光学信息记录媒体及其制造方法

文档序号:6750255阅读:127来源:国知局
专利名称:光学信息记录媒体及其制造方法
技术领域
本发明涉及一种通过使用光学装置,能够高密度、高速地记录信息的光学信息记录媒体,及其制造方法。
背景技术
作为能使记录大量数据、以及高速地再生及重写数据成为可能的光学信息记录媒体,熟知的有例如磁-光记录媒体和相变型记录媒体。这些光学信息记录媒体利用激光束的局部照射所产生的记录材料光学特性的差异来记录数据。例如,磁-光记录媒体利用磁化状态的不同所产生的反射光偏振面的旋转角的不同来记录数据。而相变型记录媒体是利用照射在材料上的特定波长的激光的反射光通量在晶体状态和非晶体状态下不同的这种事实来记录数据。并且,由于通过调制激光束的输出功率,使同时进行记录擦除和记录重写成为可能,所以相变型记录媒体具有能高速地重写数据信号的优点。
图3A和3B示出了相变型记录媒体的结构的例子。图3A所示的记录媒体是由衬底21、第一保护层22、记录层23和第二保护层24从激光束入射侧依次层叠构成。
用作衬底21的材料有聚碳酸脂(polycarbonate)、聚甲基丙烯酸甲酯(polymethyl methacrylate)(以下称PMMA)等树脂(resin)或者玻璃等,一般提供引导槽(guiding groove)来导引激光束。
记录层23由可在具有不同光学特性的状态之间呈现可逆变化的材料制成。就重写型的相变记录媒体来说,熟知的此种实例包括Te-Sb-Ge、Te-Sn-Ge、Te-Sb-Sn-Ge、Te-Sb-Ge-Se、Te-Sn-Ge-Au、Ag-In-Sb-Te、In-Sb-Se和In-Te-Se。
用于第一保护层22和第二保护层24的材料包括硫化物(例如ZnS);氧化物(例如SiO2、Ir2O5或Al2O3);氮化物(例如GeN、Si3N4或Al3N4);或者氮氧化合物(例如GeON、SiON或AlON);电介质(dielectric)(例如碳化物(carbide)或氟化物(fluoride));或者上述材料的适当混合物。可是,主要使用的材料是ZnS和SiO2的混合物。
此外,图3B所示的相变记录媒体还提供有反射层25。反射层25一般由诸如Au、Al、Ag、或Cr等金属制成,或者由包含Au、Al、Ag和Cr中至少一种作为主要金属的合金制成。提供反射层25的目的是为了记录层23的有效热扩散和有效光吸收。
在上述的结构中,记录层23位于两个保护层22和24之间,或者在保护层22和带有反射层25的保护层24之间,有三个主要原因。第一个原因是,记录层23在记录时通过熔融和冷却制成非晶体,所以提供这种结构以便保持记录层23的形状(form)和防止机械变形。第二个原因是,通过提高记录层23的激光吸收率,可使在非晶体状态和晶体状态之间的反射系数(reflectance)变化更大,从而提供再现信号量增加的光学效果。第三个原因是为了控制用于使记录层23变成非晶体和晶体所必需的热量条件。尤其是,用于获得使材料成为非晶体的必要的冷却条件,一种熟知的结构(冷却构成)是一种其中将保护层24制得很薄,以便于记录层23的热量很容易扩散到反射层25的结构。
此外,虽然附图中已经忽略,但以防止记录媒体的氧化和灰尘等的附着为目的,一般也可以采用在第二保护层24的上方提供过敷层(overcoat),或者其中用紫外线(UV)硬化树脂作为粘合剂,层叠而成伪(dummy)衬底的结构。
在形成诸如这些相变型记录媒体的每一层的各种方法中,常用的方法是所谓的单晶片薄膜成形法(single-wafer film formationmethod),其中使用独立的薄膜形成室(chamber),相继形成由不同材料组成的每一层。
因为第一保护层22设计成与其它层一样厚或者比其它层更厚,所以它的薄膜成形需要的时间就比其它层的更长。继而,在相变记录媒体的加工处理过程中,对第一保护层22的厚膜的薄膜成形处理也限制了整体的加工速度。因此,提高生产率的主要问题是如何减少第一保护层22的薄膜成形时间。
