具有减小的直流电流饱和度的电力电感器的制作方法

文档序号:6833354阅读:142来源:国知局
专利名称:具有减小的直流电流饱和度的电力电感器的制作方法
技术领域
本发明关于感应器,更具体地,关于电力电感器,其具有磁芯材料,且在高操作频率和高直流电流下操作时,其饱和水平降低。
背景技术
感应器是电路元件,其基于磁场工作。磁场源是运动的电荷或电流。如果电流随时间而变化,则其产生的磁场也随时间而变化。随时间变化的磁场在任何通过磁场连接的导体中感生出电压。如果电流是常数,那么跨过理想导体的电压是零。因此,导体对恒定或直流电流而言就象一个短路。在感应器中,电压是由下式给出的v=L(di)/(dt)因此,在电感器中没有瞬间的电流变化。
感应器可用于各种电路中。电力电感器接收相对高的直流(DC)电流,例如,达100安培的电流,并且许多电流是在高工作频率下工作。例如并参照图1,电力电感器200可以用在DC/DC转换器24内,此转换器通常采用逆变流和/或整流将DC从一个电压转换到另一个电压。
参照图2,电力电感器20通常包括一匝或多匝导体30,导体30通过磁芯材料34。例如,磁芯材料34可以一个方型的外截面36和一个方型的中空腔38,其贯通整个磁芯材料34。导体30通过中空腔。相对高的直流电流流经导体30,趋于使磁芯材料34达到饱和,这降低了电力电感器20的性能,并且此装置收编在此以供参考。

发明内容
根据本发明的电力电感器(power inductor)包括第一磁芯,其具有第一和第二末端,并且,其包括铁氧体珠状磁芯(ferrite bead core)材料;一个空腔(cavity),其在第一磁芯中,从第一末端延伸至第二末端;一个槽型气隙(slotted air gap),其在第一磁芯中,从第一末端延伸到第二末端;第二磁芯,其位于槽型气隙内和附近至少一个位置。
在其它特征中,一个包括电力电感器的系统还包括一个直流一直流转换器(DC/DC Converter),其与电力电感器耦合。
仍在其它特征中,一个导体通过空腔,其中槽型气隙在平行于此导体的方向上,布置在第一磁芯内。第二磁芯磁导率比第一磁芯的低。第二磁芯包括一种软磁材料。该软磁材料包括一种粉末金属。此第一磁芯和第二磁芯至少在两正交平面内是自锁的(self-locking)。此第二磁芯包括铁氧体珠状磁芯材料,此铁氧体珠状磁芯材料具有分布的间隙(distributed gap),从而降低此第二磁芯的磁导率。磁通量流过电力电感器中的磁通路(magnetic path),并且其中第二磁芯不超过磁通路的30%。磁通量流过电力电感器中的磁通路,并且其中此第二磁芯不超过磁通路的20%。
仍在其它特征中,用粘合剂和带子至少一种方法将此第一和第二磁芯连接在一起。
一种电力电感器包括第一磁芯,此第一磁芯具有第一和第二末端。第一磁芯包括一种铁氧体珠状材料。第二磁芯具有比第一磁芯低的磁导率。第一和第二磁芯被布置以使磁通量流过磁通路,磁通路包括第一和第二磁芯。
在其它特征中,一种系统包括电力电感器,和直流一直流转换器,其与电力电感器耦合。
在其它特征中,该第一磁芯包括一个空腔和一个气隙。该第二磁芯有一种软磁材料组成。该软磁材料包括一种粉末金属。该第一磁芯和该第二磁芯在至少两个正交平面内是自锁的。该第二磁芯包括铁氧体珠状材料,其具有分布的间隙,这些分布的间隙降低该第二磁芯的磁导率。该第二磁芯不超过磁通路的30%。该第二磁芯不超过磁通路的20%。第一磁芯的相对壁相邻于槽型气隙是“V”形的。该第二磁芯是“T”形的,且沿该第一磁芯的内壁延伸。该第二磁芯是“H”形的,且部分地沿第一磁芯的内、外壁延伸。
本发明其它可应用的领域将从下面提供的详细说明中明显看出。应该理解,详细说明和具体实施例在揭示本发明的优选实施例的同时,其目的仅用于说明本发明,而非限制本发明的范围。


从详细说明和附图可更充分地理解本发明,其中图1是根据现有技术在直流一直流转换器中实施的电力电感器功能性的方框图和示意电气布局图;图2显示图1中根据现有技术的电力电感器的透视图;图3显示图1和图2中根据现有技术的电力电感器的剖视图;图4显示根据本发明具有槽型气隙的电力电感器的透视图,该槽型气隙布置在磁芯材料中;图5是图4中的电力电感器的剖视图;图6A和图6B显示可替换实施例的剖视图,该实施例具有涡流减少材料,其被临近槽型气隙布置;图7显示可替换实施例的剖视图,该实施例具有位于槽型气隙与导体之上的额外的空间;图8是具有多个空腔的磁芯的剖视图,其中每个空腔都具有一个槽型气隙;图9A和图9B是图8的剖视图,其中具有涡流减少材料,其被临近一个或两个槽型气隙布置;图10A显示槽型气隙的可替换侧位置的剖视图;图10B显示槽型气隙的可替换侧位置的剖视图;图11A和11B是具有多个空腔的磁芯的剖视图,其中每个空腔具有一个侧槽型气隙;图12是具有多个空腔和一个中央槽型气隙的磁芯的剖视图;图13是具有多个空腔和一个更宽的中央槽型气隙的磁芯的剖视图;图14是一个磁芯的剖视图,该磁芯具有多个空腔,一个中央槽型气隙,和一个具有较低磁导率的布置在相邻导体之间的材料;
