一种局部区域滑坡预测装置及方法与流程

文档序号:11134850
一种局部区域滑坡预测装置及方法与制造工艺

本发明属于地质灾害预测领域,具体涉及一种滑坡预测技术。



背景技术:

滑坡是指斜坡体上的土岩体由于多种因素的影响,在重力的作用下,沿着一定的软弱面或软弱带,整体或部分地顺坡向下滑动的现象。滑坡事件一般会造成严重的经济损失,甚至生命损失。对滑坡的预测是降低滑坡危害的可行方法。滑坡预测方法有很多,有一些采用单独的位移因素监测和预测方法,但是由于滑坡还会受到许多其他因素的影响,所以影响预测准确性;有一些采用GM模型,适用于短期预测,但是在建立长期预测模型时,由于数据列过长,导致不稳定因素增加,使得模型预测准确性降低;有一些采用传统的贝叶斯模型,不能得到稳定的模型,每次数据改变之后需要重新建模;有一些采用Logistic回归,需要将自变量进行离散化近似操作,造成误差,影响预测准确性。现行的滑坡预测方法可以实现预测功能,但是预测准确性普遍不高。



技术实现要素:

本发明的目的在于提供一种局部区域滑坡预测装置及方法,以提高预测准确性。

为了解决上述技术问题,本发明采用现有的机器学习相关技术,包括卷积神经网络技术,监督式策略模型,随机梯度下降法,随机梯度上升法,迁移模型,通过训练方法和评估方法的步骤设计,通过训练输入的历史滑坡数据,建立并优化滑坡模型,然后利用滑坡模型评估当前滑坡情况,显示局部区域滑坡趋势和概率,实现对局部区域滑坡预测的功能,具体技术方案如下:

一种局部区域滑坡预测装置,包括:监测点管理模块、局部区域管理模块、机器学习模块、模型管理模块、评估模块、显示模块;

所述的监测点管理模块与局部区域管理模块连接;

所述的局部区域管理模块与机器学习模块连接;

所述的机器学习模块与模型管理模块连接;

所述的模型管理模块与评估模块连接

所述的评估模块与显示模块连接;

所述的监测点管理模块用于管理滑坡区域的传感器监测点及监测点的监测数据;

所述的机器学习模块学习输入的滑坡数据,提取滑坡特征,发现数据之间的规律联系,建立并优化滑坡模型;

所述的局部区域管理模块用于建立局部区域滑坡类别及管理滑坡区域概率数据;

所述的模型管理模块用于不同区域滑坡优化的模型的管理;

所述的评估模块用于评估每个阶段建立的滑坡模型;

所述的显示模块用于显示传感器监测点,不同区域滑坡趋势和概率等直观信息;

一种局部区域滑坡预测方法其特征在于包括训练过程和评估过程

一种局部区域滑坡预测方法的训练过程如下:

步骤S1:局部区域编号Rem,1≤m≤M,M为局部区域总数,监测点编号Dsn,1≤n≤N,1≤m≤N,N为局部区域的监测点总数,滑坡区域数据集为神经网络总层数为Layer;

步骤S2:初始化神经网络当前层layer=Layer,m=1;

步骤S3:k=m,局部区域Rem的矩阵图训练集Sm代表监测点的传感器数据集映射为k×k的矩阵图训练集,局部区域Rem监测点传感器数据集在训练过程中各个时间节点为tπ,1≤tπ≤T,T为该局部区域训练总时间。局部区域滑坡Rem的滑坡概率为Pm

步骤S4:初始化i=I,j=J;I为选取特征图数量上限,J为选取数据维数上限;

步骤S5:在k×k的矩阵图训练集中提取出i个j×j的局部矩阵图训练集{map1,map2,...,mapi},layer层每个神经元需要的权重参数个数为i×j,将所有权值初始化为一个随机数wij=Random(i,j);

步骤S6:判断当前层是否为卷积层,如果是,转到步骤S7,如果否,转到步骤S8;

