食品检验辅助系统、食品检验辅助装置和计算机程序的制作方法

文档序号:22258270发布日期:2020-09-18 14:04阅读:99来源:国知局
食品检验辅助系统、食品检验辅助装置和计算机程序的制作方法

本发明实施例涉及食品检验辅助系统、食品检验辅助装置和计算机程序。



背景技术:

在食品生产过程中,从原材料中去除异物和缺陷是在原材料进行加工前筛选所述原材料的操作中进行的。例如,在含有鸡肉的加工食品的生产中,在筛选原料的操作中进行诸如骨头和羽毛的异物和诸如含血部位的缺陷的去除。期望减少操作误差并加速筛选操作。然而,增加工人的数量导致高的生产成本。

在食品生产过程中,一直在进行引进用于辅助精确检验的装置,例如x射线检验装置。在使用x射线检验装置的筛选操作中,例如,如果在x射线图像中发现原料中混有骨头,则工人在通过视觉检查或触诊搜索骨头的同时将x射线图像与原料进行比较,并且去除所发现的骨头。然而,这在效率和精度方面存在问题,例如可能需要时间来找到骨头的位置并且可能忽略骨头。除骨头外,还需要去除羽毛和含血部位,并需要准确有效地进行检测。

现有技术文献

专利文献

专利文献1:日本专利公开2017-142133

专利文献2:日本专利公开2007-286041

专利文献3:日本专利公开2005-233636



技术实现要素:

发明要解决的问题

本实施例提供了食品检验辅助系统、食品检验辅助装置和计算机程序,用于准确且快速地检验食品。

解决的问题的手段

根据本发明的实施例,食品检验辅助系统包括运送装置、感测装置、辅助信息生成器、信息输出装置和控制器。所述运送装置搬运食品。所述感测装置感测所运送的食品。所述辅助信息生成器基于所述感测装置的输出信息生成所述食品的检验辅助信息。所述信息输出装置,显示所述检验辅助信息。所述控制器基于将所述食品运送到检验所搬运的食品的检验区域所需的时间来控制显示所述检验辅助信息的定时。

附图说明

图1是根据第一实施例的食品检验辅助系统的示例。

图2是根据第一实施例的图像捕获装置的截面图。

图3示出了不使用滤色器获得的图像、通过蓝色滤色器获得图像的图像和通过绿色滤色器得到的图像的示例。

图4示出了二进制图像和检验辅助信息的示例。

图5示出了根据第一实施例的系统的具体示例。

图6是根据第一实施例的操作示例的流程图。

图7示出了根据第二实施例的捕获的鸡肉的图像的示例。

图8是根据第二实施例的图像捕获装置的截面图。

图9是根据第二实施例的图像处理的一个具体示例。

图10示出了根据第二实施例的变型示例的由相机捕获的图像的示例。

图11示出了根据第二实施例及其变型示例的各个二进制图像的示例。

图12示出了根据第三实施例的食品检验辅助系统的示例。

图13示出了由图像捕获装置执行的连续图像捕获和由投影仪执行的持续投影。

图14示出了通过连续图像捕获获得的捕获图像的示例。

图15示出了连续投影的多条检验辅助信息的示例。

图16是根据第三实施例的操作示例的流程图。

图17示出了根据第四实施例的食品检验辅助系统的示例。

图18示出了由投影仪进行投影。

图19是根据第四实施例的操作示例的流程图。

具体实施方式

下面参照附图对本发明的实施方式进行描述。在附图中,相同的部件以相同的附图标记提供,并且可以省略对其的描述。

(第一实施方式)

图1示出了根据第一实施例的食品检验辅助系统(以下称为“系统”)的配置示例。图1的系统包括食品检验辅助装置(下文称为“检验辅助装置”)1、作为感测装置的图像捕获装置2、作为信息输出装置的显示器3、以及运送装置4。

在图1所示的系统中,需要检验的食品(目标食品)由运送装置4沿着纸平面以恒定速度向右运送。运送食品的一侧被称为上游侧,而运送食品朝向其的一侧则被称为下游侧。在上游侧,由工人或机器以恒定时间间隔或以任意时间间隔手动地将食品放置在运送装置4上。当传感器23检测到食品进入图像捕获装置2的壳体中的图像捕获区域时,相机32捕获食品的图像。该图示出了捕获食品22的图像的情况。对于每个食品,图像捕获的次数可以是一次,或者可以执行多次连续图像捕获(例如,一秒十次)。在连续图像捕获的情况下,即使在图像捕获期间食品也在运送通道中移动,使得获得其中食品的位置在图像捕获区域中逐渐改变的捕获图像。

作为图像捕获装置2的输出信息的捕获图像被发送到检验辅助装置1,检验辅助装置1基于捕获图像进行异物或缺陷的检测处理。具体地,在对捕获图像执行各种类型的图像处理之后,基于处理后的图像执行检测异物或缺陷的处理。注意,包含异物或缺陷的食品可被称为有缺陷的物品,而不包含异物或者缺陷的食品可被称作优质食品。

受检验的食品的示例包括鸡肉、猪肉、牛肉、羊肉、海鲜、蔬菜、水果、谷物、饮料、调味料等,食品种类不作特别限定。在诸如鸡肉、猪肉、牛肉和海鲜等的肉类的情况下,待检验的对象可以是未加热的生肉或者可以是加热的肉。食品可以是未加工的原料,可以是生肉的切块,或者可能已经进行了一些加工。即,食品被加工的程度也没有特别限制。

第一实施例是使用一个示例来描述的,在这个示例中,生切的鸡肉被用作要检验的对象,羽毛被检测为异物。要被检测为异物的对象可以是除羽毛之外的物体(例如,骨头、软骨、木屑、饲料等)。

当在图像中检测到异物(羽毛)时,系统识别羽毛的位置,并生成检验辅助信息,包括表示所识别位置的信息。表示所识别位置的信息的示例是指示所识别的位置的数据。在该实施例中,生成包围检测到的羽毛的框数据(例如,矩形框数据)作为这样的数据。系统将所生成的框数据布置在捕获图像上。以这种方式,生成其中包括在捕获图像中的羽毛被框数据包围的图像。该图像被用作检验辅助信息。指示所识别的位置的数据不限于框数据,并且可以是指示所识别位置的箭头的数据或者可以是其他形式的数据。

在系统中,沿着运送装置4的运送通道,在相对于图像捕获装置2的下游侧设置用于检验食品的检验区域。显示器3被布置在检验区域附近。显示器3是向工人显示信息的信息输出装置的示例。信息输出装置的另一示例是投影信息的投影装置。投影装置的示例包括通过光投影信息的投影仪、通过光束投影信息地光束投影仪等。稍后将描述使用投影仪和光束投影仪的实施例。

显示器3设置在这样的位置,使得当工人在检验区域中执行检验时,工人能够看到显示器3的屏幕3a。例如,如果工人在图中相对于纸平面位于近侧,则显示器3跨过运送装置4设置在相对于纸平面更深的一侧,使得屏幕指向工人。

