具有完全硅化闸电极的拉伸型通道cmos装置及其形成方法

文档序号:6851413阅读:253来源:国知局
专利名称:具有完全硅化闸电极的拉伸型通道cmos装置及其形成方法
技术领域
本发明大体上是有关于集成电路制程中形成MOSFET装置的方法,且更特别是有关于一种拉伸型通道NMOS和PMOS装置对,以及形成含有完全硅化闸电极的该装置对的方法,使改良驱动电流。
背景技术
如众所熟知,增加的装置密度以及较高速率效能及较低能耗是为集成电路制程中的主要驱动力。供高速数字应用的CMOS设计考量通常是通过每一个别闸的上拉时间及下拉时间来决定。个别闸与供信号传播于PMOS和NMOS闸电极中的延迟期间有关。延迟期间亦与驱动电流(Idrive)成反比。因此,当可明白,使驱动电流最大化将提高CMOS装置的效能速率或优值(FOM)。
已知机械应力对于电荷载子迁移率扮演一角色,是影响若干重要参数,包含阈值电压(VT)偏移、驱动电流饱和(IDsat)及ON/Off电流。诱发的机械应力拉伸MOSFET装置通道区的效应以及对于电荷载子迁移率的效应,是受到与声响及光学声子散射有关的复杂物理程序影响。理想上,电荷载子迁移率增加亦提高了驱动的电流。
此外,驱动电流受到闸极片电阻影响。因此,闸电极的片电阻愈高,则信号传播中的延迟期间愈大。在先前技艺中降低闸电极片电阻方法包形成硅化物在多晶硅闸电极的上方部分,以及形成导电金属的闸电极。
此外,由于硅化物厚度(保持与装置尺度大约固定)与CMOS装置(例如含有源极和汲极区的接合深度)的尺度缩小之间的复杂关系,漏电流(二极管漏电)的问题在较小装置临界尺度下逐渐变为问题。因此,先前技艺形成硅化的闸电极及汲极区的方法逐渐造成短通道效应(包含漏电流)。
先前技艺的习用的硅化闸电极具有遭受到多晶硅空乏效应(poly-depletion effects)的增加的倾向。举例来说,当施加一闸偏压在CMOS装置时,在闸介电层上形成的电场穿入闸电极中,造成电极/闸界面处的电荷载子空乏,因而减少驱动电流且降低CMOS速率效能。
由此可见,上述现有的CMOS装置及其制造方法在结构与使用上,显然仍存在有不便与缺陷,而亟待加以进一步改进。为了解决CMOS装置及其制造方法存在的问题,相关厂商莫不费尽心思来谋求解决之道,但长久以来一直未见适用的设计被发展完成,而一般产品又没有适切的结构能够解决上述问题,此显然是相关业者急欲解决的问题。因此如何能创设一种新的具有完全硅化闸电极的拉伸型通道CMOS装置及其形成方法,便成了当前业界极需改进的目标。
有鉴于上述现有的CMOS装置及其制造方法存在的缺陷,本发明人基于从事此类产品设计制造多年丰富的实务经验及专业知识,并配合学理的运用,积极加以研究创新,以期创设一种新的具有完全硅化闸电极的拉伸型通道CMOS装置,能够改进一般现有的CMOS装置及其制造方法,使其更具有实用性。经过不断的研究、设计,并经反复试作样品及改进后,终于创设出确具实用价值的本发明。

发明内容
本发明的目的在于,克服现有的CMOS装置存在的缺陷,而提供一种新的具有完全硅化闸电极的拉伸型通道CMOS装置,所要解决的技术问题是使其获得改良的CMOS装置效率(包含增加的驱动电流),从而更加适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其包含下列步骤提供一半导体基板,该半导体基板包含具有个别闸结构的NMOS和PMOS装置区,该个别闸结构包含多晶硅闸电极;在具有该NMOS和PMOS装置区中至少一者的一通道区的任一侧上形成凹槽区;以一半导体硅合金回填部分该凹槽区,使施加一应变予该通道区;在该闸结构的任一侧上形成间隔片;将该多晶硅闸电极弄薄为硅化厚度,使容许透过硅化厚度的完全金属硅化作用;离子布植该多晶硅闸电极,以调整功函数;以及透过该硅化厚度形成金属硅化物,使形成金属硅化物闸电极。
