具有新的几何形状的太阳能电池芯片及其制造方法

文档序号:7207415阅读:272来源:国知局
专利名称:具有新的几何形状的太阳能电池芯片及其制造方法
技术领域
本发明涉及用于聚光应用的具有新的几何形状的太阳能电池芯片和制造这样的太阳能电池芯片的方法。太阳能电池芯片的几何形状被选择为使得允许通过激光进行连续的切割处理以从晶片中分离出芯片。
背景技术
在聚光光伏(CPV concentrator photovoltaics)技术中,直接入射的太阳辐射通过激光光学器件而聚焦到太阳能电池上,使得电池上的辐射强度高出所谓的聚光系数。存在着实施聚光光学器件的多种光学方法,这些方法通常基于特定形状的光学组件处的折射、反射或全内反射(P· Benitez and J. C. Minano, ‘‘ Concentrator optics for thenext-generation photovoltaics " , in A. Marti and A. Luque (Ed. ), " Next GenerationPhotovoltaics" , Institute of Physics Publishing,Series in Optics and Optoelectronics, Bristol and Philadelphia, ISBN 0750309059,2004)。凭借高聚光的系统(即,聚光系数> 50),如下面对它们专门考虑的那样,通过主聚光器和副聚光器在两个阶段中实现光学聚光也是很普遍的。副聚光器本身包含利用上述光学效果的各种实施方式。副聚光器可以用于提高聚光、放大太阳能电池接收辐射的角范围并且使太阳辐射更加均勻地分布在电池区域上。在均化作用中,还能够影响射线束的横截面。具体地说,由于能够证明针对光学聚光和针对系统固有的联动跟踪的技术要求是正确的,因此那些高效的太阳能电池是适用的。这些电池可以是高效的Si太阳能电池(即,背面接触式太阳能电池), 但最重要的还是基于III-V半导体材料(多结电池,MJC)的单片互连地堆叠的太阳能电池。 III-V化合物半导体的多层结构外延地生长。三个一组的电池的典型结构包括锗底层电池、 GAInAs中层电池和(ialnP顶层电池。锗晶片是在其上沉积薄的III-V半导体层的衬底。基本材料以及MJC的制造都是高成本的,这就是为什么通常假定针对CPV的成本效率而要求非常高的聚光(即,基于太阳光圈的小电池面积)(C. Algora,‘‘ The importance ofthe very high concentration in third-generation solarcells " , in A. Marti and A: Luque(Ed. ), " Next Generation Photovoltaics" , Institute ofPhysics Publishing, Series in Optics and Optoelectronics, Bristol and Philadelphia, ISBN0750309059, 2004)。这里,问题是如何尽可能高效地将具有非常高效的太阳能电池的高成本的晶片用于聚光光伏以允许经济地使用这种技术。在现有技术中,对晶片上的高效太阳能电池执行处理,并接着通过锯削将高效太阳能电池分离为矩形(大多数情况下为正方形)芯片。单个芯片于是一般具有1到IOrnm 的边缘长度。几乎所有被采用的光学主聚光器都生成在很大程度上旋转对称的焦点。在不存在副聚光器的情况下,聚光太阳能电池的可使用的有效区域也因此旋转对称。电池(在此情况下为正方形)的角部被用作电池的电互连的连接区域。但是,使用具有矩形(特别是正方形几何形状)和圆形有效电池区域的昂贵的晶片材料并不令人满意。包括由锯切割造成的面积损失和晶片边缘在内,可以使用几乎超过60%的晶片区域作为有效的太阳能电池区域。如果电池尺寸小于2mm,则可用的区域由于切割的浪费而急剧减少。副聚光器可以通过多次反射将辐射更加均勻地分布到如万花筒那样的矩形输出面上。从文献中已知这样的副聚光器(J.M. Gordon,“ Concentrator optics", in A. Luqueand V Andreev(Eds.), Concentrator Photovoltaics, Springer Series in Optical Sciences 130, Springer-Verlag, Berlin Heidelberg(2007), and US 2008/0087323A1),并且可以相应地分别包括圆形入射表面和几乎矩形的出射表面或矩形表面。但是,这些副聚光器必须在相对较高的宽度高度比的情况下极端地无损,即,这些副聚光器必须包括非常高的反射率,并且在厚重的系统中,副聚光器必须由具有非常低的吸收率的透明材料制成。当今,只能以非常高的成本来制造这样的副聚光器。应当注意的是,尚不知道高晶片利用率的低成本解决方案。

