单一频率的单块线性激光器件及包含该器件的系统的制作方法

文档序号:7222347阅读:301来源:国知局
专利名称:单一频率的单块线性激光器件及包含该器件的系统的制作方法
单一频率的单块线性激光器件及包含该器件的系统
本发明涉及激光二极管泵浦单块固体激光器件,尤其涉及单模 内腔加倍固体激光器件。还涉及用于制作这种器件的方法。
本发明可以特别有利地应用于产生蓝色或绿色激光的领域,但 这并非是唯一的用途。
例如采用多模二极管,在可见光镨473nm处发射一束具有良好 空间和光谱质量的激光,尤其可以在工业和医学上加以利用。被称 为谐波的这种波长可以在946nm的一个被称为基波的波长处,就掺 杂钕的钇铝石榴石(Nd:YAG)进行激光发射的频率加倍而获得。
一般来说,内腔加倍激光包含一个用于对固体激光器件,例如 Nd: YAG进行泵浦的激光二极管,在946nm处形成放大器。为了进 行加倍,可以将一个非线性晶体连接到用倍频技术把近红外基本信 号转变为可见信号的放大器上(也被称为"第二谐波阶段SHG")。 从而得到等于基波波长用2除的谐波波长。放大器和非线性晶体包 含在一个空腔中,在激光束的路径上,空腔的两个端头相对的表面 可以反射某些波长。
但是,如果要求连续进行发射,基本发射的功率就小于激光二 极管的功率,则倍频的效率很低。
标题为 "Diode pumped laser and doubling to obtain blue light" ( "二极管泵浦激光器和加倍获得蓝光")的美国 专利US 4 809 291现已/〉开,在这篇专利中,R.L.Byer和T.Y.Fan 提议用内腔加倍以便增加946nm基波波长的功率,从而增加加倍效 率。在一篇1988年发表于Journal Optics Letters (第13巻 第137 — 139页)的题为"Efficient blue emission from an intracavity-doubled 946 nm Nd: YAG Laser"("来自于 内腔加倍946nm Nd: YAG激光器的高效蓝光发射")的文章中,Dixon 等人提出用内腔加倍Nd: YAG基激光器进行5mW蓝光(473 nm) 发射。Nd浓度为l.l at.%,加倍效率仅为2%。
这些内腔加倍激光器件的主要问题是存在轴模及伪偏振,轴模 及伪偏振降低了激光效率并且是大功率波动的原因。举例来说,
Matthews等人在题为"Diode pumping in a blue (473 nm) Nd: YAG/KNb03 microchip laser"("蓝色(473 nm) Nd: YAG/KNb03微芯片激光器中的二极管泵浦"(CLEO'96第9巻第 174页)中,展示了具有强度大于10%的波动的26.5mW蓝光。
更精确地说,内腔倍频导致选择性损耗,而损耗随主激光器件 发射的泵浦功率而增加。加倍效率增加时,空腔的平均粒子数反转 必须增加,以便补偿额外损耗。但是,这使得相邻模及正交偏振发 射开始发出激光。对于相邻模来说,这是"空间洞燃烧"之外的效 果,因为"空间洞燃烧"已经使相邻模发出激光了。
空腔中发出激光的不同模与放大媒*合(增益竟争)并与倍 频媒介耦合(频率增加)。这些耦合是非线性的并且参与到一个复 杂的非线性活动中。后者导致^:高的或者甚至混乱的功率波动。
如果倍频是"类型I"的,正交偏振模不受有效倍频的影响(在 基波和谐波之间没有相适应)。这些模通过泵浦功率的增长来稳定 粒子数反转。它们使转换效率减緩,转换效率的增加需要增加粒子 数反转。只有"空间洞燃烧,,效应允许转换效率略微增加。已经提 出几种制造激光单模或将非线性晶体中的模拆开的方法。这些方法 可分为三类
a) 第一种是在空腔中引入一个标准具。这种方法,特别是Y. Shimoji在美国专利5,838,713中所公开的,引起了几个问题。 标准具引起空腔中的损耗,除非它由YAG和加倍晶体的面形成。在 后者的情况下,要求定位非常精确(亚微米),很难在工业上获得 并且很难稳定。解决这个问题的一个方法是随着加倍晶体在接触面 的一部分插入一个角度,将放大媒介引入光接触。这个角度在两种
