具有触摸面板的显示装置及其制造方法与流程

文档序号:16806934发布日期:2019-02-10 13:07阅读:143来源:国知局
具有触摸面板的显示装置及其制造方法与流程

本发明涉及具有触摸面板的显示装置及其制造方法。



背景技术:

特开2015-122057号公报公开了包括发挥显示器用以及触摸屏用的二者的作用的面板的触摸屏面板一体型显示装置。面板中形成有多个像素,各像素中设有像素电极以及被连接于像素电极的薄膜晶体管。另外,面板中与像素电极对向地间隔配置有多个电极。多个电极作为在显示驱动模式中在与像素电极之间形成横向电场(水平电场)的公共电极发挥功能,在触摸驱动模式中,作为在与手指等之间形成静电电容的触摸电极发挥功能。多个电极的每一个连接有与数据线大致平行的至少一条信号线,并通过信号线被提供触摸驱动信号或公共电压信号。像素电极与信号线被形成于相同层,隔着一个绝缘层与多个电极重叠。



技术实现要素:

在特开2015-122057号公报中,被提供公共电压信号或者触摸驱动信号的信号线,不仅与作为公共电极或触摸电极发挥功能的多个电极中与信号线连接的电极,还与其他电极的一部分隔着绝缘层重叠。因此,触摸检测精度由于信号线与其他电极的一部分之间所产生的寄生电容而下降。为了降低该寄生电容,当增大多个电极与信号线之间的绝缘层的膜厚时,由于与像素电极之间的电容降低,显示品质下降。

本发明目的在于提供不使显示品质下降,而能够提高触摸感测的精度的具有触摸面板的显示装置及其制造方法。

本发明的一实施方式的具有触摸面板的显示装置包括有源矩阵基板,所述有源矩阵基板包括:多条栅极线、与所述多条栅极线相交的多条数据线、多个像素电极、在与所述多个像素电极之间形成电容的多个对向电极、与所述多个对向电极的任意一个连接并对所连接的对向电极提供触摸检测用驱动信号的多条触摸检测用配线、第一绝缘层以及第二绝缘层,一个像素电极与一个对向电极之间配置有第二绝缘层,一个触摸检测用配线上配置有所述第一绝缘层,该第一绝缘层上配置有所述第二绝缘层,该第二绝缘层上配置有一对向电极。

