三电极阵列局部电化学信息测试系统及测试方法与流程

文档序号:11228705阅读:859来源:国知局
三电极阵列局部电化学信息测试系统及测试方法与流程

本发明涉及电化学测试领域,特别是涉及一种三电极阵列局部电化学信息测试系统和测试方法。



背景技术:

电化学测试体系中不仅需要研究整个电极表面整体的信息,逐渐扩展到电极表面局部电化学信息的表征。例如金属局部腐蚀与界面进行的电化学过程休戚相关,其界面电位、电流密度、阻抗等局部的电化学参数分布特征对于研究局部腐蚀的分布特性和作用机制显得至关重要。经典的腐蚀电化学方法如循环伏安法、极化曲线、电化学交流阻抗谱等只能获取整个样品表面的电化学信息,给出的是统计平均的数据,难以对局部区域的电化学信号进行区分。

各种微区扫描探针电化学测试技术的发展为局部电化学信息的获取提供了有力的技术支撑。水相环境介质中,扫描振动电极(svet)能测试溶液中金属材料表面电流密度分布;扫描电化学显微镜(secm)能用来评价局部电化学氧化还原反应活性;局部电化学交流阻抗谱(leis)不仅能够研究具体某一点的全频率电化学阻抗谱,还能在固定频率下进行扫描测试研究电极表面阻抗分布特征。薄液膜电解液体系中,可采用扫描开尔文探针方法(skp)进行不接触测试电极电位分布。以上测试方法的应用条件和获取的信息存在一定的局限性,只能获取电化学测试体系电位、电流、阻抗等某一方面的信息,而且部分为间接信息,例如,svet和leis是基于界面阴阳极电化学反应导致电解质电场梯度进行的测试,分别获取的电流密度分布和微区阻抗并非基底材料的反应信息,skp是基于电极表面功函进行的测试,直接测得的是开尔文电位,也不同于电极/溶液界面的电位。

然而,在更为复杂的气、液、固多相不均匀的测试体系中,由于含有固态成分,而无法使用svet、leis等扫描移动微探针类型的微区电化学技术。常规阵列电极技术(ea)只能获得腐蚀电位和电偶电流分布信息,无法获得局部的电流、阻抗等数据,测试信息不够全面、丰富。而且在电阻率相对较大和电解液分散的体系中,阵列电极测得的电位精度还受到腐蚀介质欧姆电位降和电解液分散性的影响。因此,需要发展面向非均相体系综合电化学分布信息测试技术。



技术实现要素:

本发明的目的在于,提供一种三电极阵列局部电化学信息测试系统,采用本系统更加便于全面获取电极耦合/非耦合状态下电偶电流、腐蚀电位、腐蚀电流密度、电化学阻抗谱等界面电化学信息。同时,本发明还提供了该系统的测试方法。

为解决上述技术问题,本发明采用如下的技术方案:

一种三电极阵列局部电化学信息测试系统,包括依次电连接的同心圆三电极阵列、高速切换开关和电化学工作站,所述同心圆三电极阵列包括若干同心圆三电极单元,相邻的同心圆三电极单元之间通过绝缘材料隔离;所述同心圆三电极单元包括环状辅助电极、固态参比电极和丝状工作电极,所述环状辅助电极和固态参比电极均成环形,丝状工作电极位于固态参比电极内,丝状工作电极和固态参比电极之间通过绝缘材料隔离;固态参比电极位于环状辅助电极内,固态参比电极和环状辅助电极之间通过绝缘材料隔离;环状辅助电极、固态参比电极和丝状工作电极均和高速切换开关相连。

前述的三电极阵列局部电化学信息测试系统中,所述环状辅助电极的制作材料选用铂片、镀铂黑的铂片、石墨或哈氏合金;所述固态参比电极是固态ag参比电极、agcl参比电极或锌参比电极,此三种电极为固态参比电极,在常规自然环境腐蚀体系中电位较为稳定,经济有效。

以上所述三电极阵列局部电化学信息测试系统的测试方法包括:

首先通过控制高速切换开关使所述若干同心圆三电极单元的丝状工作电极处于非耦合状态,使环状辅助电极、固态参比电极和丝状工作电极均和电化学工作站相连;

然后进行开路电位测试,所述开路电位测试的方法包括:测试丝状工作电极与固态参比电极之间的电位差;