工人对运送到(出现在)检验区域的食品进行检验。例如,通过目视检验或触诊或两者同时进行检验。检验辅助装置1根据食品被运送到检验区域的时刻(即,食品出现在检验区域中的时刻),在显示器3上显示检验辅助信息。换句话说,直到食品出现在检验区域中,才显示检验辅助信息。从工人的视角来看,检验辅助信息与检验区域内的食品的出现同步地显示在显示器3上。在图中,在显示器3上显示由框数据5包围异物(羽毛)的图像。

工人在查看显示的辅助检验信息的同时,检验正在被运送的食品。具体地,工人基于框数据5知道羽毛的位置,搜索与框数据5相对应的部分和附近部分以寻找羽毛,并去除找到的羽毛。例如,工人在预定情况下丢弃去除的羽毛。由于在检验期间食品逐渐移动到工人的前方,因此工人需要有效地去除羽毛。在该实施例中,工人能够通过参照显示在显示器3上的检验辅助信息,迅速地识别羽毛的位置,并且能够高效地去除羽毛。

系统可在食品在检验区域内时继续显示辅助检验信息,也可在食品进入检验区域后显示辅助检验信息达预定的时间段。如果执行食品的多次图像捕获(连续图像捕获),则系统可以连续地(例如,以恒定的时间间隔)显示在食品进入和离开检验区域之间的时间段期间为多个捕获的图像生成的多个检验辅助信息。以此方式,检验辅助信息可被视为与正被运送的食品同步的运动图像。显示在显示器3上的检验辅助信息中包括的框数据5看起来根据食品的移动而移动。因此,工人可以更有效地寻找羽毛。

以下详细描述了图1所示系统的部件。

运送装置4是一种将由工人、机器等提供给上游侧的食品向下游侧运送的装置。作为运送装置4,可以使用诸如带式输送机、链式输送机、辊式输送机、网式输送机、重力输送机等的各种输送装置。输送装置是一个示例,并且可以使用其它运送装置来运送食品。注意,虽然图1示出了从左向右运送食品的示例,但是运送食品的方向不受特别限制。

在运送装置4的检验区域的入口,传感器24布置在运送通道的一侧或两侧。传感器24检测食品的通过。具体地,传感器24检测到食品被运送到检验区域。当检测到食品的通过时,传感器24向控制器13输出检测信号。传感器24的示例包括激光传感器、红外传感器、超声波传感器、各种光电传感器、图像传感器、重量传感器等,并且传感器的类型没有特别限制。

收集装置4a布置在运送装置4的检验区域的下游。收集装置4a收集已经被检验的食品。运送装置4可以电连接到食品检验辅助装置1,从而由食品检验辅助装置1控制运送装置。例如,可以控制运送速度、操作的开启和关闭等。在该实施例中,运送装置4以恒定速度运送食品,但工人也可以通过操作设置在运送装置4上的操作单元来调节开启和关闭以及速度。注意,食品也可以被运送到下一步骤(例如,烹饪步骤),而不是被收集在收集装置4a中。

图像捕获装置2捕获被运送至其壳体内的图像捕获区域的食品的图像,同时通过光源照亮该食品。由图像捕获装置2捕获的图像的数据被发送到检验辅助装置1,并且被保存在图像存储器11中。作为图像捕获装置2与检验辅助装置1之间的接口,可以使用以太网、无线lan、pciexpress、usb、uart、spi、sdio、串行端口、蓝牙(注册商标)等。这些接口是示例,并且不旨在禁止使用其他方式。

图2是图像捕获装置2的截面图。图像捕获装置2包括一个或多个照明单元31、相机32、滤色器33和传感器23。图像捕获装置2具有大致长方体形状的壳体,在壳体的面向运送装置4的底部形成有用于使食品通过的开口34。图像捕获装置2从上方覆盖运送装置4的一部分区域。在壳体的一些或所有侧表面上形成壁。此外,在壳体的顶部形成有天花板。天花板和壁可以减少红外光、可见光等从外部光源进入图像捕获区域。以这种方式,图像捕获装置2可以选择性地将来自期望的光源的光投射到作为图像捕获对象的食品上。

注意,图像捕获装置2可能缺少天花板和壁中的一个或两个。例如,如果在暗室中提供图像捕获装置2,则来自外部光源的效果不显著,并且可以省略用于阻挡光的天花板和壁。天花板和壁的材料的示例包括不锈钢、铝、树脂等,并且该材料没有特别限制。虽然在该图的示例中,图像捕获是直接从运送通道上方执行的,但是图像捕获也可以从倾斜上方或在多个方向上执行。

一个或多个照明单元31设置在图像捕获装置2的壳体的下部。照明单元31是发射紫外光的装置。用紫外光照射鸡毛引起荧光发生,这使得羽毛的检测成为可能。照明单元31利用紫外光照射图像捕获装置2下方的图像捕获区域。在该图的示例中,提供了两个照明单元31。作为示例,两个照明单元31具有在垂直于纸平面的方向上延伸的长方体形状。然而,它们的形状不限于上述形状。例如,照明单元31的形状可以是圆柱形。可替换地,可以存在形成为环形的单个照明单元31。

照明单元31中的光源的示例包括紫外led、黑光灯、各种荧光灯等,并且光源的类型没有特别限制。在检测鸡羽毛的情况下,优选使用光谱峰值波长在365nm至400nm范围内的紫外光源作为光源。作为示例,可以使用具有375nm的光谱峰值波长的紫外光源。然而,光源的光谱没有特别限制。也可以使用除了紫外线分量以外还含有可见光分量的光源。

所使用的光源类型可根据待检验食品的类型、待检测异物或缺陷的类型等确定。例如,在检测到骨头(或软骨)作为异物的情况下,可以使用x射线。通常,当用电磁波照射物质时,所产生的反应随着物质的类型而变化。例如,不同的物质具有不同波长(频率)的电磁波以吸收、反射和发射荧光。因此,可以对待检验的食品和待检测的异物或缺陷进行荧光光谱分析,以确定引起强烈反应的电磁波的波长。例如,荧光分光光度计可以用于执行荧光光谱分析。

相机32捕获从照明单元31发射的紫外光照射的食品的图像。相机32设置有安装在其中的例如cmos图像传感器或ccd图像传感器,并且可以获得包括与作为图像捕获对象的食品相关的颜色信息的彩色图像。这些图像传感器是示例,并且可使用不同设备来执行图像捕获。相机32可以具有定焦镜头或变焦镜头,并且镜头的类型不受特别限制。相机32捕获的图像的分辨率的示例是全高清(1920×1080像素),所捕获图像的分辨率没有特别限制。