步骤S7:通过激活函数计算f(x)为激活函数,在这一步中传入的参数x为为当前层layer-1层第i个特征图mapi对应的第j维数据,为当前层layer神经元对应的权值,Blayer为当前层layer的唯一偏移,当前层layer的神经元与其对应的局部区域矩阵图连接,转到步骤S9。

步骤S8:通过激活函数计算当前层layer输出f(x)为激活函数,在这一步中传入的参数x为为当前层layer-1层第i个特征图mapi对应的第j维数据,为当前layer层神经元对应的权值,Blayer为当前层layer的唯一偏移β为当前层layer的训练参数;

步骤S9:将当前层下移一层,特征图和数据维数各减一,layer=layer-1,i=i-1,j=j-1;

步骤S10:判断是否layer≥1∩i≥1∩j≥1,如果是,转到步骤S5,如果否,转到步骤S11。

步骤S11:光栅化输出向量将各层的输出依次展开排列连接成一个向量;得到局部区域Rem对应的监督策略模型ModelCm(x);

步骤S12:使用随机梯度下降法,更新监督策略模型ModelCm(f(σ)),σ为更新参数,f(σ)为最大似然函数,选取随机梯度下降法的最大似然函数为:

步骤S13:训练当前层layer的迁移模型ModelQm(x),完全复制监督策略模型ModelCm(f(σ))的数据结构,作为迁移模型ModelQm(g(ρ))的初始化数据结构,初始化参数ρ=σ。

步骤S14:使用随机梯度上升法更新参数ρ,更新迁移模型ModelQm(g(ρ)),选取随机梯度上升法的最大似然函数为:

步骤S15:判断是否1≤m≤M,如果是,转到步骤S3,如果否,转到步骤S16。

步骤S16:训练结束。

一种局部区域滑坡预测方法的评估过程如下:

步骤S1:初始化m=1;

步骤S2:计算局部区域Rem的滑坡趋势值ModelQm(g(ρ))为矩阵图训练集对应的迁移模型,t为当前时刻,反映当前时刻Rem区域的滑坡概率分布情况;

步骤S3:计算局部区域滑坡发展趋势值

步骤S4:采用公式更新矩阵图训练集对应的迁移模型ModelQm(g(ρ)),m=m+1;

步骤S5:判断是否1≤m≤M,如果是,转到步骤S2,如果否,转到步骤S6

步骤S6:显示局部区域滑坡发展趋势;

步骤S7:评估结束。

本发明具有有益效果。

本发明提供的局部区域滑坡预测装置和方法,通过机器学习相关技术,采用训练过程,输入传感器数据集,通过不断的梯度下降和梯度上升过程,得到局部区域的迁移模型,随着更多数据的输入,迁移模型准确率会不断地提高。采用评估过程,通过迁移模型,计算局部区域滑坡发展趋势,提高预测准确率,采用显示模块展示所有局部区域滑坡发展趋势,便于工作人员及时安排相关工作。

附图说明

图1是本发明装置的总体结构示意图。

图中:1-监测点管理模块,2-局部区域管理模块,3-机器学习模块,4-模型管理模块,5-评估模块,6-显示模块。

图2是本发明方法的训练方法流程图。

图3是本发明方法的检测方法流程图。

图4是实施例一局部区域界面图。

图5是实施例一局部区域滑坡预测界面图。

图6是实施例二局部区域界面图。

图7是实施例二局部区域滑坡预测界面图。

图8是实施例三局部区域界面图。

图9是实施例三局部区域滑坡预测界面图。

具体实施例

下面结合附图和具体实施方式对本发明作进一步详细地说明。

由图1所示的一种局部区域滑坡预测装置的总体结构示意图可知,它包括1-监测点管理模块,2-局部区域管理模块,3-机器学习模块,4-模型管理模块,5-评估模块,6-显示模块;

所述的监测点管理模块1与局部区域管理模块2连接;

所述的局部区域管理模块2与机器学习模块3连接;

所述的机器学习模块3与模型管理模块4连接;