根据本发明,能够不使显示品质下降,而提高触摸感测的精度。

附图简单说明

图1是第一实施方式的具有触摸面板的显示装置的剖面图。

图2是表示形成于图1所示的有源矩阵基板上的对向电极的配置的一个例子的示意图。

图3是放大了图1所示的有源矩阵基板上一部分区域的示意图。

图4是信号线连接区域的有源矩阵基板的概略剖面图。

图5a是说明图1所示的有源矩阵基板的制造方法的图,是示出形成有tft、无机绝缘膜和有机绝缘膜的状态的剖面图。

图5b是表示在图5a所示的有源矩阵基板的表面上进行等离子处理的工序的剖面图。

图5c是表示在图5b所示的有机绝缘膜上形成透明电极膜和金属膜的工序的剖面图。

图5d是表示从图5c所示的状态形成导电膜和信号线的工序的剖面图。

图5e是表示从图5d所示的状态形成第一绝缘膜的工序的剖面图。

图5f是表示从图5e所示的状态形成用于连接像素电极与tft的漏极的开口部的工序的剖面图。

图5g是表示在图5f所示的第一绝缘膜上形成透明电极膜的工序的剖面图。

图5h是表示从图5g所示的状态形成与漏极连接的像素电极的工序的剖面图。

图5i是表示在图5h所示的像素电极以及第一绝缘膜上形成第二绝缘膜的工序的剖面图。

图5j是表示在图5i所示的第一绝缘膜上以及第二绝缘膜上形成开口部的工序的剖面图。

图5k是表示在图5j所示的第二绝缘膜上形成透明电极膜的工序的剖面图。

图5l是表示从图5k所示的状态形成对向电极的工序的剖面图。

图6是表示有源矩阵基板的对向电极的配置的概略平面图。

图7a是用于说明第二实施方式的分段的边界的像素中产生的亮度差的原因的图,且表示各像素的充电状况的变化。

图7b是示出图7a所示的像素的充电时的电压波形的图。

图8是第二实施方式的有源矩阵基板的配置有像素电极的区域的概略剖面图。

图9a是表示在图8所示的有源矩阵基板中,形成辅助用对向电极与导电膜的工序的剖面图。

图9b是表示在图9a所示的信号线上形成掩模的工序的剖面图。

图9c是表示从图9b所示的状态使辅助用对向电极的表面暴露,除去掩模的工序的剖面图。

发明的实施方式

本发明的一实施方式的具有触摸面板的显示装置包括有源矩阵基板,所述有源矩阵基板包括:多条栅极线、与所述多条栅极线相交的多条数据线、多个像素电极、在与所述多个像素电极之间形成电容的多个对向电极、与所述多个对向电极的任意一个连接并对所连接的对向电极提供触摸检测用驱动信号的多条触摸检测用配线、第一绝缘层以及第二绝缘层,一个像素电极与一个对向电极之间配置有第二绝缘层,一个触摸检测用配线上配置有所述第一绝缘层,该第一绝缘层上配置有所述第二绝缘层,该第二绝缘层上配置有一对向电极(第一构成)。

根据第一构成,在像素电极与对向电极之间设置有第二绝缘层。另外,触摸检测用配线上配置有第一绝缘层,第一绝缘层上配置有第二绝缘层,该第二绝缘层上配置有对向电极。也就是说,像素电极上配置有一个绝缘层,触摸检测用配线上配置有两个绝缘层。因此,能够不减小像素电极与对向电极之间的电容,而降低触摸检测用配线与对向电极之间的寄生电容。其结果,能够降低显示品质,而提高触摸感测的精度。

在第一构成中,也可以使所述第一绝缘层的相对介电常数与所述第二绝缘层的相对介电常数相同,所述第一绝缘层的膜厚比所述第二绝缘层的膜厚大(第二构成)。

根据第二构成,第一绝缘层与第二绝缘层的相对介电常数相等的情况下,通过使第一绝缘层的膜厚大于第二绝缘层的膜厚,能够进一步降低触摸检测配线与对向电极之间的寄生电容。

在第一或第二构成中,也可以使所述一像素电极设置于所述第一绝缘层与所述第二绝缘层之间(第三构成)。

根据第三构成,能够不减小像素电极与对向电极之间的电容,而降低像素电极与触摸检测用配线之间的寄生电容。

在第一或第二构成中,所述有源矩阵基板也可以还包括在与所述多个像素电极之间形成电容的多个辅助用对向电极,所述多个对向电极在栅极线与数据线各自的延伸方向上排列配置,一辅助用对向电极隔着所述第一绝缘层与所述一像素电极对向,与数据线大致平行地配置(第四构成)。

根据第四构成,相对于在栅极线与数据线的各延伸方向上排列设置的对向电极,辅助用对向电极以与数据线大致平行的方式,隔着第一绝缘层与像素电极对向配置。因此,即使在数据线的延伸方向上排列的对向电极之间电压的波动量不同的情况下,能够利用像素电极与辅助用对向电极之间形成的电容,降低各像素的电压差。

在第四构成中,也可以在所述驱动信号被提供至所述多个触摸检测用配线的期间,所述多个辅助用对向电极处于电气浮置状态(第五构成)。

根据第五构成,能够减轻触摸位置的误检测。

在第四或第五构成中,也可以是所述多条栅极线的每一条,在每一固定期间内被提供扫描电压信号,相邻的栅极线的被提供所述扫描电压信号的期间的一部分重复(第六构成)。

根据第六构成,能够抑制像素的充电不足。

从第一至第六的任意一个构成中,所述有源矩阵基板在栅极线和数据线的至少一个与一个辅助用对向电极于所述多个对向电极的至少一个之间还包括包含有机膜的绝缘层(第七构成)。

