Hvdc断路器和用于控制hvdc断路器的控制设备的制作方法

文档序号:6939061阅读:270来源:国知局
专利名称:Hvdc断路器和用于控制hvdc断路器的控制设备的制作方法
技术领域
本发明涉及高压直流功率传送的领域,并且具体地说,涉及高压直流断路器。
背景技术
高压直流(HVDC)断路器是能够形成高压的DC电流、使高压的DC电流断路以及连续携带高压的DC电流的开关装置。HVDC断路器经常用作用于功率传送的HVDC系统中的组件由于在直流系统中没有电流或电压的自然零交叉,因此对HVDC电路断路器设计必须给予特别注意。经由HVDC系统传送的功率通常非常高,并且例如可以在GW数量级。当在HVDC断路器中用机械断续器使HVDC系统中的电流断路时,在断续器触点之间构建了电弧,其仅可通过迫使电流为0来消除。因为该电弧具有负电阻,因此已经引入了谐振电路,以便在机械HVDC断路器中创建人工电流O。而且,非线性电阻器通常与谐振电路并联连接。一旦已经迫使电弧电流为0 了,电流就被换向到非线性电阻器,其吸收中断过程的能量并限制电压。用于便于消除电弧的已知的另外的技术是使用惰性气体,诸如SF6,或在真空器皿中放置断续器触点。作为机械HVDC断路器的备选,在利用功率半导体开关作为断续器的技术中,提出了固态HVDC断路器。

发明内容
本发明涉及的问题是如何获得可有效地用于在正常操作期间以及在线路故障情形下使HVDC电流断路的HVDC电压断路器。本发明涉及HVDC断路器,其包括串联连接的至少两个HVDC断路器分段,其中至少一个所述HVDC断路器分段或至少一组所述HVDC断路器分段设置成相对于其它HVDC断路器分段而言单独地被控制。以使得在所述HVDC断路器跳闸时跳闸的HVDC断路器分段数量取决于所述跳闸发生所响应的操作事件的方式设置所述HVDC断路器。“使HVDC断路器跳闸”是指HVDC断路器的状态从闭合状态变为打开状态,同时电流流过HVDC断路器,其中根据本发明,不总是所有串联连接的HVDC断路器分段都操作,而只是它们当中某一数量的分段操作。为了能够仅使某一数量的HVDC断路器分段跳闸-或操作,这些分段设置成成组地或甚至一个一个地或按照它们的混合方式单独地被控制。跳闸的HVDC断路器分段数量取决于跳闸发生所响应的操作事件。这具有如下优点HVDC断路器的断路能力可适合于目前操作事件的需求。单独地对于每个操作事件,可在快速断路操作与由该断路操作引起的系统中的干扰之间找到适当平衡。在一方面,HVDC断路器分段包括至少一个机械断续器和/或至少一个功率半导体断续器。在另一方面,至少一个HVDC断路器分段包括设置成检测HVDC断路器分段的操作是否已经成功的分段状态指示装置。分段状态指示装置还设置成在HVDC断路器分段未成功操作的情况下则生成指示不成功操作的分段状态信号。由此,实现了能快速检测HVDC断路器分段的不成功操作,并且经常能避免这种故障对断路过程的重大影响。在又一方面,HVDC断路器包括至少一个冗余HVDC断路器分段,S卩,除了 HVDC断路器全面操作实际上所需的HVDC断路器分段之外还有的至少一个HVDC断路器分段。由此实现了,可确保有效的断路操作,甚至在一个或多个有故障HVDC断路器分段的情况下也是如此。本发明还涉及用于控制HVDC断路器跳闸的控制设备。控制设备包括系统状态信号接口,设置成接收至少两个不同类型的系统状态信号,其中所述系统状态信号类型指示所述HVDC断路器形成其一部分的HVDC系统中的操作事件;分段激励信号接口,设置成向所述HVDC断路器传送分段激励信号,所述分段激励信号使所述HVDC断路器的至少一个可单独地被控制的HVDC断路器分段和/或HVDC断路器分段组跳闸;以及激励控制机构,连接到所述系统状态信号接口和所述分段激励信号接口。所述激励控制机构设置成基于与至少一个已接收系统状态信号的类型相关的信息确定应该跳闸的HVDC断路器分段的数量和/或HVDC断路器分段组的数量,并经由所述分段激励信号接口发送一个或多个对应的分段激励信号以使所述数量的HVDC断路器分段和/或HVDC断路器分段组跳闸。 在一个方面,控制设备的激励控制机构还设置成响应于接收到所述系统状态信号选择哪些HVDC断路器分段和/或HVDC断路器分段组要跳闸,并经由所述分段激励信号接口发送一个或多个对应的分段激励信号以使选择的HVDC断路器分段和/或HVDC断路器分段组跳闸。在另一方面,控制设备还包括接口,设置成从分段状态指示装置接收指示HVDC断路器分段不成功操作的分段状态信号。在这个方面,所述激励控制机构设置成响应于接收到指示HVDC断路器分段不成功操作的分段状态信号而发送分段激励信号以使当前闭合的HVDC断路器分段或HVDC断路器分段组跳闸。本发明还涉及包含根据上述实施例的控制设备和HVDC断路器的HVDC断路器系统以及包括此类HVDC断路器系统的HVDC功率传送系统。本发明还涉及中断HVDC系统中的DC电流的方法,所述方法包括在用于控制具有至少两个HVDC断路器分段的HVDC断路器的控制设备中接收其类型指示需要中断DC电流的操作事件的系统状态信号;根据接收的系统状态信号的类型确定要用于中断DC电流的HVDC断路器分段和/或HVDC断路器分段组的数量;以及向所述HVDC断路器发送一个或多个对应的分段激励信号以使所述数量的HVDC断路器分段和/或HVDC断路器分段组跳闸。


