硅薄膜异质结太阳电池的制备方法

文档序号:6784754阅读:492来源:国知局
专利名称:硅薄膜异质结太阳电池的制备方法
技术领域
本发明涉及的是一种太阳电池的制备方法,特别是一种硅薄膜异质结太阳电池的制备方法,用于半导体技术领域。
背景技术
过去的几年中,基于非晶硅和晶体硅构成的异质结太阳电池获得突破性的进步,这类电池具有高效、低成本的优势,极有可能成为晶体硅太阳电池的更新换代产品,实现市场的推广,生产体状晶体硅太阳电池时,为形成pn结所需要的一道重要工序高温扩散,将在异质结太阳电池生产中被省略。新型非晶硅和晶体硅构成的异质结太阳电池具有结构简单、工艺过程少等特点,它将晶体硅具有的高载流子迁移率优点与低温化学汽相沉积非晶硅薄膜的工艺优势相结合,从经济、技术和科学的角度看,非晶和晶体硅构成的异质结太阳电池更具先进性。
2002年,日本的三羊电器株式会社成功地制备出基于该结构的太阳电池,其效率达到21%(High-efficiency a-Si/c-Si heterojunction solar cell“高效a-Si/c-Si异质结太阳电池”T.Sawada,N.Terada,et al,Proc.of the IEEElst World Conference PVSEC(第一届国际IEEE光伏科学与工程会议论文集)p.1219,Hawaii 1994),制备非晶硅发射层所采用的技术是等离子增强化学汽相沉积(PECVD),人们已经发现该技术具有一些工艺本身所不可避免的缺点,第一,等离子对非晶硅薄膜表面的轰击,增加了薄膜体内的载流子复合缺陷密度;第二,等离子的不稳定性;第三,在射频辐照下,硅烷具有高分子聚合性(即形成粉末);第四,沉积速度慢;第五,硅烷的利用率低。所以,人们期盼有一种更简单的工艺,取代PECVD,并且可克服PECVD的缺点。近几年的文献报道,采用热丝化学汽相沉积(HW-CVD)的方法,可沉积出器件级的非晶硅薄膜。我们采用该方法,沉积出高光电导增益的非晶硅薄膜,并利用此薄膜制备出性能优良的非晶硅薄膜和晶体硅异质结太阳电池。

发明内容
本发明的目的是针对现有技术中存在的上述不足和缺陷,提供一种硅薄膜异质结太阳电池的制备方法,使其采用热丝化学汽相沉积(HW-CVD)制备高质量的非晶硅薄膜,并采用此薄膜材料为发射层与晶体硅形成a-Si/c-Si异质结太阳电池。热丝化学汽相沉积工艺克服了等离子工艺对非晶硅薄膜表面的轰击的缺点,降低了薄膜内的载流子复合缺陷密度;又因为沉积过程中没有高频放电,硅烷分子发生聚合的几率(形成粉末)大大减小,这样可形成高质量的非晶硅薄膜。在非晶硅薄膜形成的基础上,制备出非晶发射层、晶体硅异质结太阳电池。获得稳定效率12%的该结构的太阳电池。通过控制热丝和衬底的温度、反应气体的比例、非晶发射层薄膜厚度及掺杂工艺,实现对非晶发射层和晶体硅构成的异质结太阳电池的性能的影响。
本发明是通过以下技术方案实现的,具体步骤如下(1)衬底清洗选用p-型或n-型,电子率在2~4Ωcm的直拉单晶硅片为衬底,硅片为(100)取向,镜面抛光,厚度为250μm。采用常规的半导体清洗工艺进行衬底的表面初清洗,用3%的氢氟酸除去硅片表面的二氧化硅层,再将衬底放在去离子水中用超声波清洗,用去离子水冲洗数次,氮气吹干。
(2)在晶体硅上制备本征非晶硅层采用热丝化学汽相沉积工艺制备本征非晶硅层i-a-Si,起到提高非晶发射层和晶体硅异质结太阳电池的输出性能的作用,提供高温的热丝是采用直径为0.7mm的钨丝。钨丝温度用光学高温计测量。样品与钨丝的距离约在7cm左右。加热器与样品的温度分别由两个热电偶测定,用电子温度控制器控制温度。为防止可能的污染,以及保证薄膜的均匀性,在沉积前后用一挡板将衬底与钨丝隔开。沉积系统的背景真空度为5×10-4Pa。反应气体为硅烷和氢混合气体,反应气体被高温钨丝分解形成大量活性硅氢基元,硅氢基元再扩散到衬底表面,在衬底表面反应生长而成薄膜。通过钨丝温度、衬底温度,沉积气压及各反应气体的比例等工艺参量对a-Si:H结构以及光电特性等的影响来最优化工艺参量,制备优质非晶硅薄膜。沉积条件变化范围如下所述钨丝温度1600~2100℃;衬底温度150~400℃,沉积气压0.1~10Pa。硅烷在总气体中的流量比在100%到10%范围内可调。