根据第七构成,能够抑制栅极线、数据线与辅助用对向电极、对向电极之间的干涉。

从第四至第七的任意一个构成中,也可以是一个辅助用对向电极与至少两个对向电极对向设置(第八构成)。

根据第八构成,能够增大像素电容。

本发明的一实施方式的具有触摸面板的显示装置的制造方法为包括有源矩阵基板的具有触摸面板的显示装置的制造方法,其包含以下步骤:在所述有源矩阵基板上形成开关元件的步骤;以覆盖所述开关元件的方式形成绝缘膜的步骤;在所述绝缘膜上形成透明导电膜,在该透明导电膜上形成金属膜而形成触摸检测用配线的步骤;以覆盖所述检测用配线的方式形成第一绝缘层的步骤;形成贯穿所述绝缘膜与所述第一绝缘膜的第一通孔的步骤;在所述第一绝缘膜上形成用于形成像素电极的透明导电膜,以在所述第一通孔中,与所述开关元件连接的方式形成像素电极的步骤;以覆盖所述像素电极的方式形成第二绝缘层的步骤;在所述触摸检测用配线上的一部分区域中,形成贯穿所述第一绝缘层和所述第二绝缘层的第二通孔的步骤;在所述第二绝缘层上形成用于形成公共电极的透明导电膜,以在所述第二通孔中与所述触摸检测用配线连接的方式形成对向电极的步骤(第九构成)。

根据第九构成,在像素电极与对向电极之间设置有第二绝缘层。另外,触摸检测用配线上配置有第一绝缘层,第一绝缘层上配置有第二绝缘层,该第二绝缘层上配置有对向电极。也就是说,像素电极上配置有一个绝缘层,触摸检测用配线上配置有两个绝缘层。因此,能够不减小像素电极与对向电极之间的电容,而降低触摸检测用配线与对向电极之间的寄生电容。其结果,能够降低显示品质,而提高触摸感测的精度。

[第一实施方式]

以下,参照附图详细说明本发明的实施方式。对图中相同或相当的部分赋予相同符号并不重复其说明。此外,为了说明易于理解,在以下所参照的附图中,构成被简化或示意性地示出,或一部分的构成部件被省略。另外,各图中所示的构成部件之间的尺寸比例并非表示实际的尺寸比例。

图1是本实施方式的具有触摸面板的显示装置10的剖面图。本实施方式的具有触摸面板的显示装置10包括有源矩阵基板1、对向基板2、被夹持于有源矩阵基板1与对向基板2之间的液晶层3。有源矩阵基板1以及对向基板2分别包括几乎透明(具有高透光性)的玻璃基板。对向基板2包括未图示的彩色滤光片。另外,虽然没有图示,但该具有触摸面板的显示装置10,在图1中,在与液晶层3相反的一侧的有源矩阵基板1的面方向上包括背光源。

具有触摸面板的显示装置10在具有显示图像的功能的同时,还具有检测使用者触摸该被显示的图像上的位置(触摸位置)的功能。该具有触摸面板的显示装置10为在有源矩阵基板1上设置有为了检测触摸位置所必须的元件,也就是所谓的内嵌型触摸显示装置。

另外,具有触摸面板的显示装置10的液晶层3中包含的液晶分子的驱动方式为横向电场驱动方式。为了实现横向电场驱动方式,用于形成电场的像素电极以及对向电极(公共电极)被形成于有源矩阵基板1上。