材料之间产生一个空气隙。这个方法使接触变弱,从而减弱了单块 激光器件的完整性,并且不允许用粘合剂保护接触面。
b) 第二类包括基本的偏振。放大媒介可以插入两个四分之一 波长板之间,目的是消除"空间洞燃烧"效应,详见G .Hollemann 等人的"Frequency-stabilized diode-pumped Nd:YAG laser at 946 nm with harmonics at 473 nm and 237 nm〃 ("带有473nm和237nm谐波的频率稳定的二极管泵浦946nmNd: YAG激光器")Opt. Lett. 19,第192页,1994年2月。这个方法有一个缺点,就是在空腔中造成损耗。
有一个实施方案,表示可以通过类型I加倍,其中基本激光束 沿晶体的一个光轴传播(通常是慢轴),谐波激光束沿晶体的其他
光轴传播,与第一个正交。当它可能切割晶体时,类型I加倍出现, 因此光轴对基波波长的折射率等于其他光轴对谐波波长的折射率。
这就是KNb03的情况。
有一个实施方案,表示可以通过类型II加倍,其中基本激光 束存在于两个轴上,当基本激光束的偏振与光轴形成45°角时,转 换系数最佳。
c)第三种方法是减小空腔的长度。这是1993年10月A. Mooradian在专利US 5 ,256 ,164中提出的。对于946nm处发射 的lnm线宽来说(对比1.064 pm处线的0.6nm), Mooradian 的公式需要小于300pm的空腔长度,包括YAG和KNb03。迄今公布 或申请专利的微片中的Nd浓度不超过l.latJ。这等于808.4 nm 处的0.85 mnf1的衰减,即每100pm厚度的被吸收的泵浦功率的 8.1%及每200萍被吸收的泵浦功率的15.6%。但是,KNb。3的100 或200nm不能提供适当的转换效率。因此,按照Mooradian不等 式设计的微片激光器件好像不能用1W激光二极管泵浦功率发射大 于几mW的蓝光。
文件"Low-noise diode-pumped intracavity-doubled laser with off-axially cut Nd: YV04"("用轴向截止切 割Nd:YV04的低噪声二极管泵浦内腔加倍激光器件")(Opt. Lett. 19,第1624页,K. Suzuki等人),描述了在与平凹透镜结合时 离开效应的使用。此类器件不能提供高可靠性。
此夕卜,由T. Y. FAN在〃Single-Axial Mode, Intracavity Doubled Nd: YAG Laser〃 ("单轴向模,内腔加倍的Nd: YAG 激光器,,)(IEEE Journal of Quantum Electronics, 第 27巻,1991年9月9日)中提出的一种有效方法,因制造一种内 腔加倍单频激光器件而为众所知。在这种方法中,放大媒介(Nd: YAG)在相对于空气的布儒斯特(Brewster)角处被切割。非线性, 双折射晶体在45。受到基波的触击(类型II加倍)。两个布儒斯特 角在正交偏振中引起显著的损耗,并阻止其发出激光。还在双折射
晶体引起偏转旋转的每个波长处造成损耗。这种随波长变化的损耗 调制可以制造激光器件单模。从另一方面来说,这种方法不能用于 类型I倍频,因为按照原则,基频信号存在于非线性晶体的一个光 轴上。但是由于双折射,不可能将在布儒斯特角处进行切割的放大 晶体与非线性晶体结合。事实上,双折射引入相位效应,表示由空 腔外面反射的激光束返回放大器时不会重新结合。最后,FAN提出 的设计的主要困难是保持精度超过几百纳米的空腔的总长,以便消除所有模跳变以及随后发生的功率不稳定。事实上,空腔长度增长 (或减少)V4(即大约250nm),使其能够从单模变为双模功能。 长度的V4的额外增长使其能够回到相邻模上的单模功能。