滤色器33设置在在相机32的前侧上。相机32通过滤色器33检测从被来自照明单元31的紫外光照射的食品发射的荧光。滤色器33被设置成允许使用由相机32捕获的图像来容易地辨别异物。在检测到鸡毛作为异物的情况下,使用绿色滤色器作为滤色器33允许容易地检测羽毛。即,包含羽毛的部分清楚地显现并且可以容易地与鸡的其它部分区分。绿色滤色器是使绿色的波长范围内的波长(例如,波长为520nm附近的电磁波)通过并遮断其它波长范围的滤色器。在本实施方式中,假设使用绿色滤色器作为执行检测到羽毛作为异物的滤色器33的情况。

图3的(a)显示了在不使用彩色滤色器的情况下捕获的鸡的图像示例。图3的(a)中由椭圆包围的区域包含羽毛的一部分。参照图3的(a),包含羽毛的部分包括轻微浅色的线条,但不清楚。图3的(b)示出了通过蓝色滤色器获得的图像的示例。同样,在图3的(b)中,由白色椭圆形包围的区域包含羽毛的一部分。尽管羽毛周围的部分具有低亮度,但是包含羽毛的部分也具有降低的亮度,并且羽毛模糊。图3的(c)示出了通过绿色滤色器捕获的图像的示例。被白色椭圆形包围的区域包含羽毛。在图3的(c)中的图像中,包含羽毛的部分清楚地显现并且可以容易地与鸡的其它部分区分。根据这些结果,将理解,通过绿色滤色器执行图像捕获允许容易地辨别羽毛。

传感器23检测到食品被运送装置4运送到图像捕获装置2的壳体中。具体地,传感器23检测食品进入图像捕获装置2的图像捕获区域。传感器23布置在与在垂直于纸平面的方向上被运送的食品不同的位置,以便不阻碍食品的通过。传感器23的示例包括激光传感器、红外传感器、超声波传感器、各种光电传感器、图像传感器、重量传感器等,并且传感器的类型没有特别限制。

显示器3是在屏幕3a上显示图像或文本等信息的信息输出装置。显示器3与检验辅助装置1有线或无线连接。作为检验辅助装置1与显示器3之间的接口,可以使用无线lan、pciexpress、usb、uart、spi、sdio、串行端口、蓝牙、以太网等。这些接口是示例,并且也可以使用其他方式。作为显示器3,例如,可以使用lcd(液晶显示器)、crt(阴极射线管)、有机el(有机电致发光)显示器等,并且也可以使用其它类型的设备。显示器3被布置在进行检验的工人在检验时能够看到屏幕3a的位置和取向。例如,显示器3的屏幕3a可以位于横跨运送装置4的工人的前方、斜上方、斜左侧、斜右侧或斜下方。

检验辅助装置1对图像捕获装置2所捕获的图像进行图像处理,进行异物或缺陷的检测处理,生成包括识别所检测到的异物或者缺陷的位置的信息在内的检验辅助信息的处理,向工人显示检验辅助信息的定时控制等。作为示例,检验辅助装置1是设置有一个或更多个cpu(中央处理单元)、存储器以及通信单元的计算机器等的信息处理装置,并且能够运行os(操作系统)和应用程序。检验辅助装置1的一些或全部功能可以通过诸如fpga和asic或gpu(图形处理单元)的半导体电路来实现。检验辅助装置1可以是物理计算机器,也可以由虚拟机(vm)、容器或其组合来实现。检验辅助装置1的功能也可以分布在一个或更多个物理计算机器、虚拟机和容器中。为了改善可用性和负载分布的目的,也不禁止使用具有增加数量的检验辅助装置1的配置。

检验辅助装置1包括:图像存储器11、图像处理器12、控制器13、检测处理器14和辅助信息生成器15。

当控制器13接收到来自图像捕获装置2的传感器23的检测信号时,控制器13向图像捕获装置2的相机32发送指示图像捕获的信号。即,控制器13指示相机32在食品进入相机32的图像捕获角度范围(图像捕获区域)时执行图像捕获。以这种方式,执行所运送的食品的自动图像捕获。

图像存储器11具有存储空间,用于保存由图像捕获装置2的相机32捕获的图像。图像存储器11可以是诸如sram或dram的易失性存储器,或者可以是诸如nand、mram或fram的非易失性存储器。图像存储器11也可以是诸如光盘、硬盘或ssd的存储设备。图像存储器11可以集成在检验辅助装置1中,也可以是检验辅助装置1的外部的存储设备。图像存储器11也可以是诸如sd存储卡或usb存储器的可移除存储介质。

图像处理器12对食品的捕获图像执行图像处理。在检测到羽毛的情况下,绿色滤波器的使用使得羽毛比捕获图像中的其它部分更清楚。在该图像处理中,执行进一步突出羽毛的处理。图像处理的示例包括到转换成hsv颜色空间、转换成rgb空间、转换成灰度等,并且对特定方法没有限制。图像处理器12将处理后的图像保存在图像存储器11中。注意,也可以对保存的图像赋予标识符。标识符可以是递增常数值的数,可以是时间,或者可以通过其它标准来确定。图像处理器12可以向控制器13通知处理后的图像的标识符或存储图像的区域的地址信息。还可以不对使用绿色滤色器捕获的图像执行图像处理。在这种情况下,可以不提供图像处理器12。

控制器13请求检测处理器14对保存在图像存储器11中的经处理的图像执行检测异物或缺陷的处理。控制器13可以从图像存储器11读取经处理的图像,并且将读取的图像提供给检测处理器14,或者检测处理器14可以直接从图像存储器11读取经处理的图像。在这种情况下,控制器13向检测处理器14通知经理的图像的标识符或存储图像的区域的地址信息。在该示例中,经处理的图像经由控制器13被提供给检测处理器14。然而,图像处理器12可以在执行图像处理之后将经处理的图像提供给检测处理器14。

检测处理器14基于经处理的图像执行检测异物或缺陷的处理。在该示例中,执行检测羽毛的处理。注意,图像由多个像素组成,并且每个像素具有在一定范围内的值。例如,如果一个像素由8位信息表示,则该像素具有从0到255的256级中的值。检测处理器14对经处理的图像执行边缘检测以识别羽毛。具体地,首先通过阈值对经处理的图像进行二值化。即,通过将大于或等于阈值的像素值转换为1并且将小于阈值的像素值转换为0来生成二进制图像。1和0之间的关系可以逆转。作为二值化的结果,羽毛的全部或大部分变为1,并且所有或大部分其它部分变为0。检测到集中区域1为羽毛区域。

图4的(a)示出了一个二值图像的示例,该二值图像是将经处理的图像按阈值二值化的。黑色点对应于1的像素,并且其它像素对应于0的像素。在图像的右侧存在值为1的像素的短区域30。区域30对应于羽毛区域。在区域30中,所有像素可以具有值1,或者一些像素可以有值0。例如,可以使用聚类来执行区域30的识别。例如,在图像上的特定距离内具有值1的相邻像素被分类到同一组中,并且包括特定数目或更多个像素的组被识别为羽毛区域。虽然在该示例中存在一个羽毛区域,但是可以识别多个羽毛部分。聚类可以使用任何技术。除了聚类之外的技术也可以用于区域检测。