图2是表示形成于有源矩阵基板1上的对向电极21的配置的一个例子的示意图。对向电极21形成于有源矩阵基板1的液晶层3一侧的面上。如图2所示,对向电极21为矩形,在有源矩阵基板1上多个对向电极21呈矩阵状配置。对向电极21的每一个,例如为边长为数mm的大致正方形。此外,虽然在该图中省略了图示,但在对向电极21中形成有用于在与像素电极之间产生横向电极的狭缝(例如数μm的宽度)。

有源矩阵基板1中设置有控制器20。控制器20在进行用于显示图像的图像显示控制的同时,进行用于检测触摸位置的触摸位置检测控制。

控制器20与各对向电极21之间通过在y轴方向上延伸的信号线22被连接。即,在有源矩阵基板1上形成与对向电极21的数量相同数量的信号线22。

对向电极21与像素电极成对,用于图像显示控制之时,也用于触摸位置检测控制之时。

对于对向电极21而言,虽然在相邻的对向电极21等之间形成有寄生电容,但当人的手指等触摸显示装置10的显示画面时,在与人的手指等之间形成有电容,因此,静电电容增加。触摸位置检测控制之时,控制器20通过信号线22,向对向电极21提供用于检测触摸位置的触摸驱动信号,通过信号线22接收触摸检测信号。由此,检测对向电极21的位置的静电电容的变化,从而检测触摸位置。即,信号线22作为触摸驱动信号以及触摸检测信号的收发用的线发挥功能。

图3是放大了有源矩阵基板1的一部分区域的示意图。如图3所示,多个像素电极31呈矩阵状配置。另外,虽然在图3中省略了,但作为显示控制元件(开关元件)的tft(thinfilmtransistor:薄膜晶体管)对应于像素电极31呈矩阵状配置。此外,在对向电极21中设置有多个狭缝21a。

在像素电极31的周围设置有栅极配线32和源极配线33。栅极配线32沿x轴方向延伸,沿y轴方向以规定的间隔设置多条。源极配线33沿y轴方向延伸,沿x轴方向以规定的间隔设置多条。即,栅极配线32以及源极配线33形成为矩阵状,在由栅极配线32以及源极配线33划分的区域中设置有像素电极31。tft的栅极电极被连接于栅极配线32,tft的源极电极与漏极电极的一个被连接于源极配线33,另一个被连接于像素电极31。

在对向基板2(参照图1),以对应于像素电极31的每一个的方式,设置有rgb三色的彩色滤光片。由此,像素电极31的每一个作为rgb的任意一个颜色的子像素发挥功能。

如图3所示,沿y轴方向延伸的信号线22在有源矩阵基板1的法线方向上,以与在y轴方向延伸的源极配线33部分重叠的方式配置。具体地,信号线22设置于比源极配线33更上层,在俯视时源极配线33与信号线22部分重叠。

此外,在图3中,白色圆圈35表示对向电极21与信号线22被连接的位置。

图4是配置有tft的区域,即信号线22与对向电极21连接的区域(以下,信号线连接区域)的有源矩阵基板1的剖面图。如图4所示,玻璃基板40上设置有显示控制元件的tft42。tft42具有栅极电极42a、半导体膜42b、源极电极42c以及漏极电极42d。

tft42的栅极电极42a形成于玻璃基板40上。栅极电极42a例如由钛(ti)以及铜(cu)的层叠膜形成。栅极绝缘膜43以覆盖栅极42a方式形成。栅极绝缘膜43例如由氮化硅(sinx)或二氧化硅(sio2)构成。

栅极绝缘膜43上形成有半导体膜42b。半导体膜42b例如为氧化物半导体膜,也可以含有in、gn以及zn中的至少一种金属元素。在本实施方式中,半导体膜42b例如包含in-ga-zn-o系半导体。此处,in-ga-zn-o半导体为in(铟)、ga(镓)、zn(锌)的三元系氧化物,in、ga以及zn的比例(组成比)没有特别限定,例如包含in:ga:zn=2:2:1,in:ga:zn=1:1:1、in:ga:zn=1:1:2等。