可以想到的方法是经由薄膜成形条件(conditions)来提高薄膜成形的速度从而减少薄膜成形时间。例如,在使用溅射薄膜成形装置进行薄膜成形的情况下,可能的方法包括提高溅射功率,或者缩短靶(target)和衬底之间的距离以提高粘合效率(adherenceefficiency),也可以增大靶的直径。可是,由于使用这些方法的样品的薄膜粘合表面的温度上升很大,所以当衬底由树脂比如聚碳酸酯(polycarbonate)制成时,会出现由热引起的变形,即翘起(tilt)变化。因此这些方法不是最优的。例如,聚碳酸酯(polycarbonate)的玻璃相变(glass transition)温度是150℃,为了防止变形,则衬底的温度上升一定不能超过玻璃相变温度,所以难于使用这种方法。

发明内容
本发明的光学信息记录媒体包括保护层;中间层(interfacelayer);和激光束照射时光学特性会可逆变化的记录层,它们按照此种顺序层叠在衬底上;其中保护层包含至少Zn、S和Si三种原子,原子组成比O/Si((O的原子浓度)/(Si的原子浓度))大于等于0,且小于2;并且其中中间层的折射系数小于保护层的折射系数。
本发明的光学信息记录媒体的制造方法包括在衬底上形成一保护层,该保护层包含Zn、S和Si原子,并且其中原子组成比O/Si大于等于0,且小于2;在所述保护层上形成一中间层,该中间层的折射系数小于所述保护层的折射系数;以及在所述中间层上形成一记录层,当激光束照射时该记录层的光学特性会可逆变化。
附图简述

图1是本发明的光学信息记录媒体的一个实施例中的光盘结构的横截面图;图2是本发明的光学信息记录媒体的另一个实施例中的光盘结构的横截面图;图3A和3B表示传统的光学信息记录媒体结构的横截面图。
执行本发明的最优方式本发明的光学信息记录媒体提供有保护层、中间层和激光束照射时光学特性会可逆变化的记录层,它们按照此种顺序层叠在衬底上。保护层包含至少Zn、S和Si三种原子,原子组成比O/Si大于等于0,且小于2,并且中间层的折射系数小于保护层的折射系数。当此种材料用于保护层时,保护层的薄膜成形速度将快于传统光学信息记录媒体的。此外,当用于本发明的保护层的材料的折射系数大于一般用于传统的保护层的材料的折射系数时,即使本发明的保护层制得比传统的保护层更薄,也能够取得与传统的保护层相同的光学特性。这样的结果是可以使用于本发明的光学信息记录媒体的保护层的薄膜的成形时间比传统媒体的更短,从而可以提高生产率。而且,本发明中使用的保护层的材料的热稳定性、化学稳定性、机械稳定性好,因此这是用于光学信息记录媒体的保护层的优选材料。并且,如在本发明的光学信息记录媒体中那样,通过在记录层和保护层之间提供其折射系数小于保护层的折射系数的中间层,即使形成保护层所采用材料不同于传统的材料,也能够取得与传统的光学信息记录媒体相同的,或者比传统的光学信息记录媒体更好的光学特性和记录特性。
此外,优选的是保护层的原子组成比O/Si大于等于0,且小于等于1。而且,优选的是中间层和记录层的折射系数的差值大于0.1。此外,当Si和O由SiOx(0≤X<2)表示时,保护层包含的SiOx大于等于3mol%,且小于等于30mol%,并且更优选的是大于等于5mol%,且小于等于30mol%。这样能获得更好的记录特性。
此外,优选的是中间层包含N和O中的至少一种原子,并且N和O原子的总量大于等于10at%,且小于等于40at%。当总量大于等于10at%时记录特性良好;当总量小于等于40at%时,在中间层和保护层之间往往就不会出现薄膜剥离。
此外,优选的是保护层的厚度大于等于50nm,且小于等于200nm。这可以使得在激光束照射光学信息记录媒体时返回来的光(反射光)的总量大于约15%。
此外,优选的是中间层的厚度大于等于2nm,且小于等于30nm。这是由于这可以使得在激光束照射光学信息记录媒体时返回来的光(反射光)的总量大于约15%。
此外,也可以有一种结构,其中在记录层的与激光束照射侧相反的一侧上提供反射层。这可以使记录层获得有效的光吸收和热散射。
此外,优选的是中间层由包含有Ge、Si和C中至少一种元素的氮化物或者氮氧化合物的材料或者包含单质碳的材料制成。当使用本发明的保护层时,这个中间层可以保持记录层的结晶能力和使记录-擦除特性稳定。