辅助信息生成器15生成表示由检测处理器14识别的羽毛位置的信息。这种信息的示例包括指示羽毛位置的数据。在该实施例中,生成包围羽毛的框数据作为指示羽毛位置的数据。然而,可以生成其它形式的数据,例如指向羽毛的箭头的数据。包围羽毛的框的形状可以是,例如,围绕羽毛的矩形、包围羽毛的星形、或其它形状。期望该框具有比经过图像处理之前的捕获图像(通过绿色滤色器捕获的图像)具有更高对比度的颜色。辅助信息生成器15保留所生成的框数据的坐标。

辅助信息生成器15将生成的框数据布置在捕获图像上的保留坐标上。所得到的图像(辅助图像)对应于检验辅助信息的示例。可以通过将框数据放置在所捕获的图像上来形成双层图像,或者可以利用框数据的值来更新与框数据位置相对应的像素的值。以这种方式,获得其中框数据包围了捕获图像上的羽毛的图像。注意,如果由于尺度转换而使二值图像的尺寸与捕获图像的尺寸不同,则可以执行尺度再转换以将框数据布置在捕获图像上。

辅助信息生成器15可以在捕获图像上布置除框数据之外的其它信息。例如,由于羽毛被检测为异物,所以表示羽毛的文本或符号可被布置在框数据附近。例如,“hane(羽毛)”的文本数据可被布置在框数据附近。表示检测到的羽毛区域的尺寸的数据也可以被布置在框数据附近。尺寸可以是羽毛区域的水平尺寸或垂直尺寸中的至少一个,可以是羽毛区域的面积(像素的数量),或者可以是诸如大、中或小的尺寸类别。还可以布置表示所识别的羽毛区域的数量的数据。例如,如果标识了两个羽毛区域,则可以在所捕获的图像上布置“2”。在这种情况下,框数据的条数也是2。也可以布置上述以外的信息。

图4的(b)示出了辅助信息生成器15生成的检验辅助信息示例。在通过绿色滤色器捕获的图像上布置具有粗白线的框数据,并且在框数据附近布置“hane(羽毛)”的文本数据。

控制器13接收辅助信息生成器15生成的检验辅助信息,并将其存储在内部缓冲器或图像存储器11中。控制器13控制显示检验辅助信息的定时,以便在待检验的食品通过检验区域的定时显示辅助信息。具体地,当控制器13接收到来自传感器24的检测信号时,控制器13从内部缓冲器或图像存储器11读取所生成的检验辅助信息,并且将所读取的检验辅助信息发送到显示器3。显示器3显示从控制器13接收到的检验辅助信息。在发送检验辅助信息后经过了规定时间段(例如,通过将检验区域的长度除以运送速度而得到的时间段)的情况下,控制器13向显示器3发送停止显示检验辅助信息或待机图像的停止指示信号。待机图像是在工人等待下一个目标食品进入检验区域时显示的图像。如果通过连续地捕获食品的图像来生成多条检验辅助信息,则控制器13连续地(以恒定的时间间隔)向显示器3输出这些条检验辅助信息。显示器3将这些条检验辅助信息作为运动图像连续地显示。传感器可以布置在检验区域的端部位置附近,使得传感器在检测食品时向控制器13发送检测信号,并且控制器13基于检测信号向显示器3发送停止指令信号或待机图像。

控制器13可以使用任何方法来确定在为多个食品顺序生成的多条检验辅助信息中,这次要显示哪个检验辅助信息。例如,可以将尚未显示的检验辅助信息中最老的一条检验辅助信息确定为要显示的检验辅助信息。在这种情况下,可以设置标志以区分已经显示的检验辅助信息和尚未显示的检验辅助信息。或者,可以通过先进先出缓冲器管理未显示的检验辅助信息。

在另一种方法中,将针对图像捕获装置2执行图像捕获的食品的每次改变而递增1的序列号给予针对食品生成的检验辅助信息。此外,还生成了每当传感器24检测到食品时递增1的序列号。具有与用于通过传感器24进行检测而生成的序列号的值相等的检验辅助信息被确定为本次显示的检验辅助信息。

注意,如果食品以较长的间隔运送,使得某一食品在检验区域内,而下一待检验食品尚未被运送到图像捕获区域,则可显示最近生成的检验辅助信息。

显示器3接收来自控制器13的检验辅助信息,并将接收到的检验辅助信息(参考图4的(b))显示在屏幕3a上。当从控制器13接收到停止指令信号时,显示器3停止显示检验辅助信息。当接收到待机图像时,显示器3显示待机图像。

图5的(a)和图5的(b)示出了系统的一个具体配置示例。图5的(a)是系统的侧视图。图5的(b)是系统的平面图。如上所述,在图1中,当朝向纸平面观察时,左侧是上游侧,右侧是下游侧。在图5的(a)和图5的(b)中,当朝向纸平面观察时,右侧是上游侧,左侧是上游侧。在图5的(a)中,示出了图像捕获装置2、运送装置4、收集装置4a、显示器3和食品21。在图5的(b)中,示出了图像捕获装置2、运送装置4、收集装置4a、显示器3、食品21、传感器23、传感器24、检验辅助装置1和工人27。下面参照图5的(a)和图5的(b)描述使用系统的食品检验流程。

食品(鸡肉)21放置在运送装置4的上游侧的传送带上,并被运送到图像捕获装置2。当食品21进入图像捕获装置2的壳体下方的图像捕获区域时,食品21被传感器23检测到,并且食品21的图像捕获由图像捕获装置2的壳中的相机执行。在图像捕获之后,食品21离开图像捕获装置2的壳体,并且被朝向下游侧运送。同时,将捕获图像发送到检验辅助装置1,检验辅助装置1基于该图像来检测羽毛,并生成包括识别所检测到的羽毛的位置的信息在内的检验辅助信息(在该例中,是表示羽毛位置的矩形框数据5被放置在鸡肉的图像上的辅助图像)。

当传感器24检测到食品21在离开图像捕获装置2的外壳之后,检验辅助装置1将上述生成的检验辅助信息输出到显示器3。显示器3由臂构件28支撑,使得屏幕沿着运送装置4的一个侧表面垂直于地面定向。显示器3在屏幕3a上显示从检验辅助装置1输入的检验辅助信息。同时,工人27通过目视检验或触诊或两者检验运送到检验区域的食品21。另外,在检验时,既可以将食品21保持在运送装置4上,也可以用手从运送装置4搬出食品21。工人27参照显示在显示器3上的检验辅助信息,在食品21上搜索羽毛,确认框数据5的位置和尺寸。工人将发现的羽毛去除。在去除羽毛之后,通过运送装置4将食品从检验区域向下游侧运送,并通过收集装置4a来收集。