通过开路电位测试获得单个丝状工作电极的电化学行为,通过对单个丝状工作电极的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:开路电位,极化曲线,电化学阻抗谱,循环伏安,电偶电流,充电曲线等测试方法获得的测试数据,根据腐蚀电化学原理进行数据分析,获得相关的电位分布、电流密度分布、电化学阻抗、电容、腐蚀速度等热力学及动力学参数。

前述的三电极阵列局部电化学信息测试系统的测试方法中,所述测试方法还包括:

首先通过控制高速切换开关使所述若干同心圆三电极单元的丝状工作电极处于非耦合状态,使环状辅助电极、固态参比电极和丝状工作电极均和电化学工作站相连;

然后进行循环伏安曲线测试;

通过开路电位测试获得单个丝状工作电极的电化学行为,通过对单个丝状工作电极的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:具体的数据解析方法为根据循环伏安曲线进行分析,获得其电极反应、反应可逆性、反应电位窗口、电流峰值等相关信息。

前述的三电极阵列局部电化学信息测试系统的测试方法中,所述测试方法还包括:

首先通过控制高速切换开关使所述若干同心圆三电极单元的丝状工作电极处于非耦合状态,使环状辅助电极、固态参比电极和丝状工作电极均和电化学工作站相连;

然后进行极化曲线测试;

通过开路电位测试获得单个丝状工作电极的电化学行为,通过对单个丝状工作电极的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:极化曲线的数据解析方法包括线性拟合、整体曲线拟合、tafel外推等方法。

前述的三电极阵列局部电化学信息测试系统的测试方法中,所述测试方法还包括:

首先通过控制高速切换开关使所述若干同心圆三电极单元的丝状工作电极处于非耦合状态,使环状辅助电极、固态参比电极和丝状工作电极均和电化学工作站相连;

然后进行电化学阻抗谱测试;

通过开路电位测试获得单个丝状工作电极的电化学行为,通过对单个丝状工作电极的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:电化学阻抗谱的数据解析方法包括动力学分析和等效电路模拟两种方法。

前述的三电极阵列局部电化学信息测试系统的测试方法中,所述测试方法还包括:

测试每个丝状工作电极与环状辅助电极和固态参比电极之间电偶电流分布信息:

首先通过控制高速切换开关使所述若干同心圆三电极单元的丝状工作电极处于非耦合状态,使环状辅助电极、固态参比电极和丝状工作电极均和电化学工作站相连;

通过高速切换开关将除待测电极之外的所有电极短路连接成一个整体,通过电化学工作站(8)逐个测试待测电极和其他电极之间的电流。

前述的三电极阵列局部电化学信息测试系统的测试方法中,所述测试方法还包括:

测试单电极阳极反应电流密度:基于耦合状态下测得的单个电极的电偶电流,以及非耦合状态下测得的自腐蚀电流密度,然后进行代数相加。耦合状态指的是将三电极阵列中的各个工作电极导线短路连接在一起,形成各个电极反应之间的耦合状态。非耦合状态指的是组成阵列的每组三电极独立工作状态,未将各组阵列中的工作电极短路连接在一起。

与现有技术相比,本发明具有以下优点:

(1)实现阵列电极和三电极体系的有机结合,便于全面获取电极耦合/非耦合状态下电偶电流、腐蚀电位、腐蚀电流密度、电化学阻抗谱等界面电化学信息,测试信息更加全面、丰富。而常规阵列电极只能获得电位和电偶电流分布信息,无法获得局部的电流、阻抗等数据。

(2)本发明提供的近距同心圆三电极阵列,实现了将辅助电极和参比电极2围绕工作电极近距离环状分布,测试时电力线分布更为均匀;而且在电阻率相对较大和电解液分散的体系中,由于参比电极和工作电极距离较近,电位测试精度较高,电流测试不易出现断路。

这种局部电化学测试方法具有一定的普适性,可以推广到大气腐蚀、土壤腐蚀、沉积物下腐蚀、涂层下腐蚀等多种非均相介质腐蚀电化学研究体系,或应用于电偶腐蚀、缝隙腐蚀、冲刷腐蚀等典型局部腐蚀类型研究。

附图说明

图1为同心圆三电极单元结构示意图;

图2为同心圆三电极阵列结构示意图;

图3为基于同心圆型三电极阵列的局部电化学信息测试系统示意图;

