泵组能源效率自动化控制系统及其控制方法

文档序号:6319811阅读:125来源:国知局
专利名称:泵组能源效率自动化控制系统及其控制方法
技术领域
本发明涉及一种工商业及民用水泵利用的系统及其控制方法,特别是涉 及一种泵组能源效率自动化控制系统及其控制方法。
背景技术
目前工商业及民用水泵利用的控制系统主要采用以下两种控制方式1、 工频运行,水泵电机不调速;2、变频运行,利用变频器控制水泵的转速。 但是,以上两种方式的缺陷是不节能或节能特性不明显,具体原因是1、 对于工频运行的水泵,泵的运行参数无法与管路系统要求完全匹配;2、 对于变频运行的水泵,泵的运行参数只能与管路系统要求部分匹配,无法 将水泵始终控制在高能效区运行。

发明内容
为了克服目前工业及民用水泵利用系统存在的上述缺陷,本发明提供了 一种泵组能源效率自动化控制系统及其控制方法,适用于各种类型的水泵, 通过PLC控制,使泵组实现高效率运行。本发明的泵组能源效率自动化控 制系统及其控制方法包括控制系统、控制软件和泵组系统,控制系统通过检 测管路系统中的流量需求信号、泵的运行状态信号,经过逻辑分析,判断管 路系统的流量需求趋势,PLC根据预先设定的水泵最佳能效区间,自动给定 运行频率,实现泵组的高效节能运行控制。本发明的泵组能源效率自动化控 制系统由多台水泵组成,泵的数量最多可以为10台或者更多, 一般以2-3 台比4交适宜。
为解决上述技术问题,本发明提供了 一种泵组能源效率自动化控制系 统,包括水泵、水池、管路、参数设置模块、水位测量模块和系统控制模块, 所述参数设置模块,用于预先设置所述水泵及管路的特性参数和控制参
数;所述7jC位测量才莫块,用于每隔一定的时间测量、判断、计算出高位水池 水位、流量需求趋势和系统瞬时流量,并将所述测量、判断、计算出的数据
发送系统控制模块;
系统控制模块,用于接收水位测量模块传送的测量和计算后的数据,并 根据所述数据控制系统的运行。
当所述系统控制模块接收到的数据为LL < L 〈LH时,为节能运行方 式,优选执行下述操作
(1) 当A上且Ql < B < Qh 时Q = B
(2) 当Al且B《QL时Q = Ql
(3) 当A4且B》QH时Q = QH
(4) 当At且QL〈 B < Qn时Q=1.05B
(5) 当At且B《QL时Q = Ql
(6) 当At且B ^QH时Q = Qh 上述公式中各个^t的含义为
L实际运行水位,Ll下限水位,Lh上限水位,Q水泵实际运行流量, Qh水果上限流量,Ql水泉下限流量,A流量需求趋势,B瞬时流量。 当所述系统控制模块接收到的数据为L《k时,优选执行下述操作
(1) B < Qo : Q= Q。,水位达到LM时,转入权利要求2所述的节能运行
方式;
(2) B〉Qo :主泵工频运行,开启备用水泵,二台并列运行,直到水位 达到LM时,停备用泵,转入权利要求2所述的节能运行方式;
上述公式中各个参数的含义为 Lm平均水位,Qo水泵工频流量。
当所述系统控制模块接收到的数据为L〉LH时,优选执行下述操作 主泵转入睡眠状态,直到水位达到LM时,系统控制模块唤醒主泵; 上述公式中各个参数的含义为 Lm平均水位。
所述泵组能源效率自动化控制系统的系统控制;f莫块优选通过PLC实现, 所述PLC的输入模块接收泵组系统的流量需求信号、变频器的运行参数、 泵的切换和停泵信号,PLC的输出模块向变频器输出运行频率信号,向触摸
6屏输出适时运行参数和故障保护信息;变频器根据PLC给定的运行频率信 号控制泵电动机转速,同时向PLC输出实时运行参数信号触摸屏显示实时 运行参数和预置参数、系统保护及故障信息,同时向上位机传输数据;感应 测量回路将管路系统的流量需求信号反馈给PLC。
为解决上述技术问题,本发明还提供了 一种泵组能源效率自动化控制方 法,包括以下步骤
预先设置水泵及管路的特性参数和控制参数;
每隔一定的时间测量、判断、计算出高位水池水位、流量需求趋势和系 统瞬时流量;