图6是根据本发明实施例的操作示例的流程图。当传感器23检测到待检验的食品进入图像捕获装置2的图像捕获区域时(步骤s101),传感器23向控制器13发送检测信号。控制器13向相机32输出用于指示图像捕获的信号。相机32通过绿色滤色器捕获食品的图像,并且控制器13将所捕获的图像存储在图像存储器11中(s102)。图像处理器12对所捕获的图像执行图像处理(s103)。

检测处理器14利用基于经处理的图像的边缘检测来执行检测异物的处理(s104)。在该示例中,执行检测羽毛作为异物的处理。具体地,经处理的图像首先通过阈值被二值化以生成二值图像。基于二值图像,将1(或0)的像素区域识别为羽毛区域。

辅助信息生成器15生成表示所识别的羽毛区域的信息(s105)。例如,辅助信息生成器15生成包围羽毛的框数据,并且生成其中框数据被布置在所捕获的图像上的图像(检验辅助信息)。

控制器13接收生成的检验辅助信息,并在食品被运送到检验区域时,在显示器3上显示检验辅助信息(s106)。在显示有多条检验辅助信息的情况下,连续地输出这些检验辅助信息,以依次切换这些检验辅助信息的显示。以这种方式,显示在显示器3上的食品和检验辅助信息表现为根据食品在运送通道上的移动而作为移动图像移动。

虽然在本实施例中,异物区域是通过对二值图像进行边缘检测来识别的,但也可以采用其它方法。例如,模型可以通过使用捕获的图像或经处理的图像作为对模型的输入来输出异物的位置或区域的信息。在这种情况下,通过使用将成为样本的图像(捕获的图像或经处理的图像)与异物的位置或区域彼此相关联的数据,通过机器学习来构建模型。该模型的一个示例是神经网络。

在本实施例中,传感器24检测到食品被运送到检验区域,这可以通过其它方法检测到。例如,可以基于食品的运送速度和从捕获食品的图像的位置(或由传感器23检测的位置)到检验区域的距离来计算食品出现在检验区域中的时刻。可以使用任何方法,只要该方法基于将食品运送到检验区域所需的时间来检测到食品运送至检验区域即可。

根据本实施例,可以实现对食品原料的准确、快速的检验,并且可以实现优质食品的生产和成本的降低。

(变型例1)

在第一实施例中,使用二值图像来识别羽毛的区域。然而,如果食品是优质食品,则不含羽毛,也不会发现羽毛的区域。在这种情况下,辅助信息生成器15生成表示不包含羽毛(食品是优质食品)的信息作为检验辅助信息。例如,生成“nohane(无羽毛)”或“good(良好)”的文本数据。通过检查显示器3上的信息,工人可以确定待检验的食品不含羽毛,并且可以省略搜索羽毛的操作。

(变型例2)

作为变型例1的扩展,检验辅助装置1可以在检测到羽毛的情况下将食品确定为有缺陷的食品,并且在没有检测到羽毛时将该食品确定为优质食品,并生成表示食品是有缺陷食品还是优质食品的信息作为检验辅助信息。工人仅收集在收集装置4a中显示优质食品信息的食品,并从运送装置4拾取被确定为缺陷食品的食品,并将它们收集在单独的容器中。可以将根据食品是优质食品还是缺陷食品来自动分类食品的分类装置提供给运送装置4,使得分类装置自动地执行分类。在这种情况下,分类装置从检验辅助装置1接收食品是优质食品还是缺陷食品的确定结果的信息,并且基于所接收的确定结果的信息执行分类。

(第二实施例)

在第二实施例中,从食品中检测出含血部位作为缺陷。含血部位不仅指由于淤伤或血块而着色的肉部分,而且还包括具有与其它部分不同的颜色、味道等的着色部分。缺陷的其它示例包括与形状相关的缺陷,例如碎裂、破裂、扭结等。系统配置原则上与第一实施例中的系统配置相同。下面描述与第一实施例的不同之处。

图7示出了根据本实施例的鸡肉的捕获图像的示例。被圆圈包围的部分包含含血部位。在本实施例中,这种含血部位被检测为食品(鸡肉)的缺陷。

图8是根据本实施例的图像捕获装置51的剖视图。在本实施方式中,代替图1所示的图像捕获装置2,使用图像捕获装置51。

图像捕获装置51包括一个或多个照明单元52、偏振板53、相机55、偏振板56和传感器23。图像捕获装置51具有大致长方体形状的壳体,在壳体的面向运送装置4的底部形成有用于使食品通过的开口54。壳体的具体结构与第一实施例中的类似,因此省略对其的描述。

照明单元52例如是使用白色led的照明装置。设置有多个照明单元52,并且在左侧和右侧上的发光单元52具有在垂直于纸平面的方向上延伸的形状。中央的照明单元52包括一个或多个照明单元,其形状沿着纸平面在左右方向上延伸,并且所述一个或多个照明单元在垂直于纸平面的方向上间隔地布置。穿过间隔的光通过偏振板56被相机55捕获。

白色led就是一个示例,不同颜色的led也可以用作光源。例如,可以通过组合诸如红色、绿色和蓝色的多种颜色的led来构造光源。也可以使用诸如电致发光灯、hid灯、荧光灯和白炽灯等的其它光源。所使用的光源的类型可以根据待检测的食品或异物的类型来确定。光源不限于发射可见光的光源,并且可以是发射红外光、紫外光等的光源或者可以是多个波长(多波长)的组合光源。

偏振板53设置在照明单元52的前侧。例如,偏振板53是线性偏振板。提供偏振板53减少了光从运送装置4的表面或食品中的水或油脂的漫反射,并且有助于相机55对食品的精确图像捕获。没有偏振板53的配置也是可能的。

相机55捕获被来自照明单元52的光束照射的食品的图像。偏振板56设置在相机55的前侧。例如,偏振板56是用于相机镜头的偏振滤光镜。通过经由偏振板53进行图像捕获,能够获得由于水、油脂等的光泽而导致的漫反射或褪色的效果变小的图像。没有偏振板56的配置也是可能的。

图像处理器12提取捕获图像中的像素的红色、绿色和蓝色(rgb)中的每种颜色的亮度,作为图像捕获装置51的输出信息,并获得每种颜色的图像。然后,图像处理器12通过针对每个像素从红色(r)图像中减去绿色(g)图像的像素值来生成图像。以与第一实施例类似的方式,使用阈值对如此生成的图像进行二值化处理,以生成二值图像。

图9示出了图像处理的一个具体示例。捕获图像61被分离成r图像62、g图像63和b图像64。从r图像62的像素值中减去g图像63的像素的值,以生成图像(r-g图像)。所生成的图像经过二值化处理以生成二值图像65。捕获图像61是颜色图像,图像62至64是表示r、g、b各颜色的亮度的大小的灰度图像。在二值图像65中,值大于或等于阈值的像素为白色,值小于阈值的像素为黑色。值大于或等于阈值的像素区域对应于含血部位的一部分。