源极电极42c以及漏极电极42d在半导体膜42b上彼此间隔设置。源极电极42c以及漏极电极42d例如由钛(ti)以及铜(cu)的层叠膜形成。

无机绝缘膜44以覆盖源极电极42c以及源极电极42d的方式形成。无机绝缘膜44例如由氮化硅(sinx)或二氧化硅(sio2)等无机材料构成。

在无机绝缘膜44上形成有有机绝缘膜(平坦化膜)45。有机绝缘膜45例如由聚甲基丙烯酸甲酯树脂(pmma)等的丙烯系有机树脂材料等构成。通过形成有机绝缘膜(平坦化膜)45,能够抑制由tft部分的凹凸引起而产生的液晶分子的取向混乱。另外,能够降低栅极配线32、源极配线33与像素电极31之间的寄生电容。此外,也可以省略有机绝缘膜45。

在有机绝缘膜45上,层叠形成有导电膜47和信号线22。导电膜47为由与像素电极31相同材料构成的透明电极膜,为了提高信号线22与有机绝缘膜45的粘着性而设。因此,信号线22与有机绝缘膜45的粘着性高的情况下,可以省略导电膜47。

信号线22例如由铜(cu)、钛(ti)、钼(mo)、铝(al)、镁(mg)、钴(co)、铬(cr)、钨(w)的任意一个或者它们的混合物构成。信号线22特别优选比导电膜47电阻小的材料。在省略了导电膜47的情况下,信号线22被形成于有机绝缘膜45上。

另外,在有机绝缘膜45上形成有第一绝缘膜461(第一绝缘层)。第一绝缘膜461以覆盖信号线22的一部分方式形成。第一绝缘膜461例如由氮化硅(sinx)或二氧化硅(sio2)构成。

第一绝缘膜461上在不与信号线22重叠的位置形成有像素电极31。像素电极31为透明电极例如由ito(indiumtinoxide,氧化铟锡)、zno(zincoxide,氧化锌)、izo(indiumzincoxide,氧化铟锌)、igzo(indiumgalliumzincoxide,氧化铟镓锌)、itzo(indiumtinzinoxide,铟锡氧化锌)等材料构成。

另外,在第一绝缘膜461与像素电极31上形成有第二绝缘膜462(第二绝缘层)。第二绝缘膜462例如由氮化硅(sinx)或二氧化硅(sio2)构成。在信号线连接区域中,如该图所示,虽然第一绝缘膜461与第二绝缘膜462中设置有开口部(第二通孔)46a,但信号线22与对向电极21未连接的部分没有设置开口部46a。也就是说,信号线22不与对向电极21连接,在与其他对向电极21重叠的部分中,其他对向电极21与信号线22之间设置有两个第一绝缘膜461、462。

第二绝缘膜462上形成有对向电极21。对向电极21在开口部46a处与信号线22接触。对向电极21为透明电极,例如由ito、zno、izo、igzo、itzo等材料构成。

无机绝缘膜44以及有机绝缘膜45中形成有开口部(第一接触孔)ch。像素电极31通过开口部ch与tft42的漏极电极42d接触。

图5a~5l为用于说明本实施方式的有源矩阵基板1的制造工序的图。

首先,玻璃基板40上以已知的方法形成tft42。在图5a中,示出了在玻璃基板40上,通过已知的方法形成tft42,在其上形成了无机绝缘膜44以及有机绝缘膜45的状态。

从图5a所示的状态,相对于暴露出的表面,进行使用了氮气或氧气的等离子处理(图5b参照)。即,对无机绝缘膜44以及有机绝缘膜45的暴露出的表面进行等离子处理。通过进行等离子处理,能够在光滑的表面形成细微的凹凸(表面粗化),并能够在后续的工序中提高在对透明电极膜进行成膜之时的粘着性。