所述的模型管理模块4与评估模块5连接

所述的评估模块5与显示模块6连接。本发明在使用时,各部件的功能描述如下:

所述的监测点管理模块1用于管理滑坡区域的传感器监测点及监测点的监测数据;

所述的机器学习模块2学习输入的滑坡数据和图片,提取滑坡特征,为建立滑坡模型做准备;

所述的局部区域管理模块3用于建立局部区域滑坡类别的及数据等的管理;

所述的模型管理模块4用于模型的管理;

所述的评估模块5用于评估滑坡趋势;

所述的显示模块6用于标示不同区域滑坡程度。

本发明的训练流程由图2所示。本发明的检测流程由图3所示。

实施例1:丘陵地区易滑坡区域

整个区域的检测节点布局界面图由图4所示。

训练过程如下:

步骤S1:局部区域编号Rem,1≤m≤M,M=12为局部区域总数,监测点编号Dsn,1≤n≤N,1≤m≤N,N=50为局部区域的监测点总数,滑坡区域数据集为神经网络总层数为Layer=15;

步骤S2:初始化神经网络当前层为layer=Layer,m=1;

步骤S3:k=m,局部区域Rem的矩阵图训练集Sm代表监测点的传感器数据集映射为k×k的矩阵图训练集,局部区域Rem监测点传感器数据集在训练过程中各个时间节点为tπ,1≤tπ≤T,T为该局部区域训练总时间。局部区域滑坡Rem的滑坡概率为Pm

步骤S4:初始化i=I,j=J,I=5,J=4;I为选取特征图数量上限,J为选取数据维数上限;

步骤S5:在k×k的矩阵图训练集中提取出i个j×j的局部矩阵图训练集{map1,map2,...,mapi},layer层每个神经元需要的权重参数个数为i×j,将所有权值初始化为一个随机数wij=Random(i,j);

步骤S6:判断当前层是否为卷积层,如果是,转到步骤S7,如果否,转到步骤S8;

步骤S7:通过激活函数计算f(x)为激活函数,采用sigmoid函数在这一步中传入的参数x为为当前层layer-1层第i个特征图mapi对应的第j维数据,为当前层layer神经元对应的权值,Blayer为当前层layer的唯一偏移,当前层layer的神经元与其对应的局部区域矩阵图连接,转到步骤S9。

步骤S8:通过激活函数计算当前层layer输出f(x)为激活函数,采用sigmoid函数在这一步中传入的参数x为为当前层layer-1层第i个特征图mapi对应的第j维数据,为当前层layer神经元对应的权值,Blayer为当前层layer的唯一偏移β为当前层layer的训练参数;

步骤S9:将当前层下移一层,特征图和数据维数各减一,layer=layer-1,i=i-1,j=j-1;

步骤S10:判断是否layer≥1∩i≥1∩j≥1,如果是,转到步骤S5,如果否,转到步骤S11。

步骤S11:光栅化输出向量将各层的输出依次展开排列连接成一个向量;得到局部区域Rem对应的监督策略模型ModelCm(x);

步骤S12:使用随机梯度下降法,更新监督策略模型ModelCm(f(σ)),σ为更新参数,f(σ)为最大似然函数,选取随机梯度下降法的最大似然函数为:

步骤S13:训练layer层的迁移模型ModelQm(x),完全复制监督策略模型ModelCm(f(σ))的数据结构,作为迁移模型ModelQm(g(ρ))的初始化数据结构,初始化参数ρ=σ。

步骤S14:使用随机梯度上升法更新参数ρ,更新迁移模型ModelQm(g(ρ)),选取随机梯度上升法的最大似然函数为:

步骤S15:判断是否1≤m≤M,如果是,转到步骤S3,如果否,转到步骤S16。

步骤S16:训练结束

评估过程如下:

步骤一,:初始化m=1;

步骤二,:计算局部区域Rem的滑坡趋势值ModelQm(g(ρ))为矩阵图训练集对应的迁移模型,t为当前时刻,反映当前时刻Rem区域的滑坡概率分布情况;