图15是具有多个空腔和一个中央槽型气隙的磁芯的剖视图;图16是具有槽型气隙和一个或多个绝缘导体的磁芯材料的剖视图;图17是“C”形磁芯材料和涡流减少材料的剖视图;图18是“C”形磁芯材料和具有匹配的凸起(projection)的涡流减少材料的剖视图;图19是具有多个空腔的“C”形磁芯材料和涡流减少材料的剖视图;图20是“C”形第一磁芯和第二磁芯的剖视图,该第一磁芯包括铁氧体珠状磁芯材料,该第二磁芯临近气隙;图21是“C”形第一磁芯和第二磁芯的剖视图,该第一磁芯包括铁氧体珠状磁芯材料,而该第二磁芯位于气隙内;图22是“U”形第一磁芯和第二磁芯的剖视图,该第一磁芯包括铁氧体珠状磁芯材料,该第二磁芯临近气隙;图23分别说明“C”形第一磁芯和“T”形第二磁芯的剖视图,其中该第一磁芯包括铁氧体珠状磁芯材料;图24说明“C”形第一磁芯和自锁的“H”形第二磁芯的剖视图,其中该第一磁芯包括铁氧体珠状磁芯材料,而该第二磁芯位于气隙内;图25是“C”形第一磁芯和自锁的第二磁芯的剖视图,其中该第一磁芯包括铁氧体珠状磁芯材料,而该第二磁芯位于气隙内;图26显示“O”形第一磁芯和第二磁芯,其中该第一磁芯包括铁氧体珠状材料,而第二磁芯位于气隙内;图27和图28显示“O”形第一磁芯和自锁的第二磁芯,其中该第一磁芯包括铁氧体珠状磁芯材料,而该第二磁芯位于气隙内;图29显示第二磁芯,其包括铁氧体珠状磁芯材料,其具有分布的间隙,该间隙降低第二磁芯的磁导率;以及图30显示第一和第二磁芯,它们通过带子连接在一起。
图31显示电力电感器的磁芯材料的透视图,该磁芯材料具有一个或多个布置在该磁芯材料至少一侧的凹口(notches);图32是图31中电力电感器的剖视图,其包括一个或多个导体,这些导体贯穿磁芯材料的内腔且位于凹口内;
图33是图32中的电力电感器的侧剖视图(side cross-sectionalview),其显示导体的末端沿磁芯材料的外侧开始和结束;图34是图32和图33中电力电感器的功能性方框图和电气布局示意图,该电力电感器应用于直流/直流转换器的示例中;图35是电力电感器的仰视剖视图(bottom cross-sectional view),其包括单个导体,该导体多次穿过内腔且位于每个凹口中;图36是图35中的电力电感器的功能性方框图和电气布局示意图,该电力电感器应用于直流/直流转换器的示例中;图37是图33中的电力电感器的侧视图,该电力电感器表面安装在印制电路板上;图38是图33中的电力电感器的侧视图,其以鸥翅式构型表面安装在印制电路板上;图39是图33中的电力电感器的侧视图,其连接到印制电路板的电镀通孔上;图40说明应用到具有直导体的电力电感器的同名端标记(dotconvention);图41说明连接到图40中电力电感器的芯片;图42说明用于具有两个导体的电力电感器所期望的同名端标记;图43说明具有交叉导体的电力电感器;图44说明连到图43中的电力电感器的芯片;图45是由绝缘材料分开的第一和第二引线框导体(lead frameconductors)的侧剖视图;图46A和46B分别为第一和第二引线框导体的平面图;图46C是跨接导体的平面图;图47A是包括第一引线框和绝缘材料的第一叠层(laminate)的侧视图;图47B是图47A的第一叠层在从绝缘材料一侧向第一引线框的方向的冲压;图48A是第二引线框的侧剖视图;图48B说明第二引线框的冲压;
图49说明第一叠层固定到第二引线框上形成第二叠层;图50A和50B分别说明引线框的第一和第二阵列;以及图51A-51C显示可替换的引线框阵列。
具体实施例方式
下面的优选实施例的描述在本质上只是示例性的,并且绝不是为了限制本发明及其应用或使用。为了清楚起见,图中相同的元件用相同的标号标记。
现参考图4,电力电感器50包括导体54,其通过磁芯材料58。例如,磁芯材料58可以具有正方形外横截面60和正方形内空腔64,该空腔延长磁芯材料的长度。导体54也可具有正方形横截面。既然正方形外横截面60,正方形内空腔64,以及导体54已示出,所属领域的技术人员应该明白也可采用其它的形状。正方形外横截面60的横截面,正方形内空腔64,和导体54不必形状相同。导体54沿空腔64的一侧通过内空腔64。流过导体30的相对高水平的直流电流易引起磁芯材料34饱和,这降低电力电感器和/或并入到其中的器件的性能。
根据本发明,磁芯材料58包括槽型气隙70,其长度方向沿磁芯材料58方向延伸。该槽型气隙70沿平行于导体54的方向延伸。对于给定的直流电流水平,该槽型气隙70降低磁芯材料58中饱和的可能性。
现参考图5,磁通量80-1和80-2(总称为磁通量80)由槽型气隙70产生。磁通量80-2向导体54凸出,并且减少导体54中的涡流。在优选实施例中,在导体54和槽型气隙70的底部之间限定一个足够的距离“D”,以充分地减少磁通量。在一个示例性实施例中,距离D和流过导体的电流、由槽型气隙70限定的宽度“W”,以及导体54中感生的所需的最大可接受涡流有关。
现参考图6A和图6B,涡流减少材料84可临近槽型气隙70布置。涡流减少材料具有比磁芯材料更低并且比空气更高的磁导率。结果是,流过材料84的磁通量比流过空气的磁通量更高。例如,磁绝缘材料84可以是软磁,粉末金属,或任何其它合适的材料。在图6A中,涡流减少材料84延伸跨过槽型气隙70的底部。