本发明的光学信息记录媒体的制造方法包括首先,在衬底上形成保护层,该保护层包含至少Zn、S和Si三种原子,其中原子组成比O/Si大于等于0,且小于2;其次,在所述保护层上形成中间层,该中间层的折射系数小于所述保护层的折射系数;接着,在所述中间层上形成记录层,该记录层在激光束照射时光学特性会可逆变化。使用这种方法,可以大批量地制造出具有优良的光学特性、记录特性等的光学信息记录媒体。
此外,在所述保护层的成形(forming)中,优选的形成的保护层包含Zn、S和Si原子,并且其原子组成比O/Si大于等于0,且小于等于1。这使得能够制造出具有更好特性比如记录特性的光学信息记录媒体。
下面参考附图,描述本发明的优选实施例。
图1示出了本发明的光学信息记录媒体即相变型光盘的结构。该实施例的相变型光盘是由衬底1、第一保护层2、中间层3、记录层4、第二保护层5和反射层6从激光束照射侧按照此种顺序层叠而成。
玻璃、树脂等可以用作衬底1。一般使用透明玻璃、石英或者聚碳酸酯、PMMA、或聚烯烃(polyolefins)等树脂。
记录层4使用相变型记录材料。可以使用的相变记录材料是指那种可以在非晶体状态和晶体状态之间、或者在某个晶体状态和另一不同的晶体状态之间产生光学可测的状态变化的材料。可以使用的具体材料包括Te、Se、Sb、In、Sn、Ag、Ge等的合金,例如,包含合金Te-Sb-Ge、Te-Sn-Ge、Te-Sb-Sn-Ge、Te-Sb-Ge-Se、Te-Sn-Ge-Au、Ag-In-Sb-Te、In-Sb-Se或In-Te-Se的材料。
第一保护层2包含至少Zn、S和Si三种原子。第一保护层2还可以包括O原子。当第一保护层2包含O原子时,原子组成比O/Si小于2。
此外,制成中间层3的材料的折射系数低于第一保护层2的折射系数,并且由例如包含Ge、Si或C元素的氮化物或者氮氧化合物的材料或者包含单质碳的材料制成。当使用本发明的第一保护层2时,通过使用这种材料形成中间层3,可以保持记录层4的结晶能力和获得稳定有效的记录-擦除特性。应当指出,在该实施例的结构中,只是在记录层4的激光束照射侧的表面上提供中间层3。可是,如图2所示,也可以是在记录层4的与激光束照射侧相反的一侧的表面上还提供第二中间层7的一种结构。对于第二中间层7,例如可以使用Ge、Si、Al、Cr、Zr和Ta中至少一种元素的氮化物或者氮氧化合物。
对于第二保护层5,例如可以使用ZnS与SiO2、Ta2O5、Si3N4、SiNO等氧化物、氮化物或氮氧化物的任一混合物;或者Al、Ge或Si的氧化物、氮化物或氮氧化物;或者记录层4的至少一种组成元素。
反射层6中可以使用诸如Au,Al,Ag和Cr等金属,或者以诸如Au,Al,Ag和Cr等金属为主要成分的合金。应当指出,虽然在该实施例中提供了反射层6,但是也可以没有反射层6。
下面是对用于制造该实施例的光盘的方法的描述。用于制造构成这种光盘的多个层叠薄膜的可用方法包括溅射法、真空蒸镀(vacuum deposition)法和CVD(化学气相淀积)法,但这里的描述将只涉及溅射法的使用。
首先,使用包含预定比例的Zn,S和Si原子的靶A,通过施加预定功率,同时以预定压强提供固定流量的Ar气,在衬底1上形成由包含Zn、S和Si三种原子的混合物制成的第一保护层2。应当指出的是当第一保护层2的结构中还包括O(氧)原子时,则应当准备包含预定比例的Zn、S、Si和O原子的靶作为靶A,以使第一保护层2中的原子组成比O/Si小于2,或者优选为小于等于1。
接下来,使用包含Ge、Si和C中的至少一种元素的靶B,施加预定功率,同时以预定压强向Ar气中提供固定流量的以预定比例的N2和O2混合的混合气体。按照这种方式,在第一保护层2上形成中间层3。应当指出的是,恰当地选择靶B的组成和溅射条件,以使中间层3的折射系数小于第一保护层2的折射系数。
接下来,使用预定组成的靶,按顺序相继形成记录层4、第二保护层5和反射层6。
在用上述的方法制造出的光盘中,第一保护层2中的原子组成比O/Si小于2,或者优选为小于等于1,并且中间层3的折射系数小于第一保护层2的折射系数。