才艮据测量、判断、计算出高位水池水位、流量需求趋势和系统瞬时流量 控制泵组的运4亍。
当测量、判断、计算出的数据为I^ < L 〈LH时,为节能运行方式, 优选执行下述操作
(1) 当A丄且Ql < B < QH 时Q = B
(2) 当Al且B《ql时q = ql
(3) 当A丄且B )qh时q = qh
(4) 当At且ql < B < Qu时Q=1.05B
(5) 当A卞且B《QL时Q = Ql
(6) 当At且B》Qu时Q = QH 上述公式中各个参数的含义为
L实际运行水位,Ll下限水位,Lh上限水位,Q水泵实际运行流量, Qh水泉上限流量,Ql水泉下限流量,A流量需求趋势,B瞬时流量。 当测量、判断、计算出的数据为L《k时,优选执行下述操作
(1) B《Qo : QtQQ,水位达到LM时,转入权利要求7所述的节能运行 方式;
(2) B>Q。主泵工频运行,开启备用水泵,二台并列运行,直到水位 速到Lm时,停备用泵,转入权利要求7所述的节能运行方式;
上述公式中各个員的含义为 Lm平均水位,Qo水泵工频流量。
当测量、判断、计算出的数据为L》Ln时,优选执行下述操作主泵转入睡眠状态,直到水位达到Lw时,系统控制模块唤醒主泵;
上述公式中各个参数的含义为
Lm平均水位。
所述方法可以通过PLC实现,所述PLC的输入才莫块接收泵组系统的流 量需求信号、变频器的运行参数、泵的切换和停泵信号,PLC的输出模块向 变频器输出运行频率信号,向触摸屏输出适时运行参数和故障保护信息;变 频器根据PLC给定的运行频率信号控制泵电动机转速,同时向PLC输出实 时运行参数信号触摸屏显示实时运行参数和预置参数、系统保护及故障信 息,同时向上位机传输数据;感应测量回路将管路系统的流量需求信号反馈 给PLC。
本发明的泵组能源效率自动化控制系统及其控制方法,能自动测量和预 测管路系统的流量需求,控制整个泵组系统大部分时间高效率区间运行。与 现有的水泵控制系统相比,可以节能10-30%。


图1为本发明实施例所述的系统流程图2为本发明实施例所述的系统流程图3为本发明实施例所述的PLC控制器接线图4为本发明实施例所述的两台泵组成的泵站控制系统主回i 各图5为本发明实施例所述的泵组及管路系统简图中各个附图标记分别为
控制器301,变频器302,该位^送器3d谅J^r这器3W,主泵401, 备用泵402, ^f氐位水池501,高位水池502,用户503。
具体实施例方式
为了克服目前工业及民用水泵利用系统存在的上述缺陷,本发明提供了 一种泵组能源效率自动化控制系统及其控制方法,适用于各种类型的水泵, 通过PLC控制,使泵组实现高效率运行。本发明的泵组能源效率自动化控 制系统及其控制方法包括控制系统、控制软件和泵組及管路系统,控制系统 通过^r测管路系统中的流量需求信号、泵的运行状态信号,经过逻辑分析,判断管路系统的流量需求趋势,PLC根据预先设定的水泵最佳能效区间,自 动给定运行频率,实现泵组的高效节能运行控制。本发明的泵组能源效率自 动化控制系统由多台水泵组成,泵的数量最多可以为IO台或者更多, 一般 以2-3台比较适宜。
本发明提供了 一种泵组能源效率自动化控制系统及其控制方法,适用于 各种类型的水泵,通过PLC控制,使泵组实现高效率运行。
本发明所称的PLC即可编程逻辑控制器(Programmable logic Controller),是指以计算机技术为基础的新型工业控制装置。在1987年国 际电工委员会(International Electrical Committee )颁布的PLC标准草案中对 PLC做了如下定义PLC英文全称Programmable Logic Controller ,中文全称 为可编程逻辑控制器,定义是 一种数字运算操作的电子系统,专为在工业 环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执 行逻辑运算、顺序控制、定时、计数与算术操作等面向用户的指令,并通过 数字或模拟式输入/输出控制各种类型的机械或生产过程。PLC是可编程逻 辑电路,也是一种和硬件结合很紧密的语言,在半导体方面有很重要的应用, 可以说有半导体的地方就有PLC。
PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装 置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序 运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输 入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应 该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。
国际电工委员会(正C)在其标准中将PLC定义为:可程式逻辑控制器是一 种数位运算搡作的电子系统,专为在工业环境应用而设计的。它采用一类可 编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、计 数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种
类型的机械或生产过程。可程式逻辑控制器及其有关外部设备,都按易于与 工业控制系统联成一个整体,易于扩充其功能的原则设计。
本发明的泵组能源效率自动化控制系统及其控制方法包括控制系统、控 制软件和泵组系统,控制系统通过4企测管路系统中的流量需求信号、泵的运 行状态信号,经过逻辑分析,判断管路系统的流量需求趋势,PLC根据预先设定的水泵最佳能效区间,自动给定运行频率,实现泵组的高效节能运行控 制。本发明的泵组能源效率自动化控制系统由多台水泵组成,泵的数量最多
可以为1 10台或者更多, 一般以2-3台比较适宜。
如图5所示,为本发明实施例所述的两台泵组成的泵组及管路系统简 图,水泵水量为2-3台,通过监测高位水池的水位,控制水泵的运行流量, 水泵通过管路系统将水送入高位水池502,高位水池502通过管路将水分配 送到用户503处。
如图l和图2所示,为本发明实施例所述的控制系统流程图,本发明的 泵组能源效率自动化控制系统及其控制方法是这样工作的 参数定义
1、 水位
实际运行水位L 下限水位 Ll 平均水位 LM 上限水位 LH
2、 水泵流量 实际运4亍流量Q 上限流量 QH 下限流量 Ql 工频流量 Qo
3、 流量需求趋势A
4、 瞬时流量B
预先设置水泵及管路系统的特性参数和控制参数,水位测量系统每隔一 定的时间测量、判断并计算出高位水池水位L、流量需求趋势A和系统瞬时 流量B,并据此控制系统的运行。
逻辑控制过程为
1、如果Ll < L 〈Lh,采用节能运行方式
(1) 当A4且Ql〈 B < QH 时Q = B
(2) 当A丄且B《QL时Q = Ql
(3) 当A丄且B ^QH时Q = QH
10(4) 当A言且Ql〈 B < Qn时Q=1.05B
(5) 当At且B《Qt时Q = QL
(6) 当At且B》QH时Q = Qh
2、 如果L《LL
(1) B<QQ : Q=Q。,水位达到lm时,转入节能运行方式
(2) B〉Q。主泵工频运行,开启备用水泵,二台并列运行,直到水位 逸到Lm时,停备用泵,转入节能运行方式。
3、 如果I^Lh
主泵转入睡眠状态,直到水位达到lm时,唤醒主泵。
同时本发明还通过对主泵运行时间的监控,实现主泵与备用泵的互换, 使主泵和备用泵的运行时间均匀分配。