在图6B中,涡流减少材料84’延伸跨过槽型气隙的外开口。因为涡流减少材料84’有比磁芯材料更低且比空气更高的磁导率,流过涡流减少材料的磁通量比流过空气的磁通量更低。因此,槽型气隙产生的磁通量到达导体的较少。
例如,涡流减少材料84的相对磁导率为9,而气隙中的空气的相对磁导率为1。结果是,约90%的磁通量流过材料84,并且约10%的磁通量流过空气。结果是,到达导体的磁通量显著减少,这减少了导体中感生的涡流。可以理解,也可使用具有其它磁导率的材料。现参考图7,在槽型气隙底部和导体54顶部间的距离“D2”也可以增加以减少导体54中感生的涡流大小。
现参考图8,电力电感器100包括磁芯材料104,其形成第一和第二空腔108和110。第一和第二导体112和114被分别布置在第一和第二空腔108和110中。第一和第二槽型气隙120和122被布置在磁芯材料104的一侧,该侧分别跨过导体112和114。第一和第二槽型气隙120和122减少磁芯材料104的饱和度。在一个实施例中,互耦系数M约为0.5。
现参考图9A和9B,涡流减少材料被临近一个或多个槽型气隙120和/或122布置,以便减少槽型气隙产生的磁通量,这样可减少感生涡流。在图9A中,涡流减少材料84临近槽型气隙120的底部开口处。在图9B中,涡流减少材料临近两个槽型气隙120和122的顶部开口处。如可理解的那样,涡流减少材料可临近一个或两个槽型气隙处。磁芯材料的“T”形中央部分123将第一和第二空腔108和110分开。
槽型气隙可位于其它各种不同位置。例如,参考图10A,槽型气隙70’可被布置在磁芯材料58的一侧。槽型气隙70’的底部边缘优选布置在导体54的顶表面,但不是必须布置在此处。如所看到的那样,磁通量向内辐射。由于槽型气隙70’被布置在导体54的上方,磁通量的影响减小。如可被理解的那样,涡流减少材料可临近槽型气隙70’布置,以进一步减少如图6A和/或6B所示的磁通量。在图10B中,涡流减少材料84’临近槽型气隙70’的外开口。涡流减少材料84也可设置在磁芯材料58的内侧。
现参考图11A和11B,电力电感器123包括磁芯材料124,其形成第一和第二空腔126和128,这两个空腔是由中央部分129分开的。第一和第二导体130和132被分别布置在第一和第二空腔126和128中,且临近一侧。第一和第二槽型气隙138和140布置在磁芯材料相对侧,分别临近导体130和132的一侧。槽型气隙138和/或140可和磁芯材料124的内边缘141对齐,如图11B所示或与内边缘141隔开,如图11A所示。如可理解的那样,涡流减少材料可用于进一步减少从一个或两个槽型气隙发出的磁通量,如图6A和/或6B所示。
现参考图12和13,电力电感器142包括磁芯材料144,其形成第一和第二相联的空腔146和148。第一和第二导体150和152分别布置在第一和第二空腔146和148中。磁芯材料144的凸出部分(projection)154在导体150和152之间,从磁芯材料的底侧向上延伸。凸出部分154部分地但非完全地朝顶侧延伸。在优选实施例中,凸出部分154的凸出长度大于导体150和154的高度。如可理解的那样,凸出部分154还可由磁导率比磁芯低但比空气高的材料制成,如图14中155所示。可替换地,凸出部分和磁芯材料都可如图15所示的那样去除。在此实施例中,互耦系数M近似等于1。
在图12中,槽型气隙156被布置在磁芯材料144内,凸出部分154之上的位置。槽型气隙156的宽度W1小于凸出部分154的宽度W2。在图13中,槽型气隙156’被布置在磁芯材料内,凸出部分154之上的位置。槽型气隙156的宽度W3大于或等于凸出部分154的宽度W2。如可被理解的那样,涡流减少材料可用于进一步减少从槽型气隙156和/或156’中发出的磁通量,如图6A和/或6B所示。在图12-14的某些实施例中,互耦系数M约为1。
现在参考图16,图16显示电力电感器170,其包括磁芯材料172,该磁芯材料172形成一个空腔174。槽型气隙175在磁芯材料172的一侧形成。一个或多个绝缘导体176和178穿过空腔174。该绝缘导体176和178包括外部层182,其环绕内部导体184。该外部层182的磁导率比空气的磁导率大,且比磁芯材料的磁导率低。外部层182显著地减少槽型气隙产生的磁通量和涡流,否则如果没有外部层的话,涡流将在导体184中感生。
现参考图17,电力电感器180包括导体184和“C”形磁芯材料188,其形成空腔190。槽型气隙192位于磁芯材料188的一侧。导体184穿过空腔190。涡流减少材料84’跨过槽型气隙192。在图18中,涡流减少材料84’包括凸起(projection)194,其延伸进槽型气隙,且其和开口匹配,该开口由槽型气隙192形成。
现参考图19,电力电感器200包括磁芯材料,其形成第一和第二空腔206和208。第一和第二导体210和212分别穿过第一和第二空腔206和208。中央部分218位于第一和第二空腔之间。如可理解的那样,中央部分218可由磁芯材料和/或涡流减少材料制成。可替换地,导体可包括一个外部层。