本发明的目的及解决其技术问题还采用以下技术措施来进一步实现。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的金属硅化物闸电极的厚度小于最大补偿间隔片宽度。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中在形成凹槽区步骤之前,在该闸结构的相邻任一侧形成补偿衬垫。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的凹槽区是仅相邻该PMOS通道区而形成。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的半导体硅合金包含相当于硅的延展晶格参数,以形成压缩应变。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的半导体硅合金包含硅及锗。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中在弄薄步骤之前,将源极及汲极金属硅化物形成于含有个别装置区的个别源极及汲极区上方。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的弄薄步骤包含以下步骤在该闸结构上方形成一第一ILD层;进行一CMP程序以露出含有该多晶硅闸电极的上方部分的多晶硅;以及回蚀该多晶硅闸电极至该硅化厚度。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中在该弄薄步骤之前,更包括将一氮化物接触蚀刻终止层形成于个别的装置区上,且该氮化物接触蚀刻终止层是以压缩和拉伸应力中之一所形成。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的凹槽区的深度为10埃至800埃。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的硅化厚度为100埃至1000埃。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的NMOS多晶硅闸电极的功函数是调整为介于4.0与4.5eV之间。
前述的形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其中所述的PMOS多晶硅闸电极的功函数是调整为介于4.5与5.0eV之间。
本发明的目的及解决其技术问题还采用以下技术方案来实现。依据本发明提出的一种形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其包含下列步骤提供一半导体基板,该半导体基板包含具有个别闸结构的NMOS和PMOS装置区,该个别闸结构包含未掺杂的多晶硅闸电极;在具有该NMOS和PMOS闸结构中至少一者的一通道区的任一侧上形成凹槽区;以一半导体硅合金回填部分该凹槽区,使施加一应变予该通道区;在该半导体硅合金上方形成一硅层;在该闸结构的任一侧上形成间隔片;在个别的NMOS和PMOS源极及汲极区上方形成第一金属硅化区;将该多晶硅闸电极弄薄为硅化厚度,使容许透过硅化厚度的完全金属硅化作用;离子布植该多晶硅闸电极,以调整功函数;以及延伸透过该硅化厚度形成第二金属硅化物区,使形成金属硅化物闸电极。
本发明的目的及解决其技术问题还采用以下技术方案来实现。依据本发明提出的一种具有完全硅化闸电极的拉伸型通道NMOS和PMOS装置对,其包含一半导体基板,是包含具有间隔片在金属硅化物闸电极侧上的NMOS和PMOS装置区;以及经回填的凹槽区,是在该NMOS和PMOS区中至少一者的一通道区的任一侧上具有拉伸型半导体硅合金,使形成拉伸型通道区。
借由上述技术方案,本发明具有完全硅化闸电极的拉伸型通道CMOS装置至少具有下列优点本发明揭示的PMOS和NMOS装置对以及其形成方法,借着以拉伸型半导体材料回填形成于源极/汲极区中的凹槽区域,可以施加选择的应力类型于FET装置的通道区,进而改善电荷迁移率,以及藉此改良装置效能(包含驱动电流(Idsat)及装置速率)。此外,藉形成具减少厚度的完全硅化闸电极,则闸电极的电阻降低,且更容易调整功函数,并且可以避免空乏效应,进而进一步改良装置效能(包含驱动电流(Idsat)及装置速率)。