本发明的目的在于通过提出一种内腔加倍固体激光器件来解决 上述大部分缺陷,这种内腔加倍固体激光器件尺寸小,提供高工作 稳定性,并且允许类型I和II倍频。本发明的另一个目的是提出一 种能够在单模下工作的可调谐固体激光器件。本发明还涉及一种无 论泵浦激光二极管的功率水平如何的大功率固体激光器件。本发明 更进一步的目的则是获得高可靠性的固体激光器件。
包含下列各点的激光器件至少可以达到上述各目的中的一项
- 一种能够产生基波波长激光束的放大媒介;
- 一种双折射非线性媒介,这种双折射非线性媒介带有用于 基波波长激光束倍频的平行面,以便产生谐波波长激光束;
- 用于对基波波长激光束进行偏振选择的偏振媒介,这种偏 振媒介要求在其输出面的基波波长,与其输入面的基波波长保持平 行。
按照本发明,偏振媒介包含与正在离开该偏振媒介的基波波长 垂直的输出面。此外,放大媒介,双折射非线性媒介及偏振媒介牢 固地互相附着,从而构成一个单块谐振腔。所选偏振媒介要能使基 波波长激光束不偏离绝对相,即偏振媒介输出端的基波波长平行于 该媒介输入端的基波波长。因此,通过将放大媒介、偏振媒介及非 线性媒介结合起来,能够构成单块谐振腔。
空腔最好是线形的。
由于不同媒介可以牢固地互相附着或者结合起来,因此用本发 明的器件,可以获得单块结构。不会导致激光束偏离绝对相的偏振 元件(正如下面将看到的,在布儒斯特角可产生双倍偏转)可以容 许获得一个输入面与输出面互相平行的线形空腔(在空腔中激光束 几乎处处与一个轴平行)。因此本发明提出一种固体激光器件,这 种固体激光器件可靠性高,同时易于制造,并且不论时间推移,非 常稳定。构成器件的各个元件可以独立设计然后在光学上装配。就 机械构造而言,空腔是固体的。
特别是,放大媒介、偏振媒介和双折射非线性媒介以线性方式 结合在一起,每个媒介包含相互平行的一个输入面和一个输出面,
并且和其它媒介的其它面平行;这些面与谐波波长激光束的输出方 向正交。空腔一方面具有放大媒介的输入面,在另一方面具有双折 射非线性媒介的输出面,于是构成空腔完整的结构。
或者减少基波波长的偏振,或者如下所述,用一面镜子对基波 波长进行偏转,要在二者中作出选择。选择基波波长的偏振,事实 上就是防止不能通过倍频产生蓝光的偏振振荡。这意味着无论采用 什么样的泵浦功率水平,按照本发明的这种固体激光器件都能够产
生大功率信号。这也使得有可能产生Lyot滤波器。
按照本发明的一个有利特征,双折射非线性媒介包含类型I非 线性晶体。例如,这就不是FAN文件中所说的情况。例如类型II 非线性晶体也可以用于本发明。
按照本发明的一个有利特征,双折射非线性媒介由类型I非线 性晶体构成,其双折射轴相对于由偏振媒介选择的偏振,形成非零 角模n/2弧度角。也可以说非线性晶体设置在轴外。该器件采用这 种类型的设置,就构成一个Lyot滤波器。因此本发明值得注意的是 采用了离轴类型I非线性晶体,而这种做法在这一工作中通常被认 为是"不正常,,而且效率不高。事实上,当基波波长的偏振平行于 非线性晶体的一个双折射轴时,类型I倍频更为有效。按照本发明 的实施方案,允许将单晶用于非线性的功能以及Lyot滤波器所必需 的双折射。在FAN文件中,空腔不是单块的,其倍频为类型II。如 果FAN原理直接用于类型I倍频,Lyot滤波器不再存在,因为那 时非线性晶体的轴与所选偏振成一直线。
按照本发明的第二个有利特征,被设置为离轴的非线性媒介与 一个双折射晶体相结合,从而使该双折射晶体的双折射轴与所述非 线性晶体的轴保持平行。这种类型的实施方案的优点是非线性晶体
的长度不是单独由Lyot滤波器的需求所决定的。事实上,增加双折 射能使这些需求的一部分得到补偿,从而使非线性晶体的长度适合 于倍频。
按照本发明的笫三个有利特征,双折射媒介与非线性晶体无 关。在这种情况下,加倍效率有助于和偏振媒介所选偏振平行的非 线性晶体全部轴,或其中一个轴的定向。此外,双折射晶体和所述 非线性晶体相结合,使双折射晶体的双折射轴相对于由偏振媒介所 选偏振形成非零角模n/2弧度角,从而使该器件构成Lyot滤波器。
所述被选的偏振最好适合于基波波长与谐波波长之间的相匹配。