导体可由铜制成,虽然金,铝和/或其它低电阻的合适导电材料可以使用。磁芯材料可以是铁氧体,虽然可以用其它高磁导率和高电阻磁芯材料。如此处使用的,铁氧体是指几种磁性物质中的任何一种,这些磁性物质包括氧化铁和一种或几种金属,如锰,镍和/或锌的氧化物。如果采用铁氧体,槽型气隙可用金刚石刀片或其它合适的技术切割。
虽然某些所示的电力电感器只有一道绕组,所属技术领域的技术人员应该明白可以使用更多的绕组。虽然某些实施例仅示出具有一个或两个空腔的磁芯材料,其中每个空腔有一个或两个导体,在每个空腔中可以有更多的导体,和/或采用更多的空腔和导体,而并不偏离本发明的精神和范围。虽然感应器横截面的形状显示是正方形,但其它合适的现状,如矩形,圆形,卵形,椭圆形和类似形状也可考虑。
按照本发明实施例的电力电感器优选具有处理100安培(A)的直流电流的容量,并且电感为500nH或更小。例如,通常使用50nH的电感。虽然本发明结合直流一直流转换器进行了说明,所述技术领域的技术人员应该明白电力电感器可用于其它更广泛的应用中。
现参考图20,电力电感器250包括“C”形第一磁芯252,其形成空腔253。虽然在图20-28中没有示出导体,所述技术领域的技术人员应该明白一个或多个导体穿过第一磁芯的中央,如图示及上面的说明。第一磁芯252优选由铁氧体珠状磁芯材料制造,且形成气隙254。第二磁芯258被连接到第一磁芯252的至少一个表面,临近气隙254的位置。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。磁通量260穿过第一和第二磁芯252和258,如虚线所示。
现参考图21,电力电感器270包括“C”形第一磁芯272,其由铁氧体珠状材料制成。第一磁芯272形成空腔273和气隙274。第二磁芯276位于气隙274内。在某些实施例中,第二磁芯的磁导率比铁氧体珠状磁芯材料的磁导率低。磁通量278分别穿过第一和第二磁芯272和276,如虚线所示。
现参考图22,电力电感器280包括“U”形第一磁芯282,其由铁氧体珠状磁芯材料制成。第一磁芯282形成空腔283和气隙284。第二磁芯286位于气隙284内。磁通量288分别穿过第一和第二磁芯282和286,如虚线所示。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。
现参考图23,电力电感器290包括“C”形第一磁芯292,其由铁氧体珠状磁芯材料制成。第一磁芯292形成空腔293和气隙294。第二磁芯296位于气隙294内。在一个实施例中,第二磁芯296伸进气隙294内,且一般具有“T”形横截面。第二磁芯296沿第一磁芯290的内表面297-1和297-2临近气隙304延伸。磁通量298分别穿过第一和第二磁芯292和296,如虚线所示。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。
现参考图24,电力电感器300包括“C”形第一磁芯302,其由铁氧体珠状磁芯材料制成。第一磁芯302形成空腔303和气隙304。第二磁芯306位于气隙304内。第二磁芯306延伸进气隙304内,并且伸到气隙304的外部,一般具有“H”形横截面。第二磁芯306沿第一磁芯302的内表面307-1和307-2以及外表面309-1和309-2临近气隙304延伸。磁通量308分别穿过第一和第二磁芯302和306,如虚线所示。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。
现参考图25,电力电感器320包括“C”形第一磁芯322,其由铁氧体珠状磁芯材料制成。第一磁芯322形成空腔323和气隙324。第二磁芯326位于气隙324内。磁通量328分别穿过第一和第二磁芯322和326,如虚线所示。第一磁芯322和第二磁芯326是自锁的。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。
现参考图26,电力电感器340包括“O”形第一磁芯342,其由铁氧体珠状磁芯材料制成。第一磁芯342形成空腔343和气隙344。第二磁芯346位于气隙344内。磁通量348分别穿过第一和第二磁芯342和346,如虚线所示。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。
现参考图27,电力电感器360包括“O”形第一磁芯362,其由铁氧体珠状磁心材料制成。第一磁芯362形成空腔363和气隙364。气隙364由相对的“V”形壁365部分地形成。第二磁芯366位于气隙364内。磁通量368分别穿过第一和第二磁芯362和366,如虚线所示。第一磁芯362和第二磁芯366是自锁的。换句话说,第一磁芯和第二磁芯的相对运动局限在至少两个正交平面内。虽然采用“V”形壁365,所属技术领域的技术人员应该明白也可以采用提供自锁特征的其它形状。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。