综上所述,本发明特殊的具有完全硅化闸电极的拉伸型通道CMOS装置及其形成方法,具有上述诸多的优点及实用价值,并在同类产品中未见有类似的结构设计公开发表或使用而确属创新,其不论在产品结构或功能上皆有较大的改进,在技术上有较大的进步,并产生了好用及实用的效果,且较现有的CMOS装置及其制造方法具有增进的多项功效,从而更加适于实用,而具有产业的广泛利用价值,诚为一新颖、进步、实用的新设计。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。


图1A-1H是依照本发明一实施例在制造阶段的含有NMOS和PMOS装置的CMOS装置的例示部分的截面示意图。
图2是包含本发明若干实施例的制程流程图。
12半导体基板 12A掺杂井区12B掺杂井区 14浅沟渠绝缘结构16A闸介电部分 16B闸介电部分18ANMOS装置闸电极 18BPMOS装置闸电极20A硬遮罩层部分 20B硬遮罩层部分22A氮化物补偿衬垫 22B氮化物补偿衬垫24保护氧化物层25A凹槽区域25B凹槽区域 26ANMOS通道区26BPMOS通道区 28A拉伸型硅合金复合物28B磊晶成长的硅层 30A氧化物衬垫30B氧化物衬垫 32A侧壁间隔片32B侧壁间隔片 34A金属硅化物34B金属硅化物 36蚀刻终止层38A介电绝缘层 38BILD层具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的具有完全硅化闸电极的拉伸型通道CMOS装置其具体实施方式
、结构、特征及其功效,详细说明如后。
虽然本发明的方法是参照例示的NMOS和PMOS MOSFET装置来阐释,但将可理解本发明的态样可应用于形成任一种MOSFET装置,是包含双闸或双重闸CMOS反相器,其中形成完全硅化的闸电极,以降低闸电极电阻且避免多晶硅空乏效应。将可理解藉形成拉伸型通道区以改良电荷载子迁移率得以实现其他优势,其中两方法有利地改良装置效能,是包含驱动电流(Idsat)及装置速率。
请参阅图1A-1H所示,在一种用于形成本发明完全硅化的闸电极CMOS结构的例示制程流程中,其是显示于例示的制造阶段的一部分半导体晶圆的截面示意图。
举例来说,请参阅图1A所示,其显示一半导体基板12(可包含硅、拉伸型半导体、化合物半导体、多层半导体或其组合)。举例来说,基板12可包含(但不限于)绝缘体硅(SOI)、堆叠SOI(SSOI)、堆叠绝缘SiGe(S-SiGeOI)、SiGeOI及GeOI或其组合。举例来说,基板可包含构成个别NMOS和PMOS装置区的掺杂井区12A及12B,其是经由习知方法(例如遮蔽法,接着为离子布植及活化退火)形成。电绝缘区视情况分开NMOS和PMOS装置区,例如用以形成单一闸装置,并且较佳为藉沟渠蚀刻及回填介电氧化物(例如TEOS氧化硅),接着进行平坦化作用而形成的浅沟渠绝缘(STI)结构14。将可理解亦可形成双或双重闸结构。
请再参阅图1A所示,闸结构是藉由习知方法形成,包括闸介电部分16A和16B以及覆盖闸电极部分,例如NMOS装置闸电极18A及PMOS装置闸电极18B。在本发明的一重要态样中,多晶硅闸电极是通过首先形成闸介电层,接着沉积未掺杂多晶硅层而形成。接着藉习用的CVD法(例如LPCVD或PECVD),将氮化硅及/或氧基氮化硅的硬遮罩层沉积在未掺杂多晶硅层上方,之后进行微影图案化及电浆辅助蚀刻(例如RIE),使形成具有剩余覆盖的硬遮罩层部分20A和20B的个别的NMOS和PMOS闸结构。
闸介电部分16A和16B可由氧化硅、氧基氮化硅、氮化硅、掺氮的氧化硅、高K电介质或其组合所形成。高K电介质可包含金属氧化物、金属硅酸盐、金属氮化物、过渡金属氧化物、过渡金属硅酸盐、金属铝酸盐及过渡金属氮化物或其组合。可通过技艺中已知的任一种方法,例如热氧化作用、氮化作用、溅镀沉积或化学蒸气沉积,来形成闸介电部分16A和16B。闸介电部分16A和16B的实体厚度可在5至100埃的范围内。当使用高介电常数(高K)值电介质时,介电常数较佳是大于约3.9。高K电介质可选自由氧化铝(Al2O3)、氧化铪(HfO2)、氧基氮化铪(HfON)、硅酸铪(HfSiO4)、氧化锆(ZrO2)、氧基氮化锆(ZrON)、硅酸锆(ZrSiO2)、氧化钇(Y2O3)、氧化镧(La2O3)、氧化铈(CeO2)、氧化钽(Ta2O5)或其组合所组成的群。