这种类型的布儒斯特角界面和一个离轴双折射晶体(或者几个 晶体)结合起来,使得有可能选择单模。事实上,布儒斯特界面引 起对正交偏振的选择性损耗。只有波长在双折射造成的相位移是2n 的倍数时,可以在布儒斯特界面保持低损耗偏振。这构成了在波长 为、=(E5nj。 /m时具有最小损耗的周期滤波器,其中5r^和 Ii分别为离轴双折射元件的指数差及长度。其和仅适合于本发明的 第二个有利特征。波长2v决定于温度,因为晶体长度及指数差决定 于温度。因此滤波器可以通过温度调节。滤波器的自由光谱带(即 两个传送峰值之间的波长差)为FSB - X2/ (S5r^Ii),其中X2 是激光发射长度。
当双折射轴相对于由偏振媒介激励的偏振形成6 = n/4弧度 角(模n/2)时,滤波器具有更多的选择性。
特别是通过调节离轴双折射晶体的长度,能够在发射频带(一 半高度时的宽度A w)中仅仅选择一个单模,只要FSB和A w为相 同数量级,系数大约为2或3。最好对双折射晶体的参数进行选择, 以便滤波器的FSB由放大媒介的中间宽度(厶4)的发射波长的0 . 5 倍和3倍之间组成。
换句话说,与双折射晶体的长度相关的各向同性媒介的指数及
角e可以进行调节,以便使空腔中只有一个单模。
按照本发明,非线性晶体的切割角是这样的,调节晶体温度(在 合理的范围内)可以j吏基波波长和倍频波长之间进4亍相匹配。例如非线性晶体可以由铌酸钾(KNb03)构成或来自硼酸锂LBO。双折 射晶体可以由钒酸盐YV04构成。
按照本发明的第一个有利的变化方案,偏振媒介包含主元件, 后面是中间媒介和次元件,其折射率与主元件的折射率基本一致, 主元件的输出面和次元件的输入面平行,并且按照布儒斯特角切割 基波波长的长度。
中间媒介可以由空气构成。在这种情况下,主元件通过动态粘 合剂或通过与多孔水洗器的闭塞接触,牢固地附着于次元件。中间 媒介也可以由硅石构成。
在本发明的第一个变化方案中,当偏振媒介设置在放大媒介和 双折射非线性媒介之间时,主元件可以由放大媒介构成。更精确地 说,放大媒介在输入处有一个垂直于基波传播方向的面,在输出处 有一个相对于基波的布儒斯特角的切割面。放大媒介最好由掺杂钕 Nd的钇铝石榴石YAG (Nd: YAG)构成,次元件由未掺杂的钇铝石 榴石(YAG)构成。Nd: YAG晶体可以是圆筒形,其输入面形成一 个平面镜。
偏振媒介也可以与放大媒介分开。在这种情况下,主元件及次 元件可以由未掺杂的4乙铝石榴石(YAG)构成。另外,主元件和次元 件可以由硅石构成,中间媒介则为未掺杂的钇铝石榴石(YAG)。
用这种类型的器件,只要主元件和次元件具有相同的角(当它 们一起制造时这是容易做到的),制造布儒斯特角时,不必达到过 高的精度(小于几分的角),这就使得在工厂制造时速度更快,成 本更低。
不采用布儒斯特角时,可以按照本发明的笫二个变化方案采用 与空间损耗调制相关的离开效应(或双折射)。因此,偏振媒介由 离轴切割的双折射晶体构成,例如在两个基波波长激光束的偏振之 间呈现强烈的"离开"效应,空间损耗调制可以通过用平凸透镜封 闭空腔来获得。
文件"ljow-noise diode—pumped intracavity-doubled laser with off-axially cut Nd: YV04"("带有离轴切割 面的Nd: YV04的低噪声二极管泵浦内腔加倍激光")(Opt. Lett. 19,笫1624页,K. Suzuki等人),描述了不能作为单块
装配的平凹透镜的使用。另一方面,由于放大媒介经过偏振化,不 能清楚地显示哪个器件(偏振器或偏振化的发射)在偏振选择中占 主导地位。
按照本发明的另一个方面,考虑激光系统包含用于如上所述的 固体激光器件的泵浦方法。有利的是,用所述泵浦方法发射的激光 束沿着与固体激光器件的放大媒介的输入面正交的方向传播。
通过对一个毫无局限的实施方案和附图的详细说明的考察,将
使本发明的其它优点和特性显得更加清晰,其中