现参考图28,电力电感器380包括“O”形第一磁芯382,其由铁氧体珠状磁芯材料制成。第一磁芯382形成空腔383和气隙384。第二磁芯386位于气隙384内且一般为“H”形的。磁通量388分别穿过第一和第二磁芯382和386,如虚线所示。第一磁芯382和第二磁芯386是自锁的。换句话说,第一磁芯和第二磁芯的相对运动局限在至少两个正交平面内。虽然第二磁芯是“H”形的,所属技术领域的技术人员应该明白也可采用提供自锁特征的其它形状。在某些实施例中,第二磁芯258的磁导率比铁氧体珠状磁芯材料的磁导率低。
在一个实施例中,铁氧体珠状磁芯材料形成的第一磁芯是从铁氧体珠状磁芯材料的固体块上用如金刚石刀具切下的。可替换地,铁氧体珠状磁芯材料可被模注成需要的形状然后焙烧。如果需要,模注和焙烧的材料然后被切割。其它组合和/或模注、焙烧和/或切割的顺序对所属技术领域的技术人员而言是显然的。第二磁芯可用相似的技术制造。
第一磁芯和/或第二磁芯中的一个或两个匹配表面在连接之前可用传统技术抛光。第一和第二磁芯可用任何合适的方法连接到一起。例如,粘合剂,粘合胶带,和/或任何其它连接方法可用于将第一磁芯连接到第二磁芯上以形成一个复合结构。所属技术领域的技术人员应该理解也可采用其它的机械固定方法。
第二磁芯的磁导率优选用比铁氧体珠状磁芯材料的磁导率低的材料制造。在优选实施例中,第二磁芯材料形成不超过30%的磁通路。在更多优选实施例中,第二磁芯材料形成不超过20%的磁通路。例如,第一磁芯的磁导率约为2000,而第二磁芯材料的磁导率约为20。分别根据穿过第一和第二磁芯的磁通路的长度,通过电力电感器的磁通路的组合磁导率约为200。在一个实施例中,第二磁芯是用铁粉制成的。虽然铁粉的损耗相对较高,但是铁粉可以承载大磁化电流。
现参考图29,在其它实施例中,第二磁芯用铁氧体珠状磁芯材料420形成,其具有分布的间隙424。这些间隙可填充有空气,和/或其它气体,液体或固体。换句话说,分布在第二磁芯材料中的间隙和/或气泡降低第二磁芯材料的磁导率。第二磁芯可以用类似于上面描述的制造第一磁芯的方式制造。如可理解的那样,第二磁芯材料可为其它形状。所属技术领域的技术人员也应理解,结合图20-30说明的第一和第二磁芯可用于结合图1-19说明的实施例中。
现参考图30,带子450可分别被用于固定第一和第二磁芯252和258。带子的相对端可用连接器454连接到一起,或直接连接到一起。带子450可由合适的材料如金属或非金属材料制成。
现参考图31,电力电感器520包括凹口522,其被布置在磁芯材料524内。例如,磁芯材料524可分别包括第一,第二,第三和第四凹口522-1,522-2,522-3和522-4(总称为凹口522)。凹口522被布置在磁芯材料524内,在磁芯材料524的内空腔526和外侧528之间。第一和第二凹口522-1和522-2分别被布置在磁芯材料524的第一末端530,且向内凸出。第三和第四凹口522-3和522-4分别被布置在磁芯材料524的第二末端532,也向内凸出。
虽然图31中的凹口522是以矩形示出的,所属领域的技术人员应明白凹口522可以是任何适合的形状,包括圆形,卵形,椭圆形和台阶形的。在示例性实施例中,凹口522是在烧结之前模注成型的时候模注到磁芯材料524中的。此方法避免在模注之后形成凹口522额外的步骤,这减少了时间和成本。如果需要,凹口522也可以被切割和/或在模注和烧结之后形成。虽然图31中示出两对凹口,一个凹口,一对凹口和/或更多对的凹口也可使用。虽然凹口522是沿磁芯材料524的一侧示出的,一个或多个凹口522可形成于磁芯材料524的一侧或多侧。而且,凹口522可在磁芯材料524的一个末端的一侧形成,且另一个凹口522可在磁芯材料524的另一个末端的另一侧形成。
现参考图32和33,第一和第二导体534和536分别沿内空腔526的底部通过内空腔526,且被凹口522接收。例如,凹口522可分别控制第一和第二导体534和536的位置。第一导体534分别由第一和第三凹口522-1和522-3接收,且第二导体536分别由第二和第四凹口522-2和522-4接收。凹口522优选分别保持第一和第二导体534和536,这防止第一导体534和第二导体536接触并且避免短路。在这种情形下,无须对导体绝缘以将第一导体534与第二导体536绝缘开来。因此,这个方法避免当产生连接时,从绝缘的导体末端除去绝缘的额外的步骤,这减少了时间和成本。然而,如果需要可使用绝缘。
虽然没有在图31-33中示出,电力电感器520可包括一个或多个槽型气隙,这些气隙被布置在磁芯材料524中。例如,一个或多个槽型气隙可从磁芯材料525的第一末端530延伸至第二末端532,如图4所示。电力电感器520也可包括涡流减少材料,其被布置在临近槽型气隙的内开口和/或外开口处,如图6A和6B所示。槽型气隙可被布置在磁芯材料524的顶上和/或磁芯材料524的一侧,如图10A和10B所示。
第二空腔可被布置在磁芯材料524内,而磁芯材料524的中央部分可被布置在内空腔526和第二空腔之间。在这种情形下,第一导体534可穿过内空腔526,而第二导体536可穿过第二空腔。第一和第二导体534和536分别可包括外绝缘层,如图16所示。磁芯材料524也可包括铁氧体珠状磁芯材料。图31-39中的电力电感器也可具有图1-30所示的其它特征。