(3)采用热丝化学汽相沉积工艺,在本征非晶硅薄膜上再沉积一层厚约10~30nm的发射层,该发射层的导电性与衬底的导电性相反,即构成p+a-Si/i-a-Si/n-c-Si及n+-a-Si/i-a-Si/p-c-Si结构的太阳电池原形。具体的工艺条件是样品与钨丝的距离为7cm。沉积系统的背景真空度为5×10-4Pa。反应气体为硅烷、硼烷或磷烷和氢混合气体,硅烷在总气体中的流量比在100%到10%范围内可调,掺杂浓度可通过对硼烷或磷烷与硅烷的流量比进行调节,流量比控制在PH3(或B2H6)/SiH4=1~5%范围内。反应气体被高温钨丝分解形成活性反应基团,然后扩散到衬底表面附近,在衬底表面反应生长而形成薄膜。沉积条件变化范围如下所述钨丝温度1600~2100℃;衬底温度150~400℃;沉积气压0.1~10Pa。改变沉积时间、B2H6/SiH4或PH3/SiH4气体的比例可有效地控制发射层的厚度及发射层的掺杂浓度,进而改善电池的性能。
(4)正背面电极的形成,用射频溅射工艺在电池的正面沉积一层厚约80nm的ITO透明导电薄膜(Sn掺杂In2O3),该透明导电的ITO薄膜既起到电极的作用,又起到光学减反射的作用。样品加热到200℃,溅射气体为氩气和氧气,氩气和氧气的分压比是10∶1,总压强是0.5Pa,溅射功率密度是40mW/cm2,溅射沉积时间是40分钟。再在ITO薄膜上用掩膜、真空热蒸发沉积银金属栅线。电池的背面也采用真空热蒸发沉积铝金属背电极。
(5)真空热退火工艺,为了使银栅线与ITO层、铝背层与c-Si形成良好的欧姆接触,在电极完成以后,还要进行真空热退火工艺,退火温度是250℃,时间是30分钟。
钨丝温度是另一个最基本的参数,钨丝的温度控制在1600~2100℃范围内,在此范围内的较高温度下,薄膜出现微晶化,而在较低的衬底温度下,薄膜是非晶的结构,但在此范围中,获得高光电导增益也有一个最佳的工艺条件。
第三个影响薄膜性质的热丝CVD工艺条件是衬底温度,选择的衬底温度在150~400℃范围内变化,当衬底温度大于300℃时出现微晶化倾向,暗电导增加,光电导增益减少。较高的衬底温度将增加反应基元在表面的迁移率、减少样品中的H含量。当衬底温度大于300℃,出现微晶化,引起缺陷态密度的增加,使光电导增益减少,光电性能变差。通常选择衬底温度在250℃左右较合适。
第四个影响薄膜性质的热丝CVD工艺条件是反应气体的配比,反应气体为硅烷和氢混合气体,采用质量流量计测量和控制各反应气体的流量,硅烷在总气体中的流量比在100%到10%范围内可调,在高硅烷流量下,获得的薄膜是非晶结构为主,并且可获得高光电导增益的优质非晶硅薄膜,而在80%硅烷流量的条件下,获得的硅薄膜已经开始微晶化,暗电导增大,光电性能变差。
钨丝温度1950℃,衬底温度210℃,沉积气压1Pa。硅烷在总气体中的流量比在50%,采用热丝CVD方法制备的a-Si:H样品,光照7h后光电导仅下降约10%,而PECVD方法制备的样品,在相同条件下光电导下降近一个量级,表明低压HW-CVD方法是提高a-Si稳定性的有效技术。
本发明薄膜的组份和结构性质可通过Auger电子能谱、Raman散射谱和X射线衍射谱描述。通过测量光电导及暗电导了解a-Si样品光电特性。电导测量中采用共面电极。由Auger电子能谱分析可知,薄膜中不含无利杂质,膜层含量均匀。