发明内容
鉴于这种情况,本发明的目的是提供一种制造太阳能电池芯片的方法,该方法使得能够更好地利用晶片区域,特别是当使用副聚光器的时候。制造工序应当易于操作且同时成本较低。具有权利要求1的特征的制造太阳能电池芯片的方法、具有权利要求16的特征的太阳能电池芯片以及具有权利要求21的特征的太阳能电池模块实现了这个目的。其它从属权利要求显示了有利的进一步进展。根据本发明,提供了一种用于制造太阳能电池芯片的方法,其中该太阳能电池包括适于将太阳能直接转换成电能的表面区域。下面将把这些表面区域称为太阳能电池芯片的有效区域。根据本发明的方法基于这样一种太阳能电池芯片,该太阳能电池芯片按照脱离了矩形形状的几何形状被激光器从晶片中切割出来,使得与矩形太阳能电池芯片相比增加了每晶片的太阳能电池芯片的数量。同时,该太阳能电池芯片的几何形状被选择为使得激光器能够进行连续切割操作。这里,所述有效区域的几何形状优选地基本上适于所述太阳能电池芯片的几何形状。对于能够在所述太阳能电池芯片的所述有效区域外部设置电连接且同时还实现了每个太阳能电池芯片的最大比例的有效区域来说,该要求是必要的。这里,所述有效区域优选地呈基本圆形(即,近似于圆形),还包括具有变圆的角部的多边形。所述有效区域的几何形状还能够表示发生椭圆形变形的圆形形状。还优选地在所述切割操作中引导激光器,使得切割出的太阳能电池芯片基本上没有如现有技术中常见的锯削工序那样的直的切割边缘。一种优选的变型提供了所述太阳能电池芯片的基本呈六角形的几何形状。这些太阳能电池芯片特别包括角部变圆的六角形几何形状。在此情况下,所述太阳能电池芯片的所述有效区域优选地包括介于圆形形状和六角形形状之间的过渡形状。例如,所述有效区域可以包括八角形几何形状、十角形几何形状或十二角形几何形状,其中角部变圆,使得能够进行连续的激光引导。
另一种变型提供了将被线性引导的激光器,其中,激光器的移动基本上以正弦曲线的形式交替(即,激光器循着正弦线中的线)。这里,反转地一条接一条地追踪所述线,其中正弦曲线的顶点在相邻的线中彼此以正切的方式接触。这种模式于是产生了在所述有效区域中包括基本呈圆形的几何形状并在两个相对侧包括网状延伸的太阳能电池芯片。所述网状延伸可以用于电连接。这些太阳能电池芯片可以具有例如椭圆形的形状。其中基于所述太阳能电池芯片的平面按照密排晶体结构设置所述有效区域的形状是特别优选的。该晶体结构的剩余间隙被用作用于电连接的非有效区域。在此情况下, 晶片表面的利用率最理想。除了所述有效区域以外,所述太阳能电池芯片还优选地包括其中可以至少分段设置电连接的非有效区域或被动区域。优选地,这些电连接是位于所述有效区域的相对侧上的两个点状连接。优选地使用YAG激光器、光纤激光器和/或盘形激光器将晶片分割成太阳能电池芯片。激光器可以按照干法工序操作。还能够将激光器连接到喷射器并通过全反射来弓I导。所述切割操作本身是通过晶片与激光器之间的相对移动来执行的。其可以是晶片台的移动、作为激光器的飞行光学器件和/或激光扫描器的使用。根据本发明,还提供了一种具有适于将太阳能直接转换成电能的有效表面区域的太阳能电池芯片,该太阳能电池芯片可以根据上述方法制造而成。此外,提供了一种包含至少两个且至多2000个太阳能电池芯片的太阳能电池模块。


参照以下附图,将更加详细地描述根据本发明的主题,本发明的主题不受到本文中示出的特定实施方式的限制。图1示出了根据本发明的与现有技术的已知几何形状相比的太阳能电池芯片几何形状的两种变型。图2示出了根据现有技术的太阳能电池芯片几何形状。图3示出了根据本发明的太阳能电池芯片几何形状。图4示出了根据本发明的另一种太阳能电池芯片几何形状。
具体实施例方式在图la)中,示出了从现有技术中知道的几何形状,在该几何形状中,通过锯削将晶片分离成多个单芯片方块。在图lb)中,示出了根据本发明的第一种变型,在第一种变型中,选择了太阳能电池芯片的六角形布置。由此,晶片上的芯片的数量能够增加16%。在图Ic)中,示出了基于激光器的正弦曲线移动的几何形状,藉此实现了连续的切割路径。这里,将被排布的芯片的数量与图lb)的数量相同。图la)至图Ic)中示出的太阳能电池的相同之处在于,在表面都设置了附加的条形导体(所谓的栅格)以释放在太阳能电池的表面处采集到的载荷子。在图2中,示出了从现有技术中知道的具有相应设计的太阳能电池芯片。这是一种包括中央有效区域2的正方形芯片1。此外,该芯片包括可以实现电连接的非有效区域3。在图3中,示出了根据本发明的基于变圆的六角形芯片1的变型。该芯片同样包括有效区域2,有效区域2的形状是具有十二个角部的多边形与圆形的结合体(即,角部相应地变圆)。