如图3和图4所示,分别为本发明实施例所述的PLC控制器接线图和 两台泵组成的泵站控制系统主回路图,图中各个附图标记分别为控制器 301,变频器302,液位变送器303,流量变送器304。图中泵组能源效率自 动化控制系统及其控制方法包括控制系统、控制软件和泵组系统。泵组系统 包括多台水泵,水泵的型号可以相同,也可以不同,泵的数量为1-10台, 冬者更多。PLC装有控制软件,PLC的输入模块接收泵组系统的流量需求信 号、变频器的运行参数、泵的切换和停泵信号,PLC的输出模块向变频器输 出运行频率信号,向触摸屏输出适时运行参数和故障保护信息。变频器根据 PLC给定的运行频率信号控制泵电动机转速,同时向PLC输出实时运行参 数信号触摸屏显示实时运行参数和预置参数、系统保护及故障信息,同时向 上位机传输数据。感应测量回路将管路系统的流量需求信号反馈给PLC。
手动运行与自动运行之间的切换信号由控制拒上的手动/自动按钮开关 发出。当开关指向手动时,系统只能手动固定频率运行;当开关指向自动时, 系统自动按设定的程序运行。紧急停机信号由控制拒上的紧急停机按钮发 出。系统自动时,控制器采集所需数字和模拟量信号。首先根据变频准备选 择开关的信号指定主泵和备用泵,在系统运行中请勿切换此开关。然后由控 制器定时保存采集到的液位和流量变送器的模拟量信号(4-20mA),并根 据逻辑控制要求(如图1、图2所示)进行液位比较及流量变化趋势的判定, 据此确定瞬时流量值的大小和工变频及泵的动作。瞬时流量值由控制器通过数模转换模块(O-1 ov)输出控制变频器产生,而工变频的动作由控制器数字 量输出控制接触器KMOIM、 KM02M产生,主泵和备用泵的动作由 KM03M KM06M产生。
本实施例中水泵的数量可以为3台。
本实施例中水泵的数量也可以为1-2台。
本实施例中测量回路的测量参数可以为泵出口至管道出口段的管道压力。
本实施例中测量回路的测量参数也可以为水泵或管路的流量。 本实施例中测量回路的测量参数还可以为工艺需求流量。 本实施例中测量回路的测量参数还可以为管路中水的流速。 本发明的泵组能源效率自动化控制系统及其控制方法,能自动测量和预
测管路系统的流量需求,控制整个泵组系统大部分时间高效率区间运行。与
现有的水泵控制系统相比,可以节能10-30%。
1权利要求
1、一种泵组能源效率自动化控制系统,包括水泵、水池、管路、参数设置模块、水位测量模块和系统控制模块,其特征在于所述参数设置模块,用于预先设置所述水泵及管路的特性参数和控制参数;所述水位测量模块,用于每隔一定的时间测量、判断、计算出高位水池水位、流量需求趋势和系统瞬时流量,并将所述测量、判断、计算出的数据发送所述系统控制模块;所述系统控制模块,用于接收所述水位测量模块传送的测量和计算后的数据,并根据所述数据控制系统的运行。
2、 根据权利要求1所述泵组能源效率自动化控制系统,其特征在于, 当所述系统控制模块接收到的数据为LL < L 〈LH时,为节能运行方式, 执行下述操作(1) 当A上且Ql < B < QH 时Q = B(2) 当Ai且B《ql时q = ql(3) 当A丄且B ^qh时q = qh(4) 当At且ql < B < Qn时Q=1.05B(5) 当At且B《ql时q = ql(6) 当At且B ^qh时Q = Qh 上述公式中各个参数的含义为L实际运行水位,Ll下限水位,Lh上限水位,Q水泵实际运行流量, Qh水泉上限流量,Qt水泵下限流量,A流量需求趋势,B瞬时流量。
3、 根据权利要求2所述泵组能源效率自动化控制系统,其特征在于, 当所述系统控制模块接收到的数据为L < LL时,执行下述操作(1) B《QQ : Q^Q。,水位达到LM时,转入权利要求2所述的节能运行 方式;(2) B〉Qo :主泵工频运行,开启备用水泵,二台并列运行,直到水位 达到LM时,停备用泵,转入权利要求2所述的节能运行方式;上述公式中各个参数的含义为Lm平均水位,Q。水泵工频流量。
4、 根据权利要求2所述泵组能源效率自动化控制系统,其特征在于, 当所述系统控制模块接收到的数据为L〉LH时,执行下述操作主泵转入睡眠状态,直到水位达到Ut时,系统控制模块唤醒主泵;上述公式中各个参数的含义为Lm平均水位。
