一种利用二次约束的功率信号重构方法和系统与流程

文档序号:22244403发布日期:2020-09-15 20:00阅读:88来源:国知局
一种利用二次约束的功率信号重构方法和系统与流程

本发明涉及电力领域,尤其涉及一种功率信号的重构方法和系统。



背景技术:

随着智能电网的发展,家庭用电负荷的分析变得越来越重要。通过用电负荷的分析,家庭用户可以及时获得每个电器的用电信息,以及电费的精细化清单;电力部门可以获得更详尽的用户用电信息,并可以提高用电负荷预测的准确度,为电力部门提供统筹规划的依据。同时,利用每个电器的用电信息,可获知用户的用电行为,这对于家庭能耗评估和节能策略的研究具有指导意义。

当前用电负荷分解主要分为侵入式负荷分解和非侵入式负荷分解两种方法。非侵入式负荷分解方法不需要在负荷的内部用电设备上安装监测设备,只需要根据用电负荷总信息即可获得每个用电设备的负荷信息。非侵入式负荷分解方法具有投入少、方便使用等特点,因此,该方法适用于家庭负荷用电的分解。

非侵入式负荷分解算法中,电气设备的开关事件检测是其中最重要的环节。最初的开关事件检测以有功功率p的变化值作为开关事件检测的判断依据,方便且直观。这是因为任何一个用电设备的运行状态发生变化,其所消耗的功率值也必然发生改变,并且该改变也将会在所有电器所消耗的总功率中体现出来。这种方法除了需要设置功率变化值的合理阈值,还需要解决事件检测方法在实际应用中存在的问题,例如某些电器启动时刻的瞬时功率值会出现较大的尖峰(马达启动电流远大于额定电流),会造成电器稳态功率变化值不准确,从而影响对开关事件检测的判断;而且不同家用电器的暂态过程或长或短(脉冲噪声的持续时间和发生频率相差较大),因此功率变化值的确定变得较为困难;由于电能质量的变化(如电压突降)有功功率会出现突变的情况,这样很可能会出现误判。同时,功率信号在采集和传输过程中,相关的仪器设备的运行状态可能暂时处于异常状态,常会造成功率信号的缺失。

因此,开关事件检测过程中,所使用的实测功率信号常常不完整,利用这些不完整的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信号,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。



技术实现要素:

如前所述,开关事件检测过程中,所使用的实测功率信号常常不完整,利用这些不完整的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信号,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。

本发明的目的是提供一种利用二次约束的功率信号重构方法和系统,所提出的方法利用了功率信号的连续性,通过二次约束性质区分功率信号和背景噪声。所提出的方法具有较好的信号重构性能,计算也较为简单。

为实现上述目的,本发明提供了如下方案:

一种利用二次约束的功率信号重构方法,包括:

步骤101获取按时间顺序采集的信号序列s;

步骤102求取二次约束稀疏度p,具体为:判断归一化平均矩阵b的第n个特征值γn是否大于或者等于判断阈值ε0,得到第一判断结果。如果所述第一判断结果显示所述第n个特征值γn大于或者等于所述判断阈值ε0,则将所述第n个特征值γn加入到集合中,并将第n个逼近特征值赋值为γn;求取所述集合中元素个数并将所述元素个数赋值给所述二次约束稀疏度p。其中,所述归一化平均矩阵b的求取公式为:m0为所述信号序列s的均值;n为所述信号序列s的长度;σ0为所述信号序列s的均方差;所述判断阈值ε0的值为n为特征值序号,所述特征值序号n的取值范围为n=1,2,···,n;

步骤103求取二次约束矩阵a,具体为:a=uγopv。其中,u为功率矩阵d的左特征矢量矩阵;v为功率矩阵d的右特征矢量矩阵;所述功率矩阵a的求取公式为:γop为逼近矩阵,所述逼近矩阵γop的第n个对角线元素为所述第n个逼近特征值

步骤104求取重构后的信号序列snew,具体为:在所有满足判断条件ax-ps≤ε的中间参数矢量x中,选择使最小的所述中间参数矢量x作为所述重构后的信号序列snew。

一种利用二次约束的功率信号重构系统,包括:

模块201获取按时间顺序采集的信号序列s;

模块202求取二次约束稀疏度p,具体为:判断归一化平均矩阵b的第n个特征值γn是否大于或者等于判断阈值ε0,得到第一判断结果。如果所述第一判断结果显示所述第n个特征值γn大于或者等于所述判断阈值ε0,则将所述第n个特征值γn加入到集合中,并将第n个逼近特征值赋值为γn;求取所述集合中元素个数并将所述元素个数赋值给所述二次约束稀疏度p。其中,所述归一化平均矩阵b的求取公式为:m0为所述信号序列s的均值;n为所述信号序列s的长度;σ0为所述信号序列s的均方差;所述判断阈值ε0的值为n为特征值序号,所述特征值序号n的取值范围为n=1,2,···,n;

模块203求取二次约束矩阵a,具体为:a=uγopv。其中,u为功率矩阵d的左特征矢量矩阵;v为功率矩阵d的右特征矢量矩阵;所述功率矩阵a的求取公式为:γop为逼近矩阵,所述逼近矩阵γop的第n个对角线元素为所述第n个逼近特征值