-图l是按照本发明的固体激光器件的筒图,包含按照布 儒斯特角切割的放大媒介,偏振媒介包含空气隙;
-图2是按照本发明的固体激光器件的简图,包含按照布
儒斯特角切割的放大媒介,偏振媒介包含硅石薄片;
—图3是按照本发明的固体激光器件的简图,其中偏振媒 介包含按照布儒斯特角切割的两个壁之间的空气隙;
-图4是按照本发明的固体激光器件的简图,其中偏振媒 介包含按照布儒斯特角切割的两个壁之间的硅石薄片;
-图5是按照本发明的固体激光器件的简图,其中偏振媒
介包含带有离开效应及平凸透镜的双折射晶体;
-图6是说明采用双折射的三个示例的简图,双折射能够
达到期望的滤波特性,同时保证有效的非线性效应。 现在来说明包含在946nm发射的Nd: YAG激光并且在473nm 用KNb03晶体进行内腔加倍的内腔倍频单块激光器件,虽然本发明
并不限制于这个实施方案。
才艮据

图1和2, 一个泵浦激光二极管11正在808nm处向包含 三个晶体1、 2、 3的装置的空腔发射激光束12。晶体放大器1是 Nd: YAG。其折射率为ni=1.82到946nm。这个晶体1的输入面 la经过处理,构成一个平面镜。其输出面lb在通过指数r^及媒介 5或6的指数ri5或ri6计算出的布儒斯特角处切割。在图1中,媒介 5由空气构成,而在图2中媒介6是平行的一个硅石薄片。这一平 行薄片5或6楔入晶体放大器1的输出面lb和由指数为r^的未掺 杂钇铝石榴石(YAG)(白色YAG) 2构成的晶体的输入面2a之间。 这个面2b也按照布儒斯特角切割并设置为与lb面平行。lb和2a
两个面最好同时抛光,然后装配可以盲目地完成。这一制作方法在 按照布儒斯特角的切割精度方面的要求是非常宽松的,这样就便利 了这种固体激光器件的生产。当平行空间是空气时,可以采用带有
平行面的隔片,或如图1和3所示的由激光控制的动态粘合剂4或 10。这一粘合剂施加在平行隔片5的周围。图2与此相反,采用硅 石薄片6,它是固定在lb和2a两个平行面上的。
由铌酸钾KNb03构成的双折射倍频器晶体3和输出面2b结合 在一起。
1、 2、 3三个晶体形成一个线性谐振腔。
Nd: YAG1的输入面la和KNb03 4的输出面3b是平行的,用 常规方式进行处理以便构成谐振腔。从3b面离去的激光束15可以 设置在946nm或473nm。
图l中的简图是以Nd: YAG中946 nm的信号的垂直偏振为基 准的。垂直轴位于图中的平面,横轴垂直于这个平面。精通本技术 的人士能够很容易地适应这个表示线性水平或其它任何偏振方式的 简图。
在所表示的情况中,基本信号的偏振是垂直的。如果铌酸钾晶 体的c轴是水平的,则光轴就会是水平的和垂直的。则基本信号就 会沿双折射轴传播,而其偏振不再能旋转。如果c轴以及双折射轴 象现在这样旋转,基波波长就不再在双折射轴中,因此其偏振在晶 体中传播时旋转。这时就可以开始选择偏振的旋转方式。
在KNb03双折射晶体中,输入面3a包含c轴,并且根据相对 于b轴的角度(p = 32。切割平面ab,从而得到308K时946nm和 473nm波长之间的相匹配。精通本项技术的人士能够为了其它温度 下的相匹配H"改这一角度。在946nm, c轴上的折射率为n3f = 2.127,正交轴上的折射率为n3s = 2.238。因此双折射的特征为 △n3 = 0.111。按照本发明的器件通常可以构成Lyot滤波器,从 而使双折射晶体的轴不与布儒斯特界面平行。
在不同激光束所取的光路方面,由泵浦11发射的激光束12到 达Nd: YAG晶体的输入面la,并且按照正常方向到达这个la面。 Nd: YAG1从而被激励,产生在镜面la和3b之间振荡的激光束13。 由于激光束13穿过平行薄片5、 6,因此它在lb、 2a各个面经历 偏转,而使离开平行薄片5、 6的激光束13平行于进入平行薄片5、 6的激光束13。由于在白色YAG2和KNb03之间通过,线性双折射 晶体并不使激光束13偏转。在这个KNb03晶体3内部发生了倍频, 这由通过3b面离开激光器件的谐波波长激光束14的产生来表示。 因此,空腔具有输入面和输出面,输入面和输出面相互平行, 但与发生于泵浦的激光束正交,并与离开固体激光器件的激光束正 交。