接下来,在有机绝缘膜45上形成透明电极膜81,在其上形成金属膜82(参照图5c)。透明电极膜81的膜厚例如为10nm~100nm。另外,金属膜82的膜厚例如为5nm~300nm。并且,使用光刻法和湿式蚀刻,图案化透明电极膜81和金属膜82。由此,形成信号线22与导电膜47(参照图5d)。

接下来以覆盖无机绝缘膜44、有机绝缘膜45以及金属膜82的方式,形成第一绝缘膜461(参照图5e)。第一绝缘膜461的膜厚例如为200~800nm。

接下来,使用光刻法和干式蚀刻法图案化与tft42的漏极电极42d重叠的第一绝缘膜461和无机绝缘膜44的一部分。由此,漏极电极42d的表面的一部分暴露出来,形成用于连接像素电极31与tft42的漏极电极42d的开口部ch(参照图5f)。

接下来以覆盖第一绝缘膜461的方式,形成透明电极膜83(参照图5g)。之后,使用光刻法和湿式蚀刻图案化透明电极膜83。由此,在开口部ch形成与漏极电极42d连接的像素电极31(参照图5h)。

接下来,以覆盖像素电极31以及第一绝缘膜461的方式,形成第二绝缘膜462(参照图5i)。第二绝缘膜462的膜厚例如为200~800nm。在该例中,第一绝缘膜461与第二绝缘膜462的相对介电常数相同,第二绝缘膜462的膜厚比第一绝缘膜461小。此外,虽然在该例中,第一绝缘膜461与第二绝缘膜462的相对介电常数相同,但也可以并非彼此的相对介电常数相同,第一绝缘膜461与第二绝缘膜462的相对介电常数在同等程度的话即可。

在形成第二绝缘膜462之后,使用光刻法和干式蚀刻法图案化第一绝缘膜461与第二绝缘膜462,信号线22的一部分暴露出来。由此,第一绝缘膜461与第二绝缘膜462中形成有开口部46a,信号线22表面的一部分暴露出来(参照图5j)。

接下来,以在第二绝缘膜462上与信号线22接触的方式,形成透明电极膜84进行成膜(参照图5k)。并且,使用光刻法和湿式蚀刻,图案化透明电极膜84。由此,形成对向电极21(参照图5l),所述对向电极21形成有在与像素电极31之间使横向电场产生的狭缝。

在上述第一实施方式中,在信号线22与对向电极21之间设置有第一绝缘膜461和第二绝缘膜462。因此,相比于在信号线22与对向电极21之间仅设置有一个绝缘膜的情况,能够在未与对向电极21连接的信号线22的部分与对向电极21重叠的部分,降低寄生电容。另外,信号线22与像素电极31设置于不同层,像素电极31与对向电极21之间仅设置一个第二绝缘膜462。因此,在信号线22与对向电极21之间设置了第一绝缘膜461与第二绝缘膜462的基础上,与将信号线22与像素电极31设置在同层的情况相比像素电容(辅助电容)大。其结果,能够不降低图像显示品质,而提高触摸位置的检测的精度。

另外,在上述第一实施方式中,第一绝缘膜461与第二绝缘膜462的相对介电常数大致相同,第一绝缘膜461的膜厚比第二绝缘膜462的膜厚厚。因此,第一绝缘膜461与第二绝缘膜462的相对介电常数相同的情况,与第一绝缘膜461与第二绝缘膜462的各膜厚相同的构成相比,能够不降低像素电容(辅助电容),而降低信号线22与对向电极21之间产生的寄生电容,能够进一步提高触摸位置的检测精度。

[第二实施方式]

在第一实施方式中,如图6所示,在有源矩阵基板1中,对向电极21呈矩阵状,即在图3所示的栅极配线32与源极配线33的延伸方向上排列配置。在图6中,将配置有对向电极21的每一行的区域作为分段21a~21n。