应当指出尽管这里已经描述了使用Ar气的溅射法,但是也可以使用除Ar气外的气体,比如Kr气或者可以在溅射法中使用的其它惰性气体。
当使用包含预定比例的Zn、S、Si和O原子的靶作为此处所述靶A时,那么当靶由包含预定比例的ZnS、Si和SiO的混合物制造而成时,则在从靶开始使用到结束的周期内,在形成的薄膜中包含的O原子的浓度往往不变,因此能够形成薄膜品质(quality)稳定的第一保护层2。
(实施例)
下面利用具体的实施例来说明本发明的光学信息记录媒体。在每个实施例和比较例中,可以利用卢瑟福反向散射光谱测定法(Rutherford backscattering spectrometry)测量原子浓度。
(1)实施例1到6和比较例1在实施例1-6和比较例1中使用的光学信息记录媒体具有如图1所示的相同结构。
衬底1由厚600μm的聚碳酸酯制成。
使用Ge的氮氧化物(Ge-N-O)来形成中间层3,并设置成5nm厚。更具体地,它是这样制成的准备一个由Ge制成的靶,并且将5.0W/cm2的RF功率施加到阴极,同时提供固定流量的混合了30%的N2气体和5%的O2气体和Ar气的混合气体,使其总压强为2.0Pa。以这种方式制造的中间层3的N原子的浓度是25at%,O原子的浓度是5at%。
使用Ge6Sb2Te9来形成记录层4,并设置成10nm厚。更具体地,它是这样制成的准备一个由Ge6Sb2Te9组成的靶,并且将0.6W/cm2的DC溅射功率施加到阴极,同时提供固定流量的混合了2.5%的N2气体和Ar气的混合气体,使其总压强为0.1Pa。
第二保护层6是由80mol%的ZnS和20mol%的SiO2混合成的混合物制成,并设置成45nm厚。更具体地,它是这样制成的准备一个包含预定比例的ZnS和SiO2的靶,并且将10.5W/cm2的RF功率施加到阴极,同时提供固定流量的Ar气体与2.5%的N2气体混合的混合气体,使其总压强为0.2Pa。
使用Ag来形成反射层6,并设置成100nm厚。更具体地,它是这样制成的准备Ag靶,提供Ar气以使其总压强为0.4Pa,并且将6.4W/cm2的DC功率施加到阴极。
第一保护层2包括Zn、S和Si原子,还可以制造成使O原子与Si原子的原子组成比O/Si分别为0(实施例1)、0.3(实施例2)、0.6(实施例3)、0.9(实施例4)、1(实施例5)、1.5(实施例6)和2(比较例1)。应当指出在实施例1-6和比较例1的所有光盘中,第一保护层2的厚度都是140nm。而且,当第一保护层2的材料表示为(100-α)mol%ZnS-αmol%SiOx(x=0,0.3,0.6,0.9,1,1.5)时,α变成20(80mol%ZnS-20mol%SiOx),即,使包含在第一保护层2中的SiOx变成20mol%。更具体地,它是这样制成的准备包含预定比例的ZnS、Si和SiO的靶,并且将10.5W/cm2的RF功率施加到阴极,同时以固定流速提供Ar气,使其总压强为0.2Pa。应当指出,通过适当改变所使用的靶的组成,可以将已形成的第一保护层2中的O/Si的原子组成比控制为实施例1-6和比较例1的各个设定值。
按上面的描述制造的实施例1-6和比较例1的光盘的记录特性,是采用带有内置光学拾取器的光盘驱动装置(所述内置光学拾取器的线速度为8m/s,激光波长为660nm,物镜的数值孔径(NA)为0.6),通过具有激光波长为780nm,数值孔径(NA)为0.55的光学系统的初始化装置以线速度8m/s旋转记录层,使记录层经过连续的激光照射结晶之后进行测量的。使用EFM信号法,利用61μm的最小标志长度T,通过在相同的磁道上交替记录长度3T和11T的标志十次,并测量3T标志的CNR(载波噪声比),进行记录特性的测量。此外,进行第一保护层2的薄膜成形速度的评价。薄膜成形速度的评价表示为相对于比较例1的传统光盘的第一保护层的表示为100的薄膜成形速度的相关评价。表1分别表示实施例1-6和比较例1中的O与Si的原子组成比(O/Si)、薄膜成形速度评价和光学特性的CNR测量结果。
表1

