通过转轴与石英基片2之间的胶层传递到声表面波谐振器1和5上,从而引起基片材料的特性参数发生变化,最终引起声表面波谐振器1和5的谐振频率发生偏移,通过测量声表面波谐振器1和5的频率偏移量就可得到扭矩载荷大小。由于扭矩载荷在与轴向成±45°的方向上产生的应变大小相等、符号相反,转轴弹性体6粘贴测量时通过工艺保障石英基片长边与转轴轴线平行,这样使得石英基片上的两个正交的放置的声表面波谐振器各自敏感转轴表面与轴向成±45°的方向上的应变,达到抑制温度等共模干扰同时提高扭矩灵敏度的目的。两个谐振器的中心频率分别为433MHz和438MHz,两个声表面波谐振器制作时通过金属指条直接构成差动结构,减少了连线,然后通过硅铝丝7与天线8相连以接收激励信号和发射谐振器的响应信号。被测转轴附近的SAW阅读器9上连有天线10用于发射激励信号和接收SAW谐振器的回波信号。通过阅读器查询差分结构中的两个谐振器的频率偏移量并根据SAW频率偏移量与扭矩载荷之间的关系就可得到扭矩载荷的大小,实现对扭矩的实时测量。

以具有温度稳定性好、存在零温度系数切型、加工制作工艺成熟等优点的石英晶体作为谐振器基片材料,根据压电晶体各向异性的特点,通过弹性力学的有限变形理论和压电晶体的本构方程及波动方程,结合力学、电学边界条件,利用摄动理论建立了SAW扭矩敏感机理的理论模型和SAW频率偏移与扭矩载荷之间的关系模型,通过数值计算分析了不同切型下的SAW扭矩灵敏度、机电耦合系数、温度系数等关键参数,综合选择具有较小频率温度系数(TCF),较大机电耦合系数和较高扭矩敏感特性的切向作为制作SAW谐振器的基片的切割和波传播方向。本实施例以适合扭矩载荷在(100Nm-1000Nm)范围的SAW扭矩传感器为目的,对石英晶体在扭矩载荷产生的单位应变偏载条件下进行的SAW各性能指标分析计算,得到一个适合扭矩传感器应用的基片优化切向范围(用欧拉角表示,由章动角θ、进动角和自转角ψ组成):

θ=122°~129°,ψ=44-51°;

θ=51°~58°,ψ=44-51°;

θ=123°~127°,ψ=44-55°;

该范围内的几个典型切向的性能指标如上。综合考虑,本实施例选择(0°,126°,45°)作为基片切割和传播方向。

为了提高SAW器件的Q值和降低插损,本实施例采用了单端对的谐振器结构,如附图2所示,图中w表示金属指条宽度,p表示反射栅周期,Lg表示IDT(叉指换能器)与第一条反射栅之间的距离,W表示叉指换能器的数值孔径。金属指条采用铝材料用蒸镀、刻蚀方法制作,谐振器结构参数如表1所示。制作的谐振器特性如附图3所示,横轴表示谐振频率,纵轴表示谐振峰值,图中BW为带宽,cent表示中心频率,low表示下边带频率,High表示上边带频率,Q表示品质因数,loss表示损耗。

表1

如图4所示,图中横轴M表示施加的扭矩载荷,纵轴Δf表示谐振器中心频率的偏移量。通过连续三次扭矩加载实验,得到的线性度和重复性分别为:0.21%和0.23%,均优于千分之五。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1