请再参阅图1A所示,藉沉积一或更多层氮化硅(例如Si3N4)及/或氧基氮化硅(例如SiON),接着进行湿式或干式蚀刻掉该一或多层的一部分,以在闸结构的任一侧上形成自行对准的补偿间隔片,可沿着个别NMOS和PMOS闸结构侧壁的任一闸侧形成氮化物补偿衬垫22A和22B。此中所用的“氮化物”一词意欲涵盖氮化物和氧基氮化物。
请再参阅图1B所示,在本发明的一重要态样中,保护氧化物层24是形成于具有闸结构的NMOS装置区12A上方。举例来说,首先藉一种使用炉子或快速温度法(RTP)(亦称为快速处理氧化反应)的习知的CVD法将一氧化硅层形成于处理表面上。接着藉习知的微影法图案化保护氧化物层,并且接着进行湿式及/或干式氧化硅蚀刻法,以保留NMOS装置区12A上方的保护氧化物层部分24,并且使相邻PMOS装置区12B上方的PMOS闸结构的部分基板12露出。
请参阅图1C所示,接着使PMOS装置区12B中的基板受到习用的干式或湿式蚀刻法(较佳为干式蚀刻法),使在相邻的PMOS闸结构上及PMOS通道区26B的任一侧上的基板12的露出部分中蚀刻凹槽区域25A及25B。凹槽区域25A及25B接着在完成的CMOS(PMOS)装置中形成部分源极和汲极(S/D)区。凹槽区域的深度将取决于接着欲施力于通道区26B(位于以下说明的凹槽区域之间)所需的应力水准,例如为约10埃至约800埃,更佳为约200埃至约400埃。
请参阅1D图所示,是沉积含有硅和具较大原子半径的元素的拉伸型硅合金复合物28A,使形成第一拉伸型半导体复合物以回填第一凹槽区域25A和25B的第一部分。在一较佳实施例中,第一拉伸型硅合金复合物28A是由SiGe所形成,并且通过习知的SiGe成长法(例如磊晶成长)而成长于凹槽区域25A和25B中。将可理解,经回填的拉伸型硅合金复合物28A的上层可形成于与硅基板12约相同高度,或稍高或稍低于硅基板12高度,例如为约1至20埃,但较佳是稍低于基板高度。第一拉伸型硅合金复合物有利地施加压缩应力在位于回填的凹槽区域25A和25B间的通道区26B上。请再参阅图1D所示,接着将磊晶成长的硅层28B沉积于拉伸型硅合金复合物28A上,以便完成凹槽区域25A和25B的填充。接着较佳藉湿式剥除法(例如稀HF)去除保护氧化物层24。
请参阅图1E所示,进行习知的离子布植法,以形成于相邻闸电极处具有环型布植区(未显示)的LDD掺杂区。接着紧邻氮化物补偿间隔片形成侧壁间隔片32A和32B。例如在所示的例示实施例中,首先藉习知的沉积及蚀刻法将氧化物衬垫30A、30B形成于氮化物补偿间隔片22A、22B上方,接着形成最外侧的氮化硅或氧基氮化硅间隔片32A和32B。将理解可使用其他类型间隔片,含最外侧的氧化物间隔片或具有实质上垂直侧壁的间隔片。将可理解,最外侧间隔片(当由氮化物及/或氧基氮化物所形成时)可视情况以压缩或拉伸应力(就NMOS而言,较佳为拉伸应力,并且就PMOS装置而言为压缩应力)形成,使将应变引入通道区中,进而改良电荷迁移率。侧壁间隔片32A和32B较佳是藉习知的回蚀法而形成于比硬遮罩层20A、20B水平更低高度处,使在以下说明的接续CMP制程之后保持完整无缺。接着进行习知的S/D离子布植,使相邻侧壁间隔片形成S/D区(未显示)。
请再参阅图1E所示,在习知的自行对准硅化法(salicide)中形成金属硅化物区,使在源极和汲极区上方形成金属硅化物34A、34B。举例来说,藉沉积金属(例如Ti、Co、W、Ni或Pt,最佳为Co或Ni)于处理表面上,接着进行RTP退火程序,以形成硅化物(例如TiSi2、CoSi2、WSi2、NiSi或PtSi)的低电阻相,则可形成金属硅化物。