从结果中可以确定,当第一保护层2的原子组成比O/Si小于2时,第一保护层2的薄膜成形速度高于传统层的(比较例1)。
此外,可以确定在原子组成比O/Si大于等于1的区域中,表示记录特性的CNR的提高超过传统光盘的CNR(比较例1)。从而,为了使薄膜成形速度高于传统的速度,同时也提高CNR,则优选的是第一保护层2的原子组成比O/Si大于等于1。
(2)实施例7-14假定在实施例7-14中使用的光盘结构与图1所示的相同。此外,使用与制造实施例1-6的光盘相同的方式制造衬底1、中间层3、记录层4、第二保护层5和反射层6。
第一保护层2包括Zn、S和Si原子,用不包括O原子(原子组成比O/Si是0)的材料形成,并且分别制成来使得,当第一保护层2的材料表示为(100-α)mol%ZnS-αmol%Si时,α变为0(实施例7)、3(实施例8)、5(实施例9)、10(实施例10)、20(实施例11)、30(实施例12)、40(实施例13)和50(实施例14),即,制成保护层使得其中包含的Si的含量分别等于这些值。此外,所有厚度都设置成140nm。更具体地,它是这样制成的准备包含预定比例的ZnS和Si的靶,并且将10.5W/cm2的RF功率施加到阴极,同时以固定流速提供Ar气,使其总压强为0.2Pa。应当指出,通过适当改变所使用的靶的组成,将已形成的第一保护层2中包含的Si的含量控制为各个设定值。
使用与测量实施例1-6的那些相同的方法,进行对按照上面的描述制造的实施例7-14的各个光盘的光学记录特性的测量和薄膜成形速度评价。应当指出,将比较例1的光盘(用80%mol ZnS-20mol%SiO2的第一保护层2形成的光盘)作为在薄膜成形速度评价中所使用的传统光盘。表2分别表示实施例7-14中分别包含的Si的含量、薄膜成形速度评价和光学特性的CNR测量结果。
表2

从结果中可以确定,当第一保护层2中包含的Si的含量超过3mol%时,薄膜成形速度高于传统层的(比较例1)。据说这是因为一般的薄膜成形速度随着Si的比例的提高而变大,其中Si的溅射速度高于ZnS的溅射速度。可是,由于当Si的含量超过30mol%时,CNR变得低于传统光盘的CNR,所以优选的是Si的含量小于等于30mol%以便保持CNR等于或大于传统光盘的。从而,优选的是第一保护层2中的Si含量为3-30mol%,为了进一步提高CNR,优选的是Si含量范围为5-30mol%。
(3)实施例15-28和比较例2与3假定在实施例15-28和比较例2与3中使用的光盘结构与图1所示的相同。此外,使用与制造实施例1-6的光盘相同的方法制造衬底1、记录层4、第二保护层5和反射层6。
第一保护层2包括Zn、S和Si原子,用不包括O原子(原子组成比O/Si是0)的材料形成,分别制成来使得,当第一保护层2的材料表示为(100-α)mol%ZnS-αmol%Si时,α变为30(70mol%ZnS-30mol%SiOx),即,制成保护层来使得包含的Si的含量变成30mol%。此外,所有厚度都设置成140nm。更具体地,它是这样制成的准备包含预定比例的ZnS和Si原子的靶,并且将10.5W/cm2的RF功率施加到阴极,同时以固定流速提供Ar气,使其总压强为0.2Pa。
中间层3由Ge的氮化物、氧化物或氮氧化物制成。更具体地,采用由Ge组成的靶形成中间层3,并且通过改变溅射气体中所包含的N2和O2的比例,使用在实施例15-28的光盘中的不同的N和O原子浓度来制成中间层3。此外,比较例2的光盘的中间层3中既不包含N原子也不包含O原子,比较例3的光盘的中间层3中只包含5at%的O原子。应当指出在溅射过程中所施加的气体压强和功率与实施例1-6中的相同。