检测处理器14可以通过以与第一实施例类似的方式对二值图像65进行边缘检测,来识别含血部位的区域(二值图像65中的白色区域)。

注意,上述图像处理是一个示例,可以进行其它类型的图像处理。例如,在对捕获图像执行突出红色和绿色的处理之后,已经对其执行了处理的捕获图像可被分离成r图像、g图像和b图像。此外,在对通过减法获得的图像(r-g图像)执行转换(例如,转换到hsv色彩空间)之后,可以通过从转换后的图像中提取红色分量来生成图像。也可以通过从r-g图像中提取红色分量来生成图像,而无需转换r-g图像。注意,也不禁止对捕获图像执行二值化处理,而无需对被捕获图像执行任何图像处理。

以与第一实施例类似的方式,辅助信息生成器15生成包括识别含血部位的位置的信息在内的检验辅助信息。例如,辅助信息生成器15基于二值图像生成包围含血部位的区域的框数据,并将所生成的框数据布置在所捕获的图像上。诸如“含血部位”的文本数据可被布置在框数据附近。将这样生成的图像(辅助图像)作为检验辅助信息显示在显示器3上。显示定时的控制与第一实施例中的类似。工人在参考显示在显示器3上的作为检验辅助信息的框数据的同时,对运送到检验区域内的食品进行检验,以检查含血部位的位置。当找到含血部位时,工人使用预定工具去除含血部位。或者,工人可以检查含血部位,使得如果含血部位是容许范围(例如较小),则工人允许食品被收集装置4a收集,并且如果含血部位不是容许范围,则工人将其存储在预定的情况下,用于在另一步骤中单独地执行去除含血部位的操作。也可以使用其它方法来处理检测到含血部位的鸡肉。

(变型例)

在上述第二实施例中,作为图像处理,生成r-g图像,并且从r-g图像生成二值图像(参见图9)。在该变型例中,除了颜色图像之外还捕获红外(infrared)图像,并且从红外图像的像素值中减去g图像的像素值以生成图像。红外图像的具体示例是近红外(nearinfrared)图像。近红外光例如是波长在760nm和1000nm之间的电磁波。在该变型例中,捕获近红外图像,并且从近红外图像的像素值中减去g图像的像素值以生成图像(nir-g图像)。此外,对nir-g图像进行二值化处理以生成二值图像。该二值图像用于检测异物或缺陷。以这种方式,可以提高检测更暗的含血部位(例如,高度黑色的含血部位)的精度。

在该变型例中,使用能够同时捕获颜色图像和近红外图像的相机作为相机55。作为这种相机的示例,可以使用rgb相机和红外相机的组合。可替换地,可以使用能够捕获更大数量波长的图像的多光谱相机或超光谱相机。相机的配置、数量和类型没有特别限制。如果使用rgb相机和红外相机两者,则可以同时或按顺序执行图像捕获。在后一种情况下,稍后步骤中的图像处理器12可以执行用于对图像执行减法处理的图像的对准。

相机55捕获到的食品(鸡肉)的颜色图像和近红外图像被发送到图像存储器11。图像存储器11其中存储有颜色图像和近红外图像。图像处理器12从图像存储器11读取颜色图像,从颜色图像中提取红、绿、蓝(rgb)各颜色的亮度,生成r图像(红色图像)131、g图像(绿色图像)132和b图像(蓝色图像)133。

图10示出了由图像处理器12生成的r图像131、g图像132和b图像133的示例。该图还示出了存储在图像存储器11中的近红外图像134的示例。在图像131至134中,各个波长的电磁波的强度由每个像素的灰度色调(亮度)表示。具有较高强度的像素显示为较亮。具有较低强度的像素显示为较暗。在图像131至134的任何一个中,肉的部分以比周围部分亮的颜色突出。该示例使用的样本只含有高度黑色的含血部位。

图像处理器12针对每个像素,通过从近红外图像134中减去g图像132的像素值来生成图像(nir-g图像),即,生成近红外线图像134和g图像132之间的差分图像。图像处理器12对nir-g图像执行二值化处理,以生成二值图像(nir-g二值图像)135。上面描述了二值化处理的细节。

图11的上侧示出了图像处理器12生成的nir-g二值图像135的示例。图11的下侧示出了通过对通过针对每个像素从r图像131中减去g图像132的像素值而获得的图像(r-g图像)执行二值化处理而得到的二值图像(r-g二值图像)136的示例。r-g图像对应于r图像131和g图像132之间的差分图像。r-g二值图像136被示出用于与nir-g二值图像135进行比较,并且在该变型例中不一定需要生成r-g二值图像136。

在nir-g二值图像135和r-g二值图像136中,值大于等于阈值的像素为白色,值小于阈值的为黑色。具有大于或等于阈值的值的像素区域对应于含血部位。

参照图11下侧的r-g二值图像136,当在由圆圈包围的区域139中检测到高度黑色的含血部位的部分的像素时,许多噪声分量出现在实际上不含有含血部位的部分,如由圆圈包围的区域138中所示。这是因为,在生成r-g二值图像136时,为了检测高度黑色的含血部位,使用了低阈值。

另一方面,在图11的上侧的nir-g二值图像135中,尽管在由圆圈包围的区域137中检测到高度黑色的含血部位的部分的像素,但是在与r-g二值图像136的区域138相对应的区域中仅出现少量的噪声分量。这是因为nir-g图像可以突出黑色的含血部位的部分,并且不必像对于r-g二值图像136那样多地降低用于生成nir-g二值图像135的阈值。即,nir-g二值图像135使用比r-g二值图像136更高的阈值。因此,nir-g二值图像135的使用使得能够既减少噪声分量又提高检测高度黑色的含血部位的精度。

在该变型例中,可以使用其它类型的图像来代替近红外图像。例如,也可以使用除近红外光(例如远红外光)之外的其它类型的红外光的图像、紫外图像或三维图像。可以通过使用例如设置有对其它类型的红外光具有灵敏度的传感器的相机来捕获其它类型红外光的图像。可以通过使用例如设置有对紫外光具有灵敏度的传感器的相机来捕获紫外图像。可以通过使用例如3d相机来捕获三维图像。

同样地,在该变型例中,虽然在近红外图像和g图像之间进行了运算(减法),但是要进行运算的图像的组合不限于近红外图像和g图像的组合。即,只要能够准确地检测待检测的异物或缺陷,就可以对任何类型的图像的组合进行运算。例如,可以对近红外图像、其它类型的红外光的图像、紫外图像、三维图像、r图像、g图像和b图像中的两个或更多个进行运算。运算的类型不限于减法,并且还可以是加法、减法、乘法、除法或其组合。还可以在执行运算之前将图像乘以加权系数。

第一实施例的变型例适用于本实施例。

(第三实施例)