在图1和2中,放大媒介由Nd: YAG 1构成。偏振媒介包含 主元件、中间媒介和次元件,主元件也是这个Nd: YAG晶体1,或 更确切地说是该晶体1的输出面lb,中间媒介是平行薄片5、 6, 次元件是白色YAG晶体2。
相反,在图3和4中,偏振媒介与由未切割的Nd: YAG晶体7 构成的放大媒介分开。偏振媒介包含主元件8和次元件9,它们可以 是与平行薄片5、 16结合的白色YAG (未掺杂),平行薄片5、 16 可以是带有动态粘合剂10的空气5或硅石6。当平行薄片是白色YAG 或空气时,主元件和次元件二者也可以是硅石。其实现及功能与参 照图l和2所作的说明相同。
作为对上述的特别补充,当平行薄片是连接的硅石薄片时,在 激光束通过的地方可以做一个开口,以便这些激光束实际上通过空 气,而不是透入珪石。
图5中的器件的特别之处在于不包含布儒斯特角。放大媒介也 是一个带有平行壁7a和7b的Nd: YAG晶体7。 一个经过切割的双 折射YV04晶体23,使结合在面7b上的两个偏振之间的离开效应最 大化。离轴结合的KNb03 20,与一个平凸透镜17—起,封闭了空 腔。透镜对于各个晶体的角度不足进行校正。两个偏振是基波波长 激光束13的偏振以及谐波波长激光束14的偏振。激光束13被透 镜17的凸面部分反射,从谐振腔中射出。
在图1到5中,采用KNb03晶体作为非线性和双折射元件, 它对温度的高度灵敏性使得发射波长14能够被调谐。这个晶体的轴 在45。定向到偏振元件的偏振轴。LBO也可以用作非线性和双折射 晶体。
不过,如图6中所示,通过采用KNb03或LBO晶体18,能够
将非线性功能分开,KNb03或LBO晶体18的轴,通过采用轴旋转 的钒酸盐YV04晶体19,和偏振器的轴排成直线。钒酸盐(YV04) 晶体封闭激光空腔。这就增加了一个元件和一个界面,但优点是在 其轴中采用了非线性晶体18,特别是对类型I倍频器可以获得最大 加倍效率。由于YV04具有高双折射性,因此被推荐作为双折射晶 体。由于YV04的折射率对温度的相关性低,激光比较不容易调谐, 但是从另一方面来说,单个频率操作可以有更大的温度范围,即比 用离轴KNb03所得到的温度范围约大25倍。可调谐性能低的结果 是Lyot滤波器的自由光谱带FSB最好能达到激光跃迁的发射宽 度。事实上,用太小的FSB,有在几个模上发射激光的危险。用太 大的FSB,有在发射频带找不到任何滤波峰值的危险。
在图6中,还可以看到第三个示例,其中离轴设置的非线性 KNb03晶体21与同样离轴设置的双折射YV04晶体22结合在一 起。这个解决方案使FSB在为倍频保持KNb03最佳长度时能够被调 节。
当然,本发明并局限于上述的示例,可以对这些示例作出调整 而不超出本发明的范围。
权利要求
1.激光器件,所述激光器件包含-能够产生基波波长激光束(13)的放大媒介(1、7);-双折射非线性媒介(3、20、20),这种双折射非线性媒介带有用于基波波长激光束倍频的平行面,以便产生谐波波长激光束(14);-用于对基波波长激光束进行偏振选择的偏振媒介(1b、5、6、2、8、9、16、20),这种偏振媒介在其输出处的基波波长,与其输入处的基波波长保持平行;其特征在于,偏振媒介(1b、5、6、2、8、9、16、20)包含与离开该偏振媒介的基波波长相垂直的输出面(2b);并且在于放大媒介,双折射非线性媒介及偏振媒介牢固地互相附着从而构成单块谐振腔。
2. 如权利要求1所述的器件,其特征在于,双折射非线性媒 介包含类型I非线性晶体。
3. 如权利要求1或2所述的器件,其特征在于,双折射非线 性媒介由类型I非线性晶体构成,其双折射轴相对于由偏振媒介选择 的偏振形成非零角模n/2弧度角,从而使该器件构成Lyot滤波器。
4. 如权利要求3所述的器件,其特征在于,双折射晶体与该 非线性晶体按照以下方式结合,即双折射晶体的双折射轴与该非线 性晶体的轴保持平行。