现参考图34,第一和第二导体534和536分别可形成耦合的电感器电路544。在一个实施例中,互耦系数近似等于1。在另一个实施例中,电力电感器520应用于直流-直流转换器546。该直流-直流转换器546使用电力电感器520以将直流电流从一个电压变换为另一个电压。
现参考图35,显示了电力电感器520仰视剖视图,其包括单个导体554,该导体两次穿过内空腔526且由每个凹口522接收。在示例性实施例中,导体554的第一末端556沿磁芯材料524的外侧528开始,且由第二凹口522-2接收。导体544从第二凹口522-2沿内空腔526的底部穿过内空腔526,且被第四凹口522-4接收。导体554从第四凹口522-4沿磁芯材料524的外侧528布局,且由第一凹口522-1接收。导体554从第一凹口522-1沿内空腔526的底部穿过内空腔526,且由第三凹口522-3接收。
导体554从第三凹口522-3继续延伸,且导体554的第二末端558沿磁芯材料524的外侧528终止。因此,图35中的导体554穿过磁芯材料524的内空腔526至少两次,且由每个凹口522接收。导体554可由磁芯材料524中额外的凹口522接收,以增加导体554穿过内空腔526的次数。
现参考图36,导体554可形成耦合的电感器电路566。在一个实施例中,电力电感器520可应用于直流-直流转换器568。
现参考图37-38,电力电感器是表面安装于印制电路板570上。在图39中,电力电感器固定在印制电路板570的电镀通孔(PTHs)上。在图37-39中,使用类似如图32和33中的附图标记。在一个示例性实施例中,并参考图37,第一和第二导体534和536的第一和第二末端分别沿磁芯材料524的外侧528开始并终止。这允许电力电感器520被表面安装在印制电路板570上。例如,第一和第二导体534和536的第一和第二末端分别可固定在印制电路板570的焊垫(solder pad)572上。
可替换地,同时参考图38,第一和第二导体534和536的第一和第二末端分别可延伸超出磁芯材料524的外侧528。在这种情形下,电力电感器520可通过将第一和第二导体534和536的第一和第二末端以鸥翅式构型574分别固定到焊垫572上,从而表面安装在印制电路板570上。
现参考图39,第一和第二导体534和536的第一末端和/或第二末端可分别延伸并固定到印制电路板570的电镀通孔(PTHs)576上。
现参考图40和41,同名端标记被应用到图40中的电力电感器600上,其分别包括第一和第二导体602和604。为了如图41所示的那样连接芯片610,印制电路板(PCB)迹线(traces)612-1,612-2和612-3(总称为PCB迹线612)有时也被采用。如从图41中所看到的那样,PCB迹线612提供的绕线没有被适当地均衡。不均衡地绕线易于减少互耦系数和/或增加由于高频时的趋肤效应(skin effect)引起的损失。
现参考图42,43和44,包括第一和第二导体622和624的用于电力电感器620的所期望的同名端标记被示出。在图43中,第一和第二导体622和624分别交叉以允许对芯片改进的连接。在图41中,PCB迹线630-1,630-2和630-3(总称为PCB迹线630)被用于连接导体622和624至电力电感器620。PCB迹线630比图41中的更短且更均衡,这使互耦系数更接近于1,且减少由于高频时的趋肤效应引起的损失。
现参考图45-46,根据本发明的交叉的导体结构640被示出。在图45中,交叉的导体640的侧剖视图被示出,其分别包括第一和第二引线框644和646,它们由绝缘材料648分开。在图46A和46B中,第一和第二引线框644和646的平面图被分别示出。第一引线框644包括端子(terminal)650-1和650-3,其从主体654延伸。第二引线框646包括端子656-1和656-2,它们从主体658延伸。虽然一般地“Z”形构型被示出用于引线框644和646,其它形状也可使用。在图46C中,示出组装跨接导体结构640的平面图。
用于制造跨接导体结构640的几个示例性方法将于下面说明。开始可冲压第一和第二引线框644和646。绝缘材料648随后被定位在其间。可替换地,绝缘材料可被施加,喷涂,涂覆和/或应用到引线框上。例如,一种合适的绝缘材料包括珐琅,其易于以控制的方式施加。
可替换地,第一和第二引线框644和646和绝缘材料648可固定到一起然后被冲压。第一引线框644(在第一侧)从第一侧向第二侧被近似冲压到叠层厚度的二分之一,以限定第一引线框644的形状和端子。第二引线框646(在第二侧)从第二侧向第一侧被近似冲压到叠层厚度的二分之一,以限定第二引线框646的形状和端子。
现参考图47A-49,显示了构造的可替换的方法。在冲压之前原始固定第一引线框644至绝缘材料648上。第一引线框644和绝缘材料648在图47B所指示的方向上冲压,以便冲压变形(如果有)发生在远离第二引线框(在组装之后)的方向上,以减少短路的可能。换句话说,对绝缘侧向第一引线框644冲压。相似地,第二引线框646在适当的方向上被冲压以减少短路的可能。第二引线框的冲压侧被布置在与绝缘材料接触处。第一和第二引线框的冲压变形(如果有)是指向外的。现参考图49,第一引线框644和绝缘材料648和第二引线框646彼此临近布置以形成叠层。