虽然第一实施例和第二实施例使用显示器3作为输出检验辅助信息的信息输出装置,但是第三实施例利用作为投影装置的示例的投影仪来将检验辅助信息投影到正被运送的食品上或投影到运送通道上。下面详细描述本实施例。

图12示出了根据第三实施例的食品检验辅助系统的示例。使用投影仪71代替图1中的显示器3。投影仪71设置在检验区域中的运送通道的上方,并且朝向运送表面投影检验辅助信息。其它配置在原理上类似于第一实施例中的配置。下面主要描述从第一实施例的改变或扩展。

图13的(a)示例了由图像捕获装置2执行的连续图像捕获的示例。当由运送装置4运送的鸡肉(食品)21进入图像捕获装置2中的图像捕获区域81时,以恒定时间间隔执行多次图像捕获(静态图像的连续拍摄)。该图示出了在时间t11、时间t12和时间t13处总共执行三次图像捕获的示例。由于食品即使在多次图像捕获期间也移动,所以食品在捕获的图像中的位置在运送方向上逐渐改变。虽然在该示例中执行三次图像捕获,但可根据需要确定执行图像捕获的次数或速率。

图14示出了通过连续图像捕获获得的捕获图像的示例。图14的(a)示出在时间t11处第一次捕获的图像91,图14的(b)示出在时间t12处第二次捕获的图像92,图14的(c)示出在时间t13处第三次捕获的图像93。在捕获图像91至93中,作为图像捕获对象的食品在运送方向上逐渐移动。

图像捕获装置2将通过连续图像捕获得到的多个捕获图像发送给检验辅助装置1。检验辅助装置1以与第一实施例类似的方式生成用于多个捕获图像的多条检验辅助信息。在该示例中,以与第一实施例类似的方式,通过将框数据布置在每个捕获图像上获得每条检验辅助信息。

当控制器13从传感器24接收到食品的检测信号时,控制器13控制投影仪71,使得多条检验辅助信息被连续地(例如,以恒定的时间间隔)投影。控制器13以恒定的时间间隔向投影仪71输出多条检验辅助信息。投影仪71以恒定的时间间隔将从控制器13输入的多条检验辅助信息依次投影到传送通道上。例如,投影仪71的照射区域的尺寸与图像捕获装置2的图像捕获区域的尺寸相同。

图13的(b)示出了投影仪71执行的投影的示例。在离开图像捕获装置2的壳体之后,鸡肉(食品)21由运送装置4运送并且进入投影仪71的投影区域82。此时,投影仪71以恒定的时间间隔投影多条检验辅助信息。图15示出了连续投影的多条检验辅助信息的示例。图15的(a)示出了在时间t21处第一次被投影的检验辅助信息101,图15的(b)示出了在时间t22处第二次被投影的检验辅助信息102,图15的(c)示出了在时间t23处第三次被投影的检验辅助信息103。各条信息对应于图14的(a)至图14的(c)的捕获图像。在检验辅助信息101至103中,食品在运送方向上逐渐移动,并且框数据75相应地沿运送方向移动相同的量。图15的(a)至图15的(b)的多条检验辅助信息被顺序地投影,使得检验辅助信息(食品图像和框数据)被投影到正被运送的食品上,如图13的(b)所示。即使在投影仪71的图像捕获期间食品也移动,并且在时间t21、时间t22和时间t23投影的检验辅助信息中包括的食品和框也以相同的速度移动。因此,包括在检验辅助信息中的食品和框的图像被投影为符合食品的位置,而与食品的移动无关。因此,投影在运送食品上的框包含异物(羽毛)。工人可以看到羽毛包含在投影在食品上的框内,并且可以容易地找到羽毛。

图16是根据本发明实施例的操作示例的流程图。当传感器23检测到待检验的食品进入图像捕获装置2的图像捕获区域时(步骤s201),传感器23向控制器13发送检测信号。控制器13向相机32输出用于指示图像捕获的信号。相机32通过绿色滤色器以恒定时间间隔执行食品的多次图像捕获(连续图像捕获),并且控制器13将多个捕获图像存储在图像存储器11中(s202)。图像处理器12对每个捕获图像执行图像处理。具体地,图像处理器12通过对每个捕获图像执行图像处理来生成图像(s203)。

检测处理器14利用基于经处理的图像的边缘检测来执行检测异物的处理(s204)。在该示例中,执行检测羽毛作为异物的处理。具体地,检测处理器14首先通过阈值将经处理的图像二值化以生成二值图像。基于二值图像,将1(或0)的像素区域识别为羽毛区域。

辅助信息生成器15生成表示所识别的羽毛区域的位置的信息(s205)。例如,辅助信息生成器15生成包围羽毛的框数据,并且生成其中框数据被布置在所捕获的图像上的图像(检验辅助信息)。

控制器13接收针对多个捕获图像生成的多条检验辅助信息,并在待检验食品通过检验区域的时刻以恒定的时间间隔将多条检验辅助信息依次输出到投影仪71。以这种方式,多条检验辅助信息以恒定的时间间隔被投影到正运送通道上运送的食品上(s206)。这允许包括在所投影检验辅助信息中的框数据的位置根据食品在运送通道上的移动而移动,使得工人能够不中断地继续检验投影在食品中的异物(羽毛)上的框。因此,工人可以容易地识别和去除羽毛。

虽然在本实施例中,相机32的图像捕获区域(图像捕获方向)和投影仪71的投影区域(投影方向)是固定的,但是在对食品执行连续图像捕获的情况下,也可以在捕获食品的图像的同时移动相机32的方向。类似地,可以在顺序地投影多条检验辅助信息的同时移动投影仪71的投影方向。这允许使用具有窄视角的相机和具有窄投影角度的投影仪。

在本实施例中,将框数据布置在捕获图像上的图像作为检验辅助信息投影到食品上。然而,可以生成仅包括框数据(不包括鸡肉)的图像作为检验辅助信息,并将其投影到食品上。

在本实施例中,检验辅助信息投影到食品上,但检验辅助信息也可以投影到运送通道上。例如,检验辅助信息可以投影到运送通道的靠近正在运送的食品的部分上(例如,在右边、左边、上面或下面)。同样在这种情况下,投影信息的位置与正被运送的食品同步地改变。这样,工人能够在观看在运送中的食品附近显示的检验辅助信息的同时进行检验。

虽然在本实施例中,利用光投射信息的投影仪作为信息输出装置,但也可以利用光束投射信息的光束投影仪。在使用光束投影仪的情况下,可以将光束投影到检测到的异物的位置上。投影光束也可以被移动以包围异物。在任何情况下,投影光束的位置与正被运送的食品同步地改变。这种光束的投射也是显示检验辅助信息的形式。

虽然本实施例是通过使用基于第一实施例的检测异物(羽毛)的示例来描述的,但同样的情况也可适用于检测缺陷(例如含血部位)的实施例,如第二实施例。

(第四实施例)