此外,非有效区域3位于芯片上。这些非有效区域随后例如可以用于点状电连接4。在图4中,示出了根据本发明的基于具有水滴形几何形状的太阳能电池芯片1的另一种变型。在该变型中,激光器线性地通过晶片,其中在线的末端都会发生到下一条线的转移以及随之而来的激光器的方向的变化。但是,其并不是直线,而是激光器的正弦曲线移动。激光器以这样的方式通过晶片,即,使得太阳能电池芯片包括有效表面的区域中基本圆形的几何形状和两个相对侧处的网状延伸。接着,在太阳能电池芯片1上示出了有效区域 2,在此情况下,有效区域2发生轻微的椭圆形变形。此外,该芯片包括尖端细的、其中可以设置电连接4的非有效区域3。由于电端子区域与有效电池区域之间的距离较长,因此该几何形状特别适合于使用反射型光学器件或厚重的副光学器件。
权利要求
1.一种制造具有适合于将太阳能直接转换成电能的有效表面区域的太阳能电池芯片的方法,其中,通过激光器以矩形形状以外的几何形状从晶片中切割出太阳能电池芯片,使得与矩形太阳能电池芯片相比增加了每晶片的太阳能电池芯片的数量,其中,所述太阳能电池芯片的几何形状被选择为使得激光器能够进行连续的切割操作。
2.根据权利要求1所述的方法,其特征在于,所述有效区域的几何形状基本上适用于所述太阳能电池芯片的几何形状。
3.根据前述权利要求中任一项所述的方法,其特征在于,所述有效区域基本上呈圆形。
4.根据权利要求3所述的方法,其特征在于,所述圆形形状发生椭圆形变形。
5.根据权利要求3所述的方法,其特征在于,所述有效区域呈介于圆形形状与六角形形状之间的角部变圆的过渡形状。
6.根据权利要求5所述的方法,其特征在于,所述有效区域包括八角形几何形状、十角形几何形状或十二角形几何形状,其中角部优选地变圆。
7.根据前述权利要求中任一项所述的方法,其特征在于,所述激光器被引导为使得所述太阳能电池芯片基本上没有直的切割边缘。
8.根据前述权利要求中任一项所述的方法,其特征在于,所述太阳能电池芯片的几何形状基本上呈六角形,具体的是具有变圆的角部的六角形几何形状。
9.根据前述权利要求中任一项所述的方法,其特征在于,以激光器的基本正弦曲线移动来线性地引导所述激光器。
10.根据前述权利要求中任一项所述的方法,其特征在于,所述激光器被引导为使得所述太阳能电池芯片包括所述有效区域的区域中的基本圆形的几何形状和位于两个相对侧处的网状延伸。
11.根据前述权利要求中任一项所述的方法,其特征在于,所述激光器被引导为使得所述有效区域在所述太阳能电池芯片的平面中按照密排晶体结构布置,并且所述晶体结构的间隙被用作用于电连接的非有效区域。
12.根据前述权利要求中任一项所述的方法,其特征在于,所述太阳能电池芯片在所述非有效区域中的某些部分中包括电连接,具体的是位于所述有效区域的相对侧处的两个点状连接。
13.根据前述权利要求中任一项所述的方法,其特征在于,YAG激光器、光纤激光器和/ 或盘形激光器被采用为激光器。
14.根据前述权利要求中任一项所述的方法,其特征在于,通过全反射在喷射器中引导激光或者按照干法工序操作激光。
15.根据前述权利要求中任一项所述的方法,其特征在于,通过晶片与激光器之间的相对移动来完成所述切割操作,具体的是通过移动晶片台、使用作为激光器的飞行光学器件和/或使用激光扫描器来完成所述切割操作。
16.一种具有适于将太阳能直接转换成电能的有效表面区域的太阳能电池芯片,该太阳能电池芯片能够根据前述权利要求中任一项所述的方法制造而成。
17.根据权利要求16所述的太阳能电池芯片,其特征在于,所述太阳能电池芯片基本上没有直的切割边缘。
18.根据权利要求16所述的太阳能电池芯片,其特征在于,所述太阳能电池芯片具有带有变圆的角部的基本上六角形的几何形状。
19.根据权利要求16所述的太阳能电池芯片,其特征在于,所述太阳能电池芯片包括所述有效区域的区域中的基本圆形的几何形状和位于两个相对侧处的网状延伸。
20.根据权利要求16所述的太阳能电池芯片,其特征在于,所述太阳能电池芯片具有椭圆形的几何形状。
21.一种太阳能电池模块,该太阳能电池模块包含至少两个且至多2000个根据权利要求16至20中的一项所述的太阳能电池芯片。
全文摘要
本发明涉及具有用于聚光器应用的新的几何形状的太阳能电池芯片和制造这种太阳能电池芯片的方法。该太阳能电池芯片的几何形状被选择为使得能够通过激光器进行连续切割操作以从晶片中分离出单独的芯片。
文档编号H01L31/0352GK102265413SQ200980126601
公开日2011年11月30日 申请日期2009年7月16日 优先权日2008年7月16日
发明者安德里亚·格姆贝特, 萨沙·范里森 申请人:康森特克斯太阳能公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1