5、 根据权利要求1 ~4中任一项所述泵组能源效率自动化控制系统,其 特征在于,系统控制模块通过PLC实现,所述PLC的输入模块接收泵组系 统的流量需求信号、变频器的运行参数、泵的切换和停泵信号,PLC的输出 模块向变频器输出运行频率信号,向触摸屏输出适时运行参数和故障保护信 息;变频器根据PLC给定的运行频率信号控制泵电动机转速,同时向PLC 输出实时运行参数信号;触摸屏显示实时运行参数和预置参数、系统保护及 故障信息,同时向上位机传输数据;感应测量回路将管路系统的流量需求信 号反馈给PLC。
6、 一种泵组能源效率自动化控制方法,其特征在于,包括以下步骤 预先设置水泵及管路的特性参数和控制参数;每隔一定的时间测量、判断、计算出高位水池水位、流量需求趋势和系 统瞬时流量;才艮据测量、判断、计算出高位水池水位、流量需求趋势和系统瞬时流量 控制泵组的运行。
7、 根据权利要求6所述泵组能源效率自动化控制方法,其特征在于, 当测量、判断、计算出的数据为Lt < L 〈LH时,为节能运行方式,执行 下述操作(1) 当A1且Ql〈 B < QH 时Q = B(2) 当A丄且B《Qt时Q = QL(3) 当A丄且B》Qn时Q = QH(4) 当At且QL < B < QH时Q=1.05B(5) 当AT且B《QL时Q = QL(6) 当At且B》QH时Q = Qh 上述公式中各个参数的含义为L实际运行水位,u下限水位,Lh上限水位,Q水泵实际运行流量, Qh水泉上限流量,Ql水泉下限流量,A流量需求趋势,B瞬时流量。
8、 根据权利要求7所述泵组能源效率自动化控制方法,其特征在于, 当测量、判断、计算出的数据为L < LL时,执行下述操作(1) B《Q。
Q=Q。,水位达到LM时,转入权利要求7所述的节能运行 方式;(2) B>Q0 :主泵工频运行,开启备用水泵,二台并列运行,直到水位 达到LM时,停备用泵,转入权利要求7所述的节能运行方式;上述公式中各个参数的含义为 Lm平均水位,Q。水泵工频流量。
9、 根据权利要求7所述泵组能源效率自动化控制方法,其特征在于, 当测量、判断、计算出的数据为L》LH时,执行下述操作主泵转入睡眠状态,直到水位达到LM时,系统控制模块唤醒主泵;上述公式中各个参数的含义为Lm平均水位。
10、 根据权利要求6~9中任一项所述泵组能源效率自动化控制方法, 其特征在于,所述方法通过PLC实现,所述PLC的输入it块接收泵组系统 的流量需求信号、变频器的运行参数、泵的切换和停泵信号,PLC的输出模 块向变频器输出运行频率信号,向触摸屏输出适时运行参数和故障保护信 息;变频器根据PLC给定的运行频率信号控制泵电动机转速,同时向PLC 输出实时运行参数信号;触摸屏显示实时运行参数和预置参数、系统保护及 故障信息,同时向上位机传输数据;感应测量回路将管路系统的流量需求信 号反馈给PLC。
全文摘要
本发明公开了一种泵组能源效率自动化控制系统及其控制方法,系统包括水泵、水池、管路、参数设置模块、水位测量模块和系统控制模块,所述参数设置模块,用于预先设置所述水泵及管路的特性参数和控制参数;所述水位测量模块,用于每隔一定的时间测量、判断、计算出高位水池水位、流量需求趋势和系统瞬时流量;所述系统控制模块,用于接收水位测量模块传送的测量和计算后的数据,并根据所述数据控制系统的运行。本发明的泵组能源效率自动化控制系统及其控制方法,能自动测量和预测管路系统的流量需求,控制整个泵组系统大部分时间高效率区间运行。与现有的水泵控制系统相比,可以节能10-30%。
文档编号G05B19/04GK101560971SQ20091013112
公开日2009年10月21日 申请日期2009年4月3日 优先权日2009年4月3日
发明者杨治金 申请人:杨治金
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1