用X射线和Raman电子能谱分析,表明沉积气压是控制薄膜微结构的主要参数,当沉积气压在Pg=1Pa以下时,样品的能谱图观察不到任何衍射峰,当Pg提高到1Pa以上后,时开始出现衍射峰,表明薄膜开始晶化,晶化峰位于2θ等于28°,代表(111)方向的择优晶化。随着Pg的升高,峰位衍射强度增加。当Pg达到10Pa时,在2θ等于47.2°、56°处出现(220)及(311)衍射峰,薄膜晶化的程度随沉积气压的增加而增加。与薄膜的晶化相对应,电导率也随Pg变化,在一个标准光强下,薄膜的光电导对暗电导率的比(光电导增益),也受沉积气压的影响较大,当Pg为1Pa和大于1Pa时暗电导率增加,以上分析表明薄膜微晶化出现,光电导增益也开始变得较差,只有当Pg小于1Pa时,a-Si才呈现较好的高光电导增益的特性。根据以上结果,为获得高光电导增益的非晶相硅薄膜,应该在实验中将沉积气压降低到1Pa以下。
本发明具有实质性特点和显著进步,首先,从材料制备角度看,与通常用于制备a-Si的等离子体CVD技术相比,该技术具有以下几个特点和显著的技术进步(1)可避免在辉光放电方法中离子对生长表面的损伤;(2)产生的活性基元或能量粒子可除去弱Si-Si键、弱Si-H键及减少微空洞,从而获得较理想的硅无序网络;(3)较高的衬底温度可降低膜中的氢含量;(4)高温热丝可使硅烷充分分解。(5)高速沉膜,有利于产业化。因此利用低压HW-CVD制备a-Si薄膜并应用于器件,将是改进非晶硅薄膜器件稳定性的途径之一。其次,从太阳电池器件角度看,非晶硅薄膜与晶体硅异质结太阳电池省略了晶体硅太阳电池工艺中扩散工艺,减少了成本中的能耗。非晶硅薄膜与晶体硅异质结太阳电池与非晶硅薄膜太阳电池相比又克服了光照下光伏性能衰退,称为S-W效应,非晶硅薄膜(a-Si)的稳定性问题(即S-W效应)阻碍了非晶硅薄膜太阳电池的进一步应用。
而本发明的热丝汽相沉积工艺是沉积气压在0.1~10Pa的HW-CVD生长光伏非晶硅薄膜的技术,以及采用此薄膜与晶体硅构成异质结太阳电池,在这两个方面都实现了技术的进步。
具体实施例方式
实施例一和实施例二是p+-a-Si/i-a-Si/n-c-Si结构的太阳电池,实施例三和实施例四是n+-a-Si/i-a-Si/p-c-Si结构的太阳电池实施例一采用上述的步骤一进行化学预处理。
采用步骤二制备本征非晶硅层。首先在n-c-Si晶体硅上沉积一层薄的本征非晶硅层i-a-Si,i-a-Si层厚20nm,具体工艺条件是样品与钨丝的距离8cm,沉积系统的背景真空度为5×10-4Pa。反应气体为硅烷和氢混合气体,硅烷在总气体中的流量比100%,钨丝温度2100℃;衬底温度300℃;沉积气压0.1Pa,沉积时间2分钟。
采用步骤三制备掺杂发射层,硼烷与硅烷的流量比控制在B2H6/SiH4=1%,。在非晶硅层上再沉积一层厚30nm的p+-a-Si发射层,该发射层的导电性与衬底的导电性相反,即构成p+-a-Si/i-a-Si/n-c-Si结构的太阳电池原形。具体的工艺条件是样品与钨丝的距离为8cm,沉积系统的背景真空度为5×10-4Pa。钨丝温度2100℃;衬底温度150℃;沉积气压0.1Pa;沉积时间3分钟。
采用步骤四制备上、下电极,电池的正面用射频溅射工艺沉积一层厚约80nm的ITO透明导电薄膜(Sn掺杂In2O3)再在ITO薄膜上用掩膜法,真空热蒸发沉积银金属栅线。电池的背面也采用真空热蒸发沉积铝金属背电极。
采用步骤五进行真空热退火工艺,使银栅线与ITO层、铝背层与c-Si形成欧姆接触。
实施效果最后进行电池的性能测试,在AM1.5,100mW/cm2标准光强的照射下,该实施例一所沉积本征硅薄膜光电导增益达106,制备的异质结太阳电池的效率达12%,填充因子达70%。
实施例二采用上述的步骤一进行前道化学预处理;采用步骤二制备本征非晶硅层,首先在n-c-Si晶体硅上沉积一层薄的本征非晶硅层i-a-Si,i-a-Si层,厚10nm,具体工艺条件是样品与钨丝的距离8cm,沉积系统的背景真空度为5×10-4Pa。反应气体为硅烷和氢混合气体,硅烷在总气体中的流量比80%,钨丝温度1900℃,衬底温度250℃,沉积气压为2Pa,沉积时间1分钟。