图50A说明第一引线框阵列700包括第一引线框644-1,644-2,……和644-N,其中N>1。在图50B中,第二引线框阵列704包括第二引线框646-1,646-2,…和646-N。如可理解的那样,引线框阵列700和704可替换地包括交替的第一和第二引线框,它们偏移一个位置。绝缘材料648可分别固定到第一和/或第二引线框阵列700和704,和/或固定至一个引线框。可替换地,一种绝缘材料可被施加,喷涂和/或涂覆到一个和/或两个引线框的一个或多个表面。接头部分(tab portions)710-1,710-2,710-3和710-4(总称为接头部分710)可分别用于固定端子或单个引线框的其它部分至输送带(feedstrips)712-1,712-2,712-3和712-4(总称为输送带712)。
引线框,端子和接头部分的形状是在冲压过程中形成的。在一个实施例中,冲压是在将引线框和绝缘材料组合到一起之前执行的。输送带712可选择地包括孔713,用于接收驱动轮(未示出)的定位销(positioning pins)。引线框附近可选择如标记714指示的彼此间隔开,和/或具有接头部分。
现参考图51A-51C,额外的接头部分720-1和720-2,可去除地连接到附近引线框。此外,所示引线框包括绝缘材料728,其被施加,喷涂和/或涂覆到一个和/或两个引线框的一个或多个表面。可替换地,绝缘材料648可被使用。在示例性实施例中,面对引线框的表面涂覆有绝缘材料。例如,绝缘材料可以是珐琅。
除了此处所述的方法,第一和第二引线框阵列和绝缘材料可被布置到一起,且然后被从两边冲压到其厚度的二分之一,以形成引线框阵列的形状。可替换地,绝缘材料可以被施加到一个或两个引线框阵列,然后冲压,再在一个方向上组装,这防止冲压变形引起如上所述的短路。而且,其它的变化对所属技术领域的技术人员是显而易见的。
所属技术领域的技术人员可以从前面的说明中理解本发明的精神可以用不同的方式实施。因此,虽然本发明是结合其中特定的示例进行说明的,本发明真正的范畴不应该被局限于这些示例,因为在了解了本发明的附图,说明书和权利要求后,对所属技术领域的技术人员而言,可进行其它的修改,这是显而易见的。
权利要求
1.一种电力电感器,其包括第一磁芯材料,其具有第一和第二末端;内空腔,其在所述第一磁芯材料中,所述内空腔从所述第一末端延伸到所述第二末端;第一凹口,其在所述第一磁芯材料中,所述第一凹口从所述第一末端和第二末端中的一个末端向内朝所述内空腔凸出;和第一导体,其穿过所述内空腔且被所述第一凹口接收。
2.根据权利要求1所述的电力电感器,进一步包括第二凹口,其被布置在所述第一磁芯材料中,其从所述第一和第二末端中的另一个末端向内朝所述内空腔凸出,其中所述第一导体由所述第二凹口接收。
3.根据权利要求2所述的电力电感器,其进一步包括第三凹口,其被布置在所述第一磁芯材料中,其从所述第一和第二末端中所述的一个末端向内朝所述内空腔凸出;以及第四凹口,其被布置在所述第一磁芯材料中,其从所述第一和第二末端中所述的另一个末端向内朝所述内空腔凸出。
4.根据权利要求3所述的电力电感器,其进一步包括第二导体,该导体穿过所述内空腔,且由所述第三和第四凹口接收。
5.根据权利要求3所述的电力电感器,其中所述第一导体穿过所述内空腔至少两次,并且被所述第三和第四凹口接收。
6.根据权利要求1所述的电力电感器,其进一步包括2n+1个额外的凹口,其被布置在所述第一磁芯材料内,这些凹口向内朝所述内空腔凸出,其中所述第一导体由所述2n+1个额外的凹口接收,并且所述第一导体穿过所述内空腔n+1次。
7.根据权利要求1所述的电力电感器,其进一步包括槽型气隙,该槽型气隙在所述磁芯材料内,其从所述第一末端延伸到所述第二末端。
8.根据权利要求7所述的电力电感器,其进一步包括涡流减少材料,该涡流减少材料被布置在至少临近所述槽型气隙的内开口和所述槽型气隙的外开口中的一个开口处,所述内开口在所述内空腔内,其在所述槽型气隙和所述第一导体之间,其中所述涡流减少材料的磁导率比所述磁芯材料低。
9.根据权利要求1所述的电力电感器,其进一步包括第二凹口,其被布置在所述第一磁芯材料内,该磁芯材料从所述第一和第二末端中的一个向内凸出;以及第二导体,其穿过所述内空腔,并且被所述第二凹口接收。
10.根据权利要求9所述的电力电感器,其进一步包括所述第一磁芯材料的凸出部分,该凸出部分从所述第一磁芯材料的第一侧向外延伸,并且在所述第一和第二导体之间。
11.根据权利要求8所述的电力电感器,其中所述涡流减少材料具有低磁导率。
12.根据权利要求11所述的电力电感器,其中所述涡流减少材料包括软磁材料。
13.根据权利要求12所述的电力电感器,其中所述软磁材料包括粉末金属。
14.根据权利要求1所述的电力电感器,其中所述第一磁芯材料的横截面形状为正方形,圆形,矩形,椭圆形和卵形中的一种。
15.一种直流—直流转换器包括根据权利要求1所述的电力电感器。