步骤三:计算局部区域滑坡发展趋势值

步骤四:采用公式更新矩阵图训练集对应的迁移模型ModelQm(g(ρ)),m=m+1;

步骤五:判断是否1≤m≤M,如果是,转到步骤二,如果否,转到步骤六

步骤六:显示局部区域滑坡发展趋势,如图5所示为滑坡区域检测界面图;

步骤七:评估结束。

实施例2:居民小区易滑坡区域

整个区域的检测节点布局界面图由图6所示。

训练过程如下:

步骤S1:局部区域编号Rem,1≤m≤M,M=10为局部区域总数,监测点编号Dsn,1≤n≤N,1≤m≤N,N=40为局部区域的监测点总数,滑坡区域数据集为神经网络总层数为Layer=13;

步骤S2:初始化神经网络当前层为layer=Layer,m=1;

步骤S3:k=m,局部区域Rem的矩阵图训练集Sm代表监测点的传感器数据集映射为k×k的矩阵图训练集,局部区域Rem监测点传感器数据集在训练过程中各个时间节点为tπ,1≤tπ≤T,T为该局部区域训练总时间。局部区域滑坡Rem的滑坡概率为Pm

步骤S4:初始化i=I,j=J,I=4,J=4;I为选取特征图数量上限,J为选取数据维数上限;

步骤S5:在k×k的矩阵图训练集中提取出i个j×j的局部矩阵图训练集{map1,map2,...,mapi},layer层每个神经元需要的权重参数个数为i×j,将所有权值初始化为一个随机数wij=Random(i,j);

步骤S6:判断当前层是否为卷积层,如果是,转到步骤S7,如果否,转到步骤S8;

步骤S7:通过激活函数计算f(x)为激活函数,采用ArcTan函数f(x)=tan-1(x),在这一步中传入的参数x为为当前层layer-1层第i个特征图mapi对应的第j维数据,为当前层layer神经元对应的权值,Blayer为当前层layer的唯一偏移,当前层layer的神经元与其对应的局部区域矩阵图连接,转到步骤S9。

步骤S8:通过激活函数计算layer层输出f(x)为激活函数,采用ArcTan函数f(x)=tan-1(x),在这一步中传入的参数x为为当前层layer-1层第i个特征图mapi对应的第j维数据,为当前层layer神经元对应的权值,Blayer为当前层layer的唯一偏移β为当前层layer的训练参数;

步骤S9:将当前层下移一层,特征图和数据维数各减一,layer=layer-1,i=i-1,j=j-1;

步骤S10:判断是否layer≥1∩i≥1∩j≥1,如果是,转到步骤S5,如果否,转到步骤S11。

步骤S11:光栅化输出向量将各层的输出依次展开排列连接成一个向量;得到局部区域Rem对应的监督策略模型ModelCm(x);

步骤S12:使用随机梯度下降法,更新监督策略模型ModelCm(f(σ)),σ为更新参数,f(σ)为最大似然函数,选取随机梯度下降法的最大似然函数为:

步骤S13:训练layer层的迁移模型ModelQm(x),完全复制监督策略模型ModelCm(f(σ))的数据结构,作为迁移模型ModelQm(g(ρ))的初始化数据结构,初始化参数ρ=σ。

步骤S14:使用随机梯度上升法更新参数ρ,更新迁移模型ModelQm(g(ρ)),选取随机梯度上升法的最大似然函数为:

步骤S15:判断是否1≤m≤M,如果是,转到步骤S3,如果否,转到步骤S16。

步骤S16:训练结束

评估过程如下:

步骤一:初始化m=1;

步骤二:计算局部区域Rem的滑坡趋势值ModelQm(g(ρ))为矩阵图训练集对应的迁移模型,t为当前时刻,反映当前时刻Rem区域的滑坡概率分布情况;

步骤三:计算局部区域滑坡发展趋势值

步骤四:采用公式更新矩阵图训练集对应的迁移模型ModelQm(g(ρ)),m=m+1;