模块204求取重构后的信号序列snew,具体为:在所有满足判断条件ax-ps≤ε的中间参数矢量x中,选择使最小的所述中间参数矢量x作为所述重构后的信号序列snew。

根据本发明提供的具体实施例,本发明公开了以下技术效果:

如前所述,开关事件检测过程中,所使用的实测功率信号常常不完整,利用这些不完整的功率信号是不能正确地进行开关事件检测的。因此如何有效地重构不完整的功率信号,是此方法能否成功的关键。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。

本发明的目的是提供一种利用二次约束的功率信号重构方法和系统,所提出的方法利用了功率信号的连续性,通过二次约束性质区分功率信号和背景噪声。所提出的方法具有较好的信号重构性能,计算也较为简单。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的方法流程示意图;

图2为本发明的系统流程示意图;

图3为本发明的具体实施案例流程示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

图1一种利用二次约束的功率信号重构方法的流程示意图

图1为本发明一种利用二次约束的功率信号重构方法的流程示意图。如图1所示,所述的一种利用二次约束的功率信号重构方法具体包括以下步骤:

步骤101获取按时间顺序采集的信号序列s;

步骤102求取二次约束稀疏度p,具体为:判断归一化平均矩阵b的第n个特征值γn是否大于或者等于判断阈值ε0,得到第一判断结果。如果所述第一判断结果显示所述第n个特征值γn大于或者等于所述判断阈值ε0,则将所述第n个特征值γn加入到集合中,并将第n个逼近特征值赋值为γn;求取所述集合中元素个数并将所述元素个数赋值给所述二次约束稀疏度p。其中,所述归一化平均矩阵b的求取公式为:m0为所述信号序列s的均值;n为所述信号序列s的长度;σ0为所述信号序列s的均方差;所述判断阈值ε0的值为n为特征值序号,所述特征值序号n的取值范围为n=1,2,···,n;

步骤103求取二次约束矩阵a,具体为:a=uγopv。其中,u为功率矩阵d的左特征矢量矩阵;v为功率矩阵d的右特征矢量矩阵;所述功率矩阵a的求取公式为:γop为逼近矩阵,所述逼近矩阵γop的第n个对角线元素为所述第n个逼近特征值

步骤104求取重构后的信号序列snew,具体为:在所有满足判断条件ax-ps≤ε的中间参数矢量x中,选择使最小的所述中间参数矢量x作为所述重构后的信号序列snew。

图2一种利用二次约束的功率信号重构系统的结构意图

图2为本发明一种利用二次约束的功率信号重构系统的结构示意图。如图2所示,所述一种利用二次约束的功率信号重构系统包括以下结构:

模块201获取按时间顺序采集的信号序列s;

模块202求取二次约束稀疏度p,具体为:判断归一化平均矩阵b的第n个特征值γn是否大于或者等于判断阈值ε0,得到第一判断结果。如果所述第一判断结果显示所述第n个特征值γn大于或者等于所述判断阈值ε0,则将所述第n个特征值γn加入到集合中,并将第n个逼近特征值赋值为γn;求取所述集合中元素个数并将所述元素个数赋值给所述二次约束稀疏度p。其中,所述归一化平均矩阵b的求取公式为:m0为所述信号序列s的均值;n为所述信号序列s的长度;σ0为所述信号序列s的均方差;所述判断阈值ε0的值为n为特征值序号,所述特征值序号n的取值范围为n=1,2,···,n;

模块203求取二次约束矩阵a,具体为:a=uγopv。其中,u为功率矩阵d的左特征矢量矩阵;v为功率矩阵d的右特征矢量矩阵;所述功率矩阵a的求取公式为:γop为逼近矩阵,所述逼近矩阵γop的第n个对角线元素为所述第n个逼近特征值

模块204求取重构后的信号序列snew,具体为:在所有满足判断条件ax-ps≤ε的中间参数矢量x中,选择使最小的所述中间参数矢量x作为所述重构后的信号序列snew。

下面提供一个具体实施案例,进一步说明本发明的方案

图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:

步骤301获取按时间顺序采集的信号序列s;

步骤302求取二次约束稀疏度p,具体为:判断归一化平均矩阵b的第n个特征值γn是否大于或者等于判断阈值ε0,得到第一判断结果。如果所述第一判断结果显示所述第n个特征值γn大于或者等于所述判断阈值ε0,则将所述第n个特征值γn加入到集合中,并将第n个逼近特征值赋值为γn;求取所述集合中元素个数并将所述元素个数赋值给所述二次约束稀疏度p。其中,所述归一化平均矩阵b的求取公式为:m0为所述信号序列s的均值;n为所述信号序列s的长度;σ0为所述信号序列s的均方差;所述判断阈值ε0的值为n为特征值序号,所述特征值序号n的取值范围为n=1,2,···,n;

步骤303求取二次约束矩阵a,具体为:a=uγopv。其中,u为功率矩阵d的左特征矢量矩阵;v为功率矩阵d的右特征矢量矩阵;所述功率矩阵a的求取公式为:γop为逼近矩阵,所述逼近矩阵γop的第n个对角线元素为所述第n个逼近特征值

步骤304求取重构后的信号序列snew,具体为:在所有满足判断条件ax-ps≤ε的中间参数矢量x中,选择使最小的所述中间参数矢量x作为所述重构后的信号序列snew。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明即可。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1