对向电极21被分成分段而配置。向某像素写入信号(使tft成为导通状态从而对像素电容充电)之时,有时从在y轴方向上相邻的像素受到的影响在分段的边界附近与分段的中央部分各不相同,向液晶层3的施加电压产生差别。以下,针对该现象具体地进行说明。

例如,为了补充对各像素的充电不足,有时在本来的充电(以下,正式充电)期间之前,设置预充电(以下,预充电)期间。

图7a的(a)~(c)表示进行列反转驱动时的各像素的充电状态的变化图。图7a(a)~(c)的“+”“-””0”表示像素的充电电压(极性或电压值)。另外,在这个例子中,如图7a(a)~(c)所示,各像素的栅极配线32(参照图3)从图的上方向下方被扫描,各像素的正式充电期间,与在扫描方向上相邻的像素的预充电期间重复。另外,第n+1行的像素与第n+2行的像素之间为对向电极21的分段的边界。也就是,第n行与第n+1行的像素中配置有相同分段的对向电极21,第n+2行与第n+3行的像素中配置有与上述分段不同的分段的对向电极21。

另外,图7b表示图7a的(a)~(c)所示的第n行、第n+1行、n+2行的像素的各充电时的电压波形。在图7b中,wg所示的波形表示栅极配线32的电压波形,wc所示的波形表示理想的对向电极21的电压波形。另外,以wh所示的波形,为实际的对向电极21的电压波形,wp所示的波形,表示像素的电压波形。

如图7b所示,第n行的对向电极21的电压波形wh受到第n行的像素的预充电的影响,与理想的对向电极21的电压波形wc背离。具体地,暂时上升,然后以接近理想的对向电极21的电压波形wc的方式再次下降。如图7a(a)所示,由于第n行的像素的正式充电期间与第n+1行的像素的预充电期间重复,因此,在第n行的像素的正式充电期间tb的同时,第n+1行的像素的预充电期间ta开始。第n行的像素与第n+1行的像素的对向电极21是共通的,因此,第n行的对向电极21的电压波形wh受到第n+1行的像素的预充电对对向电极21的电位的波动的影响再次上升,以接近理想的对向电极21的电压波形wc的方式再次下降。将正式充电期间tb结束时的向液晶层3的施加电压作为vic。

第n+1行的对向电极21的电压波形wh受到第n+1行的像素的预充电的影响,与理想的对向电极21的电压波形wc背离。具体地,暂时上升,然后以接近理想的对向电极21的电压波形wc的方式再次下降。如图7a(b)所示,由于第n+1行的像素的正式充电期间与第n+2行的像素的预充电期间重复,因此,在第n+1行的像素的正式充电期间tb的同时,第n+2行的像素的预充电期间ta开始。此时,第n+1行的对向电极21的电压波形wh不受第n+2行的像素的预充电的影响。第n+1行的像素的对向电极21被配置于与第n+2行的像素的对向电极21不同的分段,并与其分离。因此,第n+1行的像素的对向电极21不因为第n+2行的像素的预充电发生电位波动。也就是说,如上述那样,在第n+1行的预充电期间,暂时上升了的对向电极21的电压波形wh,以接近理想的对向电极21的电压波形wc的方式再次下降。在第n+1行的正式充电期间充当,对向电极21的电压波形wh接近理想的对向电极21的电压波形wc的期间。因此,有时第n+1行的正式充电期间tb结束时的对向电极21的电压波形wh与第n行的正式充电期间tb结束时的对向电极21的电压wh不同。这种情况下,第n+1行的像素的正式充电期间tb结束时的向液晶层3的施加电压vic比第n行的像素对液晶层3的施加电压vic大。