步骤五:判断是否1≤m≤M,如果是,转到步骤二,如果否,转到步骤六

步骤六:显示局部区域滑坡发展趋势,如图7所示为滑坡区域检测界面图;

步骤七:评估结束。

实施例3:沿江地区易滑坡区域

整个区域的检测节点布局界面图由图8所示。

训练过程如下:

步骤S1:局部区域编号Rem,1≤m≤M,M=18为局部区域总数,监测点编号Dsn,1≤n≤N,1≤m≤N,N=45为局部区域的监测点总数,滑坡区域数据集为神经网络总层数为Layer=20;

步骤S2:初始化神经网络当前层为layer=Layer,m=1;

步骤S3:k=m,局部区域Rem的矩阵图训练集Sm代表监测点的传感器数据集映射为k×k的矩阵图训练集,局部区域Rem监测点传感器数据集在训练过程中各个时间节点为tπ,1≤tπ≤T,T为该局部区域训练总时间。局部区域滑坡Rem的滑坡概率为Pm

步骤S4:初始化i=I,j=J,I=6,J=5;I为选取特征图数量上限,J为选取数据维数上限;

步骤S5:在k×k的矩阵图训练集中提取出i个j×j的局部矩阵图训练集{map1,map2,...,mapi},layer层每个神经元需要的权重参数个数为i×j,将所有权值初始化为一个随机数wij=Random(i,j);

步骤S6:判断当前层是否为卷积层,如果是,转到步骤S7,如果否,转到步骤S8;

步骤S7:通过激活函数计算f(x)为激活函数,采用SoftPlus函数f(x)=loge(1+ex),在这一步中传入的参数x为为第layer-1层第i个特征图mapi对应的第j维数据,为当前layer层神经元对应的权值,Blayer为当前层layer的唯一偏移,当前层layer的神经元与其对应的局部区域矩阵图连接,转到步骤S9。

步骤S8:通过激活函数计算当前层layer输出f(x)为激活函数,采用SoftPlus函数f(x)=loge(1+ex),在这一步中传入的参数x为为当前层layer-1层第i个特征图mapi对应的第j维数据,为当前层layer神经元对应的权值,Blayer为当前层layer的唯一偏移β为当前层layer的训练参数;

步骤S9:将当前层下移一层,特征图和数据维数各减一,layer=layer-1,i=i-1,j=j-1;

步骤S10:判断是否layer≥1∩i≥1∩j≥1,如果是,转到步骤S5,如果否,转到步骤S11。

步骤S11:光栅化输出向量将各层的输出依次展开排列连接成一个向量;得到局部区域Rem对应的监督策略模型ModelCm(x);

步骤S12:使用随机梯度下降法,更新监督策略模型ModelCm(f(σ)),σ为更新参数,f(σ)为最大似然函数,选取随机梯度下降法的最大似然函数为:

步骤S13:训练layer层的迁移模型ModelQm(x),完全复制监督策略模型ModelCm(f(σ))的数据结构,作为迁移模型ModelQm(g(ρ))的初始化数据结构,初始化参数ρ=σ。

步骤S14:使用随机梯度上升法更新参数ρ,更新迁移模型ModelQm(g(ρ)),选取随机梯度上升法的最大似然函数为:

步骤S15:判断是否1≤m≤M,如果是,转到步骤S3,如果否,转到步骤S16。

步骤S16:训练结束

评估过程如下:

步骤一:初始化m=1;

步骤二:计算局部区域Rem的滑坡趋势值ModelQm(g(ρ))为矩阵图训练集对应的迁移模型,t为当前时刻,反映当前时刻Rem区域的滑坡概率分布情况;

步骤三:计算局部区域滑坡发展趋势值

步骤四:采用公式更新矩阵图训练集对应的迁移模型ModelQm(g(ρ)),m=m+1;

步骤五:判断是否1≤m≤M,如果是,转到步骤二,如果否,转到步骤六

步骤六:显示局部区域滑坡发展趋势,如图9所示为滑坡区域检测界面图;

步骤七:评估结束。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1