16.一种包括根据权利要求1所述的电力电感器的系统,其进一步包括印制电路板,其中所述第一导体的第一末端沿所述第一磁芯材料的外侧开始,而所述第一导体的第二末端沿所述第一磁芯材料的外侧终止,并且其中所述第一导体的所述第一和第二末端表面安装在所述印制电路板上。
17.一种包括根据权利要求1所述的电力电感器的系统,其进一步包括印制电路板,其中所述第一导体的第一末端和第二末端从所述第一磁芯材料向外凸出,并且其中所述第一导体的所述第一和第二末端以鸥翅式构型表面安装于所述印制电路板。
18.一种包括根据权利要求1所述的电力电感器的系统,其进一步包括印制电路板,其中所述第一导体的第一和第二末端从所述第一磁芯材料向外凸出,并且其中所述第一导体的所述第一和第二末端中的至少一个由所述印制电路板电镀通孔接收。
19.根据权利要求7所述的电力电感器,进一步包括第二磁芯材料,其至少位于一个所述槽型气隙内和附近,其中所述第一磁芯材料包括铁氧体珠状磁芯材料。
20.根据权利要求19所述的电力电感器,其中所述第二磁芯材料包括铁氧体珠状材料,其具有分布的间隙,这些间隙降低所述第二磁芯材料的磁导率。
21.根据权利要求20所述的电力电感器,其中所述分布的间隙包括分布的空气间隙。
22.一种电力电感器,其包括第一磁芯材料,其具有第一和第二末端;内空腔,其被布置在所述第一磁芯材料内,该内空腔从所述第一末端延伸到所述第二末端;以及跨接导体结构,其包括第一引线框,其穿过所述内空腔,并且其具有第一端子和第二端子;第二引线框,其穿过所述内空腔,并且其具有第一端子和第二端子,其中所述第一引线框的所述第一和第二端子位于所述内空腔的第一对角线的相对的角落处,并且所述第二引线框的所述第一和第二端子位于所述空腔的第二对角线的相对的角落处;以及绝缘材料,其位于所述第一和第二引线框之间。
23.根据权利要求22所述的电力电感器,其中所述第一和第二引线框是由铜冲压成的。
24.根据权利要求22所述的电力电感器,其中所述第一和第二引线框和所述绝缘材料彼此临近布置,其中所述导体跨接结构具有一定的厚度,第一侧和第二侧,并且其中所述导体跨接结构在组装的时候,从所述第一侧和从所述第二侧冲压近似为所述厚度的二分之一的距离。
25.根据权利要求22所述的电力电感器,其中所述第一引线框和所述绝缘材料是彼此临近布置的,并且在从所述绝缘材料向所述第一引线框的方向上冲压,并且其中所述第二引线框是冲压在它们的一侧上的。
26.根据权利要求25所述的电力电感器,其中所述第二引线框的所述一侧和所述绝缘材料接触。
27.根据权利要求22所述的电力电感器,进一步包括粘合剂,其用于固定所述绝缘材料到所述第一引线框和/或所述第二引线框中的至少一个上。
28.一种包括权利要求22所述的电力电感器的系统,其进一步包括芯片,其中所述第一引线框的所述第一端子与所述第二引线框的第二端子通信,并且所述第一引线框的所述第二端子和所述第二引线框的所述第一端子与所述芯片通信。
29.一种用于电力电感器的导电性跨接结构,其包括第一引线框阵列,所述第一引线框阵列包括第一输送带;第一引线框,其包括第一和第二端子;以及第一接头部分,其可释放地连接所述第一引线框至所述第一输送带。
30.根据权利要求29所述的导电性跨接结构,进一步包括第二引线框,所述第二引线框阵列包括第二输送带;第二引线框,其包括第一和第二端子;以及第二接头部分,其可释放地连接所述第二引线框至所述第二输送带。
31.根据权利要求30所述的导电性跨接结构,其进一步包括绝缘材料,该绝缘材料被布置在所述第一和第二引线框阵列的至少一个上。
32.根据权利要求31所述的导电性跨接结构,其中所述第一和第二输送带将每个所述第一引线框逐个与每个所述第二引线框对齐。
33.根据权利要求31所述的导电性跨接结构,其中所述第一和第二引线框及所述绝缘材料形成跨接导体结构。
34.根据权利要求33所述的导电性跨接结构,其中每个所述第一引线框的第一和第二端子位于所述跨接导体结构第一对角线的相对的角落处,并且所述第二引线框的所述第一和第二端子位于所述跨接导体结构的第二对角线的相对的角落处。
35.根据权利要求30所述的导电性跨接结构,进一步包括第三接头部分,其可释放地连接所述第一引线框中的相邻引线框;以及第四接头部分,其可释放地连接所述第二引线框中的相邻引线框。
全文摘要
一种电力电感器,其包括第一磁芯材料,该第一磁芯材料具有第一和第二末端。内空腔被布置在该第一磁芯材料中,其从第一末端延伸至第二末端。第一和第二凹口被布置在第一磁芯材料中,其从第一和第二末端中的一个向内朝内空腔凸出。第三和第四凹口被布置在第一磁芯材料中,其从第一和第二末端中的另一个向内朝内空腔凸出。第一导体穿过内空腔,且被第一和第三凹口接收。第二导体穿过内空腔,且被第二和第四凹口接收。第一导体可选择地穿过内空腔至少两次,且被第一,第二,第三和第四凹口接收。
文档编号H01F27/28GK1637969SQ20041007416
公开日2005年7月13日 申请日期2004年9月1日 优先权日2003年12月22日
发明者S·苏塔迪亚 申请人:马维尔国际贸易有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1