5. 如权利要求1或2所述的器件,其特征在于,双折射非线 性媒介由类型I非线性晶体构成,其双折射轴中的一个平行于偏振媒 介所选的偏振;并且双折射晶体按照以下方式与该非线性晶体结合, 即这个双折射晶体的双折射轴相对于由偏振媒介选择的偏振形成非 零角模n/2弧度角,从而使该器件构成Lyot滤波器;该所选偏振适合于基波波长与谐波波长之间的相匹配。
6. 如权利要求5所述的器件,其特征在于,该器件构成了 Lyot 滤波器,而滤波器的自由光镨带FSB由谐波波长激光束发射宽度的 0.5倍和3倍之间组成。
7. 如权利要求3到6中任何一项所述的器件,其特征在于, 双折射轴和所选偏振之间的角度大约等于n/4弧度角。
8. 如权利要求4到7中任何一项所述的器件,其特征在于, 双折射晶体(19)由钒酸盐YV04构成。
9. 如权利要求3到8中任何一项所述的器件,其特征在于, 非线性晶体(3、 18)由铌酸钾(KNb03)构成。
10. 如权利要求3到8中任何一项所述的器件,其特征在于, 非线性晶体(18)由硼酸锂LBO构成。
11. 如前述权利要求中任何一项所述的器件,其特征在于,放大 媒介、偏振媒介及双折射非线性媒介以线性方式结合在一起;每个媒 介包含相互平行并与其它媒介的其它面平行的一个输入面和一个输出 面;这些面与谐波波长激光束的输出方向垂直。
12. 如前述权利要求中任何一项所述的器件,其特征在于,偏振 媒介包含主元件Ub、 8),后面是中间媒介(5、 6、 16)和次元件(2、 9),其折射率与主元件的折射率基本一致;主元件的输出面和 次元件的输入面平行,并且按照布儒斯特角切割基波波长。
13. 如权利要求12所述的器件,其特征在于,中间媒介由空气 (5)构成。
14. 如权利要求13所述的器件,其特征在于,主元件通过 动态粘合剂(4、 10)牢固地附着于次元件。
15. 如权利要求12所述的器件,其特征在于,中间媒介由 珪石(6、 16)构成。
16 . 如权利要求12到15中任何一项所述的器件,其特征在 于,偏振媒介设置在放大媒介和双折射非线性媒介之间,主元件由放 大媒介(1、 lb)构成。
17.如权利要求16所述所述的器件,其特征在于,放大媒 介由掺杂钕Nd的钇铝石榴石YAG (1)构成,次元件由未掺杂的钇铝 石榴石(YAG) (2 )构成。
18 .如权利要求12到15中任何一项所述的器件,其特征在 于,主元件及次元件由未掺杂的钇铝石榴石(YAG) (8、 9)构成。
19. 如权利要求20到21中任何一项所述的器件,其特征在 于,主元件和次元件由硅石构成,中间媒介为未掺杂的钇铝石榴石(YAG)。
20. 如权利要求1到10所述的器件,其特征在于,偏振媒介由离轴切割的双折射晶体(20)构成,使得两个基波波长激光束的 偏振之间具有"离开"效应,谐振腔由一个平凸透镜封闭。
21.如前述权利要求中任何一项的激光系统,所述激光系统包含用于固体激光器件的泵浦装置(11),由所述泵浦装置发射的激 光束沿着与固体激光器件放大媒介的输入面垂直的方向传播。
全文摘要
本发明涉及的激光器件包含一个适合于产生基波波长激光束(13)的放大媒介(1、7);一个用于对基波波长激光束进行加倍来产生谐波波长激光束(14)的双折射非线性媒介(3、20、20);一个用于选择基波波长激光束偏振的偏振媒介(1b、5、6、2、8、9、16、20),所述偏振媒介要求在其输出面的基波波长与其输入面的基波波长保持平行。本发明的特征在于偏振媒介(1b、5、6、2、8、9、16、20)包含一个垂直于正在离开所述偏振媒介的基波的输出面(2b)。放大媒介和双折射非线性媒介互相结合,构成一个单块谐振腔。
文档编号H01S3/106GK101199090SQ200680021371
公开日2008年6月11日 申请日期2006年4月7日 优先权日2005年4月15日
发明者T·乔治斯 申请人:奥克休斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1