采用步骤三制备掺杂发射层,硼烷与硅烷的流量比控制在B2H6/SiH4=3%,在非晶硅层上再沉积一层厚30nm的p+-a-Si发射层,该发射层的导电性与衬底的导电性相反,即构成p+-a-Si/i-a-Si/n-c-Si结构的太阳电池原形。具体的工艺条件是样品与钨丝的距离为8cm,沉积系统的背景真空度为5×10-4Pa,钨丝温度1900℃;衬底温度200℃;沉积气压10Pa;沉积时间3分钟。
采用步骤四制备上、下电极,电池的正面用射频溅射工艺沉积一层厚约80nm的ITO透明导电薄膜(Sn掺杂In2O3)再在ITO薄膜上用掩膜法,真空热蒸发沉积银金属栅线。电池的背面也采用真空热蒸发沉积铝金属背电极。
采用步骤五进行真空热退火工艺,使银栅线与ITO层、铝背层与c-Si形成欧姆接触。
实施效果最后进行电池的性能测试,在AM1.5,100mW/cm2标准光强的照射下,该实施例二所沉积本征硅薄膜光电导增益达105,制备的异质结太阳电池的效率达11.5%,填充因子达65%。
实施例三采用上述的步骤一进行前道化学预处理;
采用步骤二制备本征非晶硅层,首先在p-c-Si晶体硅上沉积一层薄的本征非晶硅层i-a-Si,i-a-Si层,厚20nm,具体工艺条件是样品与钨丝的距离8cm,沉积系统的背景真空度为5×10-4Pa。反应气体为硅烷和氢混合气体,硅烷在总气体中的流量比50%,钨丝温度1800℃,衬底温度200℃,沉积气压6Pa,沉积时间2分钟。
采用步骤三制备掺杂发射层,磷烷与硅烷的流量比控制在PH5/SiH4=4%,在非晶硅层上再沉积一层厚30nm的n+-a-Si发射层,该发射层的导电性与衬底的导电性相反,即构成n+-a-Si/i-a-Si/p-c-Si结构的太阳电池原形。具体的工艺条件是样品与钨丝的距离为6cm,沉积系统的背景真空度为5×10-4Pa。钨丝温度1800℃;衬底温度200℃;沉积气压4Pa;沉积时间3分钟。
采用步骤四制备上、下电极,电池的正面用射频溅射工艺沉积一层厚约80nm的ITO透明导电薄膜(Sn掺杂In2O3)再在ITO薄膜上用掩膜法,真空热蒸发沉积银金属栅线。电池的背面也采用真空热蒸发沉积铝金属背电极,采用步骤五进行真空热退火工艺,使银栅线与ITO层、铝背层与c-Si形成欧姆接触。
实施效果最后进行电池的性能测试,在AM1.5,100mW/cm2标准光强的照射下,该实施例三所沉积本征硅薄膜光电导增益达5×104,制备的异质结太阳电池的效率达10%,填充因子达68%。
实施例四采用上述的步骤一进行前道化学预处理;采用步骤二制备本征非晶硅层,首先在p-c-Si晶体硅上沉积一层薄的本征非晶硅层i-a-Si,i-a-Si层,厚20nm,具体工艺条件是样品与钨丝的距离8cm,沉积系统的背景真空度为5×10-4Pa。反应气体为硅烷和氢混合气体,硅烷在总气体中的流量比10%,钨丝温度1600℃,衬底温度150℃,沉积气压10Pa,沉积时间3分钟。
采用步骤三制备掺杂发射层,磷烷与硅烷的流量比控制在PH5/SiH4=5%,在非晶硅层上再沉积一层厚30nm的n+-a-Si发射层,该发射层的导电性与衬底的导电性相反,即构成n+-a-Si/i-a-Si/p-c-Si结构的太阳电池原形。具体的工艺条件是样品与钨丝的距离为8cm,沉积系统的背景真空度为5×10-4Pa。钨丝温度1600℃;衬底温度300℃;沉积气压1Pa;沉积时间4分钟。
采用步骤四制备上、下电极,电池的正面用射频溅射工艺沉积一层厚约80nm的ITO透明导电薄膜(Sn掺杂In2O3)再在ITO薄膜上用掩膜法,真空热蒸发沉积银金属栅线。电池的背面也采用真空热蒸发沉积铝金属背电极。
采用步骤五进行真空热退火工艺,使银栅线与ITO层、铝背层与c-Si形成欧姆接触。