同样地,如图7a的(c)所示,第n+2行的像素的正式充电期间与第n+3行的像素的预充电期间重复,第n+2行像素与第n+3行的像素配置有相同的公共电极21。因此,第n+2行的像素,在其正式充电期间tb中,受到第n+3行的像素的预充电的影响。也就是说,第n+2行的像素的对向电极21的电压波形wh上升,与第n行的像素相同,像素向液晶层3的施加电压下降。因此,在这个例子中,第n行与第n+1行的像素之间,第n+1行与n+2行的像素之间产生亮度差。

也就是说,在扫描方向上相邻、配置有相同的对向电极21的像素中,先被正式充电的一个像素,在其正式充电之际,受到其他像素的预充电影响,向液晶层3的施加电压下降。另一方面,即使是在扫描方向上相邻的像素、配置有不同的对向电极21的像素时,先被正式充电的那个像素,在其正式充电之际,也不受到其他像素的预充电影响。其结果,分段的边界附近的像素中产生亮度差。在本实施方式中,相较于第一实施方式,对能够降低分段的边界附近的像素的亮度差的有源矩阵基板的构成进行说明。

图8是示出本实施方式的有源矩阵基板的配置有像素电极的区域的概略剖面图。此外,在图8中,对与第一实施方式相同的构成赋予与第一实施方式相同的附图标记。以下,主要是对与第一实施方式不同的构成进行说明。

如图8所示,有源矩阵基板1a以隔着第一绝缘膜461与像素电极31对向地方式具有由与导电膜47相同材料构成的电极210。以下,将电极210称为辅助用对向电极。

辅助用对向电极210在y轴方向上延伸而构成。即,辅助用对向电极210连续至分段21a~21n而配置。辅助用对向电极210虽然不与信号线22连接,但在控制器20的控制下,图像显示控制之时,被施加规定电压,在与像素电极31之间形成电容。另外,触摸位置检测控制时,辅助用对向电极210被电气控制为浮置状态。通过触摸位置检测控制之时辅助用对向电极210变为浮置状态,电荷被保持在像素电极31与辅助用对向电极210之间。

因此,即使设置辅助用对向电极210,在触摸位置检测控制之时也不会成为触摸位置检测之时的误动作的原因,通过被保持在辅助用对向电极210与像素电极31之间的电荷,能够减小由于相邻分段之间的不同的对向电极21的电压的波动量而产生的对液晶层3的施加电压的差。其结果,能够降低相邻的分段的边界附近的像素的亮度差。

此外,本实施方式的有源矩阵基板的制造方法,在上述第一实施方式的图5a~5b的工序后,在有机绝缘膜45上形成透明电极膜81和金属膜82,使用光刻法和湿式刻蚀图案化透明导电膜81和金属膜82。由此,形成由透明电极膜81构成的辅助用对向电极210以及导电膜47和由金属膜82构成的信号线22(参考图9a)。

其后,在形成有金属膜82的区域中,在成为信号线22的金属膜82上,形成光抗蚀剂的掩模m(参考图9b)。并且,通过湿式蚀刻除去没有被掩模m覆盖的金属膜82。由此,辅助用对向电极210的表面被暴露出来(参照图9c)。

信号线22的形成后,通过进行与第一实施方式的图5e~5l相同的各工序,形成有源矩阵基板1a。

以上,虽然关于本发明涉及的具有触摸面板的显示装置的一个例子进行了说明,但本发明涉及的具有触摸面板的显示装置不限定于上述实施方式的构成,也能够设为各种各样的变形构成。以下,关于其变形例进行说明。

[变形例]

在上述实施方式以及变形例中,tft42的源极电极42c与漏极电极42d之间可以设置有蚀刻阻挡层。由此,通过形成源极电极42c、漏极电极42d时的蚀刻,能够防止半导体膜42b受到破坏。

[变形例二]

另外,在上述实施方式以及变形例中,虽然对底栅型的tft为例进行了说明,也可以是顶栅型。另外,半导体膜42b不限于氧化物半导体膜,也可以是非晶硅膜。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1