附图标记:1-环状辅助电极,2-固态参比电极,3-丝状工作电极,4-绝缘材料,5-同心圆三电极阵列,6-导线,7-高速切换开关,8-电化学工作站。

下面结合附图和具体实施方式对本发明作进一步的说明。

具体实施方式

本发明的实施例1:如图1、图2和图3所示,一种三电极阵列局部电化学信息测试系统,包括依次通过导线6电连接的同心圆三电极阵列5、高速切换开关7和电化学工作站8,所述同心圆三电极阵列5包括若干同心圆三电极单元,相邻的同心圆三电极单元之间通过绝缘材料4隔离;所述同心圆三电极单元包括环状辅助电极1、固态参比电极2和丝状工作电极3,所述环状辅助电极1和固态参比电极2均成环形,丝状工作电极3位于固态参比电极2内,丝状工作电极3和固态参比电极2之间通过绝缘材料4隔离;固态参比电极2位于环状辅助电极1内,固态参比电极2和环状辅助电极1之间通过绝缘材料4隔离;环状辅助电极1、固态参比电极2和丝状工作电极3均和高速切换开关7相连。所述绝缘材料4选用绝缘环氧树脂。所述环状辅助电极的制作材料选用铂片、镀铂黑的铂片、石墨或哈氏合金。所述固态参比电极2是固态ag参比电极、agcl参比电极或锌参比电极。

以上实施例所述三电极阵列局部电化学信息测试系统的测试方法,所述测试方法包括:

首先通过控制高速切换开关7使所述若干同心圆三电极单元的丝状工作电极3处于非耦合状态,使环状辅助电极1、固态参比电极2和丝状工作电极3均和电化学工作站8相连;然后进行开路电位测试,所述开路电位测试的方法包括:测试丝状工作电极与固态参比电极之间的电位差;通过开路电位测试获得单个丝状工作电极3的电化学行为,通过对单个丝状工作电极3的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:开路电位,极化曲线,电化学阻抗谱,循环伏安,电偶电流,充电曲线等测试方法获得的测试数据,根据腐蚀电化学原理进行数据分析,获得相关的电位分布、电流密度分布、电化学阻抗、电容、腐蚀速度等热力学及动力学参数。

所述测试方法还包括:首先通过控制高速切换开关7使所述若干同心圆三电极单元的丝状工作电极3处于非耦合状态,使环状辅助电极1、固态参比电极2和丝状工作电极3均和电化学工作站8相连;然后进行循环伏安曲线测试;通过开路电位测试获得单个丝状工作电极3的电化学行为,通过对单个丝状工作电极3的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:根据循环伏安曲线进行分析,获得其电极反应、反应可逆性、反应电位窗口、电流峰值等相关信息。

所述测试方法还包括:首先通过控制高速切换开关7使所述若干同心圆三电极单元的丝状工作电极3处于非耦合状态,使环状辅助电极1、固态参比电极2和丝状工作电极3均和电化学工作站8相连;然后进行极化曲线测试;通过开路电位测试获得单个丝状工作电极3的电化学行为,通过对单个丝状工作电极3的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:极化曲线的数据解析方法包括线性拟合、整体曲线拟合、tafel外推等方法。

所述测试方法还包括:首先通过控制高速切换开关7使所述若干同心圆三电极单元的丝状工作电极3处于非耦合状态,使环状辅助电极1、固态参比电极2和丝状工作电极3均和电化学工作站8相连;然后进行电化学阻抗谱测试;通过开路电位测试获得单个丝状工作电极3的电化学行为,通过对单个丝状工作电极3的电化学行为进行数据解析获得单电极电化学、热力学及动力学信息;所述数据解析方法包括:电化学阻抗谱的数据解析方法包括动力学分析和等效电路模拟两种方法。

所述测试方法还包括:测试每个丝状工作电极3与环状辅助电极1和固态参比电极2之间电偶电流分布信息:首先通过控制高速切换开关7使所述若干同心圆三电极单元的丝状工作电极3处于非耦合状态,使环状辅助电极1、固态参比电极2和丝状工作电极3均和电化学工作站8相连;通过高速切换开关7将除待测电极之外的所有电极短路连接成一个整体,通过电化学工作站8逐个测试待测电极和其他电极之间的电流。

所述测试方法还包括:测试单电极阳极反应电流密度:基于耦合状态下测得的单个电极的电偶电流,以及非耦合状态下测得的自腐蚀电流密度,然后进行代数相加。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1