在第一至第三实施例中,基于捕获图像执行检测食品中的异物或缺陷的处理,并且生成并显示根据检测结果获得的检验辅助信息。在本实施例中,测量食品的特性信息,并且生成并显示根据测量的特性信息所获得的检验辅助信息。其它点原则上类似于上述实施例中的那些点。

图17示出了根据本实施例的食品检验辅助系统的示例。在第三实施例中使用的图12中的图像捕获装置2被三维相机(3d相机)112代替,并且检测处理器14被测量处理器111代替。具有与图12中相同名称的元件用相同的参考数字提供。下面主要描述来自第三实施例的改变和扩展。

3d相机112捕获待检验食品的图像。3d相机112是感测装置的示例。3d相机112测量食品的颜色和深度,并且获取3d图像作为所捕获的图像,该3d图像是3d相机的输出信息。3d图像包括每个像素的颜色信息和深度。例如,可以使用发射红外光的led和接收反射的红外光的传感器来测量深度。当传感器23检测到食品122时,传感器23向控制器13输出检测信号。控制器13接收检测信号,并向3d相机112输出用于指示图像捕获的信号,并且3d相机112执行图像捕获。图像捕获的次数是一次或多次。下面的描述假设执行多次图像捕获(连续图像捕获)的情况。

图像处理器12对3d图像执行预处理。例如,图像处理器12执行减少噪声分量(平均)、对比度调整、色调调整等处理。不执行任何预处理的配置也是可能的。

测量处理器111基于3d图像测量食品的特性信息。例如,测量处理器111测量食品的重量。通过基于3d图像测量食品的体积并将该体积乘以食品(鸡肉)的平均密度来计算重量。鸡肉的平均密度被预先提供给测量处理器111,或者被存储在测量处理器可访问的存储器等存储单元中。除了重量之外,还可以测量鸡肉的尺寸(长度、宽度和高度中的至少一个)。也可以计算鸡肉的脂肪比例。例如,在深度方向上具有大于或等于预定值(鸡肉的白色部分)的亮度值的像素的所有部分被认为是脂肪部分,并且根据鸡肉的整个体积与脂肪部分的体积的比例来计算脂肪比例。注意,虽然本实施例使用3d相机来测量食品的特性信息,但是也可以使用可见光或紫外光来执行测量。此外,代替3d相机,可以在运送装置4中设置作为感测装置的重量传感器,使得重量传感器检测鸡肉的重量。

辅助信息生成器15基于由测量处理器111测量的食品的特性信息生成检验辅助信息。具体地,辅助信息生成器15生成这样的图像,在该图像中,食品的特性信息被布置在通过去除深度信息而获得的三维图像或二维图像中的鸡肉的位置处(放置在鸡肉的上方)。可选地,可以生成其中特性信息被布置在与鸡肉相同的位置处并且不包含鸡肉的图像的图像。

控制器13接收针对多个捕获图像(3d图像)生成的多条检验辅助信息。当控制器13从传感器24接收到食品121的检测信号时,控制器13控制投影仪71,使得多条检验辅助信息以恒定的时间间隔被投影。控制器13以恒定的时间间隔向投影仪71输出多条检验辅助信息。投影仪71以恒定的时间间隔将从控制器13输入的多条检验辅助信息依次投影到传送通道上。例如,投影仪71的照射区域的尺寸与图像捕获装置2的图像捕获区域的尺寸相同。

图18示出了投影仪71执行的投影的示例。鸡肉(食品)121由运送装置4运送并进入投影仪71的投影区域82。此时,投影仪71以恒定的时间间隔投影多条检验辅助信息。与第三实施例类似,检验辅助信息(包括食品的特性信息)被投影在所运送的食品上。在该图的示例中,文本数据“398克”被投影到待检验的鸡肉121上。即使在投影仪71的图像捕获期间,食品121也移动,并且在时间t31、时间t32和时间t33投影的检验辅助信息中包括的特性信息相应地移动。特性信息被投影在食品上,而与食品的移动无关。工人通过检查投影在食品上的重量值,确定鸡肉的重量是否在规格规定的范围内。如果重量在由规格限定的范围内,则鸡肉被认为是合格的,并且允许鸡肉被收集装置4a收集。如果重量超出规格范围,则用手从运送通道中取出鸡肉,并将其装在单独准备的箱子中。在该图的示例中,重量在规格范围内,并且工人确定没有问题并且使鸡肉121离开。在后面的操作中,对收集在箱子中的鸡肉块进行重量调整,使其落在规格范围内。可替代地,并且相反地,落入规格范围内的鸡肉块可以被拾取并包含在单独准备的箱子中,并且可以通过收集设备装置4a收集超出规格范围的鸡肉块。

图19是根据本发明实施例的操作示例的流程图。当传感器23检测到待检验的食品进入图像捕获装置2的图像捕获区域时(步骤s301),传感器23向控制器13发送检测信号。控制器13向相机112输出用于指示图像捕获的信号。3d相机112以恒定的时间间隔执行多次图像捕获(连续图像捕获),并且控制器13将多个捕获图像(3d图像)存储在图像存储器11中(s302)。图像处理器12对各捕获图像进行图像处理(减少噪声分量的处理)(s303)。

检测处理器14基于经处理的图像测量食品的特性信息(s304)。例如,检测处理器14测量食品的重量、大小和脂肪比例中的至少一个。

辅助信息生成器15生成包括测得特性信息在内的检验辅助信息(s305)。

控制器13接收针对多个捕获图像生成的多条检验辅助信息,并在待检验食品在检验区域运送的时刻以恒定的时间间隔将多条检验辅助信息依次输出到投影仪71(s306)。投影仪71以恒定的时间间隔投影多条检验辅助信息(s306)。这允许包括在投影检验辅助信息中的特性信息的位置根据食品在运送通道上的移动而移动,使得特性信息根据被运送的食品的移动被投影到食品上。工人可以不中断地继续检查投影在食品上的信息(例如重量信息)。第三实施例中描述的各种扩展示例和变型例也可应用于本实施例。

虽然已经描述了某些实施例,但这些实施例仅仅是作为示例给出的,并不意在限制本发明的范围。实际上,本文描述的新颖实施例可以以多种其它形式实施;此外,在不脱离本发明的精神的情况下,可以对本文描述的实施例的形式进行各种省略、替换和改变。所附权利要求书及其等同物旨在覆盖落入本发明的范围和精神内的这种形式或变型。

符号的说明

1食品检验辅助装置

2图像捕获装置

3显示器

4输送装置

4a收集装置

5框数据

11图像存储器

12图像处理器

13控制器

14检测处理器

15辅助信息生成器

21、122、121鸡肉(食品)

21a异物(羽毛)

23、24传感器

27工人

28臂构件

30区域

31、52照明单元

32、55相机

33滤色器

34、54开口

53、56偏振板

71投影仪

82投影区域

111测量处理器

1123d相机

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1