请再参阅图1E所示,接着将一揭示蚀刻终止层36(较佳为氮化硅及/或氧基氮化硅)覆盖沉积于处理表面上,使覆盖NMOS和PMOS装置区二者。将理解可视情况以压缩或拉伸应力形成蚀刻终止层36,例如以拉伸应力改良NMOS装置的电荷载子迁移率,且以压缩应力改良PMOS装置的电荷载子迁移率(是藉引入应变于通道区26A和26B中,进而改良电荷迁移率)。
请再参阅图1F所示,在本发明的一重要态样中,藉习知的CVD或旋转涂布法,将ILD(介电绝缘层)38A形成于处理表面上,接着进行化学机械抛光(CMP)程序,其中去除硬遮罩层部分20A和20B,并且露出闸电极18A、18B的未掺杂的多晶硅上方部分。ILD层38A可由掺P的硅酸盐玻璃(PSG)、PECVD氧化硅、PETEOS、BPTEOS、BTEOS或PTEOS,更佳为PSG。
请参阅图1G所示,在本发明的一重要态样中,进行习知的干式多晶硅回蚀程序,以蚀刻闸电极18A和18B的厚度部分,接着使用SC1及/或SC2清洁溶液进行习知的湿式清洁程序。将理解多晶硅闸电极于回蚀后所剩下的厚度部分可介于约100埃与约1000埃之间,更佳为介于约200埃与约500埃之间,较佳是够薄足以提供剩余的厚度部分完全金属硅化作用。
在闸电极硅化作用之前,根据本发明的一重要态样,是进行离子布植程序,使以个别的习用N和P掺杂物掺杂个别的NMOS和PMOS闸电极18A和18B至充足的浓度,使调整多晶硅功函数,进而避免多晶硅/闸介电空乏层在装置操作期间形成。NMOS闸电极的功函数较佳是调整至介于约4.0与4.5eV之间,而PMOS闸电极则调整至介于约4.5与5.0eV之间。在离子布植之后,进行闸电极硅化程序,使延伸通过闸电极18A和18B的剩余的厚度部分而形成金属硅化物。较佳进行针对源极/汲极硅化程序所概述的相同的较佳金属及程序,更佳是形成CoSi2或NiSi闸电极。
请参阅图1H所示,例如使用与ILD层38A所用的相同的较佳氧化物将至少一额外的ILD层38B沉积于第一ILD层38A上,接着进行平坦化作用及习知的金属镶嵌形成程序,使形成对于S/D区及闸电极的线路连线。举例来说,具有障壁层的填充钨的镶嵌结构40A、40B、40C、40D、40E及40F,例如Ti、TiN、Ta、TaN或WN(未显示),是沿着镶嵌结构开口排列而形成。
将理解可在相反极性(导电型)装置进行以上处理步骤,例如凹槽区域是形成于NMOS通道区26A的任一侧,且使用对硅具有收缩晶格参数的拉伸型半导体硅合金(例如SiC)回填凹槽区域,使在NMOS通道区上形成拉伸应变。再者,将理解可以个别的拉伸及压缩应变形成NMOS和PMOS装置二者的个别通道区域,使分别地改良电子和电动迁移率。
请参阅图2所示,其为包含本发明若干实施例的制程流程图。在程序201中,将PMOS和NMOS闸结构形成于具有补偿衬垫的半导体基板上。在程序203中,在相邻PMOS和NMOS(例如PMOS)闸结构的一形成凹槽区域。在程序205中,以拉伸型半导体硅合金回填凹槽区域,接着覆盖硅层。在程序207中,在形成补偿间隔片之前及之后,进行离子布植程序。在程序209中,将第一金属硅化物区形成于S/D区上方。在程序211中,是沉积一接触蚀刻终止层。在程序213中,沉积第一ILD层,并且使其平坦化,以露出多晶硅闸电极。在程序215中,将多晶硅闸电极弄薄,使提供完全金属硅化作用。在程序217中,掺杂多晶硅闸电极,以调整功函数。在程序219中,完全金属硅化闸电极形成。在程序221中,第二ILD层形成,并且金属镶嵌结构形成,以便接触S/D区及闸电极。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。
权利要求
1.一种形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其特征在于其包含下列步骤提供一半导体基板,该半导体基板包含具有个别闸结构的NMOS和PMOS装置区,该个别闸结构包含多晶硅闸电极;在具有该NMOS和PMOS装置区中至少一者的一通道区的任一侧上形成凹槽区;以一半导体硅合金回填部分该凹槽区,使施加一应变予该通道区;在该闸结构的任一侧上形成间隔片;将该多晶硅闸电极弄薄为硅化厚度,使容许透过硅化厚度的完全金属硅化作用;离子布植该多晶硅闸电极,以调整功函数;以及透过该硅化厚度形成金属硅化物,使形成金属硅化物闸电极。