实施效果最后进行电池的性能测试,在AM1.5,100mW/cm2标准光强的照射下,该实施例四所沉积的本征硅薄膜光电导增益达106,制备的异质结太阳电池的效率达12.5%,填充因子达70%。
权利要求
1.一种硅薄膜异质结太阳电池的制备方法,其特征在于,具体步骤如下(1)衬底清洗采用半导体清洗工艺进行衬底的表面初清洗,用3%的氢氟酸除去硅片表面的二氧化硅层,再将衬底放在去离子水中用超声波清洗,用去离子水冲洗数次,氮气吹干;(2)制备本征非晶硅层采用热丝化学汽相沉积工艺制备本征非晶硅层i-a-Si,提供高温的热丝是采用直径为0.7mm的钨丝,钨丝温度用光学高温计测量,加热器与样品的温度分别由两个热电偶测定,用电子温度控制器控制温度,或者在沉积前后用一挡板将衬底与钨丝隔开,反应气体被高温钨丝分解形成大量活性硅氢基元,硅氢基元再扩散到衬底表面,在衬底表面反应生长而成薄膜;(3)采用热丝化学汽相沉积工艺,在本征非晶硅薄膜上再沉积一层厚10~30nm的发射层,该发射层的导电性与衬底的导电性相反,即构成p+a-Si/i-a-Si/n-c-Si及n+-a-Si/i-a-Si/p-c-Si结构的太阳电池原形;(4)正背面电极的形成,用溅射工艺在电池的正面沉积一层厚80nm的ITO透明导电薄膜,再在ITO薄膜上用掩膜、真空热蒸发沉积银金属栅线,电池的背面也采用真空热蒸发沉积铝金属背电极;(5)真空热退火工艺,在电极完成以后,进行真空热退火。
2.根据权利要求1所述的硅薄膜异质结太阳电池的制备方法,其特征是,步骤(1)中,选用p-型或n-型,电子率在2~4Ωcm的直拉单晶硅片为衬底,硅片为(100)取向,镜面抛光,厚度为250μm。
3.根据权利要求1所述的硅薄膜异质结太阳电池的制备方法,其特征是,步骤(2)和步骤(3)中,沉积条件变化范围如下钨丝温度1600~2100℃,衬底温度150~400℃,沉积气压0.1~10Pa,硅烷在总气体中的流量比在100%到10%范围内。
4.根据权利要求1所述的硅薄膜异质结太阳电池的制备方法,其特征是,步骤(3)中,具体的工艺条件是样品与钨丝的距离为7cm,沉积系统的背景真空度为5×10-4Pa,反应气体为硅烷、硼烷或磷烷和氢混合气体,掺杂浓度通过对硼烷或磷烷与硅烷的流量比进行调节,流量比控制在PH3或B2H6/SiH4=1~5%范围内,反应气体被高温钨丝分解形成活性反应基团,然后扩散到衬底表面附件,在衬底表面反应生长而形成薄膜。
5.根据权利要求1所述的硅薄膜异质结太阳电池的制备方法,其特征是,步骤(4)中,在掺杂的非晶硅薄膜发射层上溅射沉积一层厚80nm的ITO透明导电薄膜,沉积时,样品加热到200℃,溅射气体为氩气和氧气,氩气和氧气的分压比是10∶1,总压强是0.5Pa,溅射功率密度是40mW/cm2,溅射沉积时间是40分钟。
6.根据权利要求1所述的硅薄膜异质结太阳电池的制备方法,其特征是,步骤(5)中,退火温度是250℃,时间是30分钟。
全文摘要
一种用于半导体技术领域的硅薄膜异质结太阳电池的制备方法,衬底清洗采用半导体清洗工艺进行衬底的表面初清洗,再将衬底放在去离子水中用超声波清洗,用去离子水冲洗数次,氮气吹干;制备本征非晶硅层用热丝化学汽相沉积技术制备本征非晶硅层,钨丝温度用光学高温计测量,加热器与样品的温度分别由两个热电偶测定,用电子温度控制器控制温度,在衬底表面反应生长而成薄膜;在本征非晶硅薄膜上再沉积一层发射层;正、背面电极的形成用溅射工艺在电池的正、背面形成电极;最后进行真空热退火工艺。本发明薄膜具有光照稳定性,在AM1.5,100mW/cm
文档编号H01L31/18GK1588649SQ200410052858
公开日2005年3月2日 申请日期2004年7月15日 优先权日2004年7月15日
发明者周之斌, 崔容强, 陈鸣波, 赵亮, 孟凡英 申请人:上海交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1