对根据上面描述制造的实施例15-28和比较例2与3的光盘进行第一保护层2和中间层3的折射系数的差值的测量、在第一保护层2和中间层3之间是否有剥离的评价和记录特性的测量(CNR测量)。利用光谱椭圆对称(spectroscopic ellipsometry)测量方法,对用于与形成第一保护层2或中间层3相同的条件、分别在石英玻璃衬底上形成的100nm厚的单层薄膜样本的折射系数进行测量。评价是否有剥离是在将样本在温度为90℃,相对湿度为80%的空气中存储300小时之后,通过用光学显微镜观察而得的。CNR测量是用与实施例1-6中相同的方法进行的。对实施例15-28和比较例2-3中包含在中间层3中的N原子浓度、O原子浓度、第一保护层2和中间层3的折射系数的差值、CNR和是否有剥离的评价的结果如表3所示。应当指出,在表3中,当中间层3的折射系数大于第一保护层2的折射系数时,折射系数的差值用“+”表示,反之当它较小时用“-”表示。而且,关于是否有剥离,用“X”表示出现剥离,用“O”表示没有出现。
表3


在比较例2-3的光盘中,中间层3的折射系数大于第一保护层2的折射系数,可以确定,与在实施例15-28中的中间层3的折射系数小于第一保护层2的折射系数的光盘相比,其CNR较小,也即,可以确定,当为了提高薄膜成形速度而使用本发明的材料形成第一保护层2时,由于中间层3的折射系数小于第一保护层2的折射系数,所以记录特性等于或者大于传统的普通光盘的。此外,可以确定,当包含在中间层3中的N原子浓度和O原子浓度的总和设置成等于或大于10%时,可以使中间层3的折射系数小于第一保护层2的折射系数。此外,可以确定,当包含在中间层3中的N原子浓度和O原子浓度的总和等于或小于40at%时,在中间层3和第一保护层2之间很难出现剥离。
权利要求
1.一种光学信息记录媒体,包括一个保护层;一个中间层;和一个在激光束照射时光学特性会可逆变化的记录层,它们依次层叠在衬底上;其中,所述保护层包含至少Zn、S和Si原子,原子组成比O/Si大于等于0,且小于2;其中,所述中间层的折射系数小于所述保护层的折射系数。
2.如权利要求1所述的光学信息记录媒体,其中保护层中的原子组成比O/Si大于等于0,且小于等于1。
3.如权利要求1所述的光学信息记录媒体,其中中间层和记录层的折射系数的差值大于等于0.1。
4.如权利要求1所述的光学信息记录媒体,其中,当Si和O由SiOX(0≤X<2)表示时,保护层中包含的SiOX大于等于3mol%,且小于等于30mol%。
5.如权利要求4所述的光学信息记录媒体,其中a大于等于5且小于等于30。
6.如权利要求1所述的光学信息记录媒体,其中中间层包含N和O中的至少一种原子,N和O原子的总量大于等于10at%,且小于等于40at%。
7.如权利要求1所述的光学信息记录媒体,其中保护层的厚度大于等于50nm,且小于等于200nm。
8.如权利要求1所述的光学信息记录媒体,其中中间层的厚度大于等于2nm,且小于等于30nm。
9.如权利要求1所述的光学信息记录媒体,还包括在记录层的与激光束照射侧相反的一侧上放置反射层。
10.如权利要求1所述的光学信息记录媒体,其中中间层包含从Ge、Si和C中选择的至少一种元素的氮化物或者氮氧化合物。
11.如权利要求1所述的光学信息记录媒体,其中中间层由单质碳制成。
12.一种用于制造光学信息记录媒体的方法,包括(a)在衬底上形成保护层,所述保护层包含Zn、S和Si原子,其中原子组成比O/Si大于等于0,且小于2;(b)在所述保护层上形成中间层,所述中间层的折射系数小于所述保护层的折射系数;和(c)在所述中间层上形成记录层,所述记录层的光学特性在激光束照射时会可逆地变化。
13.如权利要求12所述的用于制造光学信息记录媒体的方法,其中,在步骤(a)中,形成的保护层中包含Zn、S和Si原子,其中原子组成比O/Si大于等于0且小于等于1。
全文摘要
本发明的一种光学信息记录媒体,包括一个保护层;一个中间层,以及一个记录层,当使用激光束照射时,该记录层的光学特性会可逆地变化;它们按照这种顺序在衬底上层叠。该保护层至少包括Zn、S和Si原子,并且O与Si的原子组合比大于等于0且小于2。该中间层的折射系数小于所述保护层的折射系数。
文档编号G11B7/258GK1571997SQ0282070
公开日2005年1月26日 申请日期2002年10月18日 优先权日2001年10月19日
发明者大田之, 长田宪一 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1