2.根据权利要求1所述的方法,其特征在于其中所述的金属硅化物闸电极的厚度小于最大补偿间隔片宽度。
3.根据权利要求1所述的方法,其特征在于其中在形成凹槽区步骤之前,在该闸结构的相邻任一侧形成补偿衬垫。
4.根据权利要求1所述的方法,其特征在于其中所述的凹槽区是仅相邻该PMOS通道区而形成。
5.根据权利要求1所述的方法,其特征在于其中所述的半导体硅合金包含相当于硅的延展晶格参数,以形成压缩应变。
6.根据权利要求1所述的方法,其特征在于其中所述的半导体硅合金包含硅及锗。
7.根据权利要求1所述的方法,其特征在于其中在弄薄步骤之前,将源极及汲极金属硅化物形成于含有个别装置区的个别源极及汲极区上方。
8.根据权利要求1所述的方法,其特征在于其中所述的弄薄步骤包含以下步骤在该闸结构上方形成一第一ILD层;进行一CMP程序以露出含有该多晶硅闸电极的上方部分的多晶硅;以及回蚀该多晶硅闸电极至该硅化厚度。
9.根据权利要求1所述的方法,其特征在于其中在该弄薄步骤之前,更包括将一氮化物接触蚀刻终止层形成于个别的装置区上,且该氮化物接触蚀刻终止层是以压缩和拉伸应力中之一所形成。
10.根据权利要求1所述的方法,其特征在于其中所述的凹槽区的深度为10埃至800埃。
11.根据权利要求1所述的方法,其特征在于其中所述的硅化厚度为100埃至1000埃。
12.根据权利要求1所述的方法,其特征在于其中所述的NMOS多晶硅闸电极的功函数是调整为介于4.0与4.5eV之间。
13.根据权利要求1所述的方法,其特征在于其中所述的PMOS多晶硅闸电极的功函数是调整为介于4.5与5.0eV之间。
14.一种形成具有完全硅化闸电极的NMOS和PMOS装置对的方法,其特征在于其包含下列步骤提供一半导体基板,该半导体基板包含具有个别闸结构的NMOS和PMOS装置区,该个别闸结构包含未掺杂的多晶硅闸电极;在具有该NMOS和PMOS闸结构中至少一者的一通道区的任一侧上形成凹槽区;以一半导体硅合金回填部分该凹槽区,使施加一应变予该通道区;在该半导体硅合金上方形成一硅层;在该闸结构的任一侧上形成间隔片;在个别的NMOS和PMOS源极及汲极区上方形成第一金属硅化区;将该多晶硅闸电极弄薄为硅化厚度,使容许透过硅化厚度的完全金属硅化作用;离子布植该多晶硅闸电极,以调整功函数;以及延伸透过该硅化厚度形成第二金属硅化物区,使形成金属硅化物闸电极。
15.一种具有完全硅化闸电极的拉伸型通道NMOS和PMOS装置对,其特征在于其包含一半导体基板,是包含具有间隔片在金属硅化物闸电极侧上的NMOS和PMOS装置区;以及经回填的凹槽区,是在该NMOS和PMOS区中至少一者的一通道区的任一侧上具有拉伸型半导体硅合金,使形成拉伸型通道区。
全文摘要
本发明是有关于一种具有完全硅化闸电极的拉伸型通道NMOS和PMOS装置对及其形成方法。该方法包含提供一半导体基板,该半导体基板包含具有个别闸结构的NMOS和PMOS装置区,该个别闸结构包含多晶硅闸电极;在具有该NMOS和PMOS装置区中至少一者的一通道区的任一侧上形成凹槽区;以一半导体硅合金回填部分该凹槽区,使施加一应变予该通道区;在该闸结构的任一侧上形成间隔片;将该多晶硅闸电极弄薄为硅化厚度,使容许透过硅化厚度的完全金属硅化作用;离子布植该多晶硅闸电极,以调整功函数;以及透过该硅化厚度形成金属硅化物,使形成金属硅化物闸电极。
文档编号H01L27/092GK1797743SQ20051007353
公开日2006年7月5日 申请日期2005年6月2日 优先权日2004年12月31日
发明者詹博文, 丘远鸿, 陶宏远 申请人:台湾积体电路制造股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1