图I示出了 HVDC断路器的示例。图2示出了包含HVDC断路器的用于功率传送的HVDC系统的示例。图3示出了分段式HVDC断路器设计的示例,其中该HVDC断路器包括四个HVDC断路器分段。图4示出了包括连接到分段式HVDC断路器的控制设备的HVDC断路器系统的示例,该控制设备设置成控制分段式HVDC断路器的跳闸。图5是由控制设备执行的用于控制分段式HVDC断路器的方法示例。图6是由系统中的控制设备执行的方法示例,其中控制设备设置成接收指示断续器不成功操作的分段状态信号。图7是用于控制分段式HVDC断路器的硬件实现的激励控制机构的示例。图8是用于控制分段式HVDC断路器的软件实现的激励控制机构的示例的示意性例证。图9是HVDC断路器系统的示意性例证,其中HVDC断路器可由两个独立控制设备独立控制。图10是包括分段式HVDC断路器的HVDC系统示例的示意性例证。图11是包括分段式HVDC断路器的另一个HVDC系统示例的示意性例证。
具体实施方式

图I中示意性例证了 HVDC电路断路器100的示例。图I的HVDC电路断路器100包括连接在两个连接点IlOa与IlOb之间的机械断续器105。谐振电路115并联连接到断续器105。非线性电压相关电阻器120也并联连接到断续器105。非线性电阻器120的电阻随着电压增大而减小。谐振电路115包括电容130以及电感125。当通过打开断续器105中断包括图I的HVDC电路断路器100的电流承载电路时,在断续器触点135a与135b之间构建电弧。该电弧具有负电阻的特性-电弧电压随着电流增大而减小。电弧电压因此不完全恒定,并且因此,借助谐振电路115构建电流/电压振荡。如果谐振电路适当定大小,则电流零交叉将发生,在此电弧将被消除。电流然后将被换向到电容130,其将被充电,并且将在电容130和非线性电阻120上构建电压。随着非线性电阻120上的电压增大,电流将被换向到非线性电阻120。从断续器105到非线性电阻器120的换向过程相当快。通过断路器100的DC电流因此通常将由于电路的总电感而在换向过程期间几乎恒定。图2中示意性例证了其中借助HVDC线路120连接两个HVDC转换器205的HVDC系统200的示例,其中仅示出一半的系统200,包括一个HVDC转换器205。图2的HVDC线路210连接到HVDC断路器100,借助它HVDC线路210可被断开。图2的HVDC系统200的HVDC线路210的另一端(未示出)经由另一个HVDC断路器100连接到类似转换器205。在图2中,已经通过箭头255指示了 HVDC线路210上的接地故障。图2中示出的HVDC转换器205连接到AC电源207。为了例证性目的,图2的HVDC系统200被显示为单极HVDC系统,其中接地的电极线路215用于返回电流。然而,本发明可应用于所有类型HVDC系统200,包含双极系统。 位于HVDC转换器205的AC侧上的HVDC系统200的设备被说成形成HVDC系统200的AC侧的一部分,而位于HVDC转换器205之间的设备被说成形成HVDC系统200的DC侧的一部分。AC电路断路器220被显示在HVDC系统200的AC侧上,还有变换器225。在DC侧上,在断路器100的两侧上都包含放电器(arrester)235以便保护HVDC系统200免于过电压。而且,在DC侧上包含电流测量设备240,以便便于测量HVDC线路210中的电流;以及电压测量设备245,用于测量HVDC系统200中一位置处的电压。电流测量设备240可以是任何类型的DC电流换能器。图2的电压测量设备245位于转换器205与断路器100之间。在系统200中也可包含另外的或备选的监视设备和保护装置。如图2所示,切断开关250可与断路器100串联连接以在HVDC线路210不得不断开的情形下HVDC断路器100跳闸之后完全隔离转换器205 (在期望时)。HVDC系统200通常包含为了清楚起见已经在图2中省略的另外的设备。HVDC断路器100通常被定大小以便使在具体电压的具体电流断路。例如,非线性电阻120可设计成使得其电阻在具体电压下降,这个电压值例如以这种方式选择在断路器100的额定浪涌电流的电压降将依据断路器100的额定电压;电容130可选择成使得打开断续器105时的电流振荡将充分大以消除电弧电流,等等。在额定浪涌电流时非线性电阻120上的电压经常被称为开关脉冲保护电平(SIPL)。当HVDC断路器100用于在短路或接地故障情形(下文称为线路故障情形)时中断DC电流时,断路时间经常是用于限制该系统无故障部分中功率传送干扰的关键因素。由短路电流引起的系统应力和损坏风险通常增大了允许短路电流在系统中流动的较长时间。然而,在若干不同环境下,借助HVDC断路器100中断HVDC系统200中的DC电流 可能是期望的。如上面讨论的,在HVDC线路210上线路故障的情况下,HVDC线路210的断路可能非常紧迫,以便限制由短路电流引起的干扰和损坏。有时可能还期望在正常操作下断开HVDC线路210。例如,HVDC断路器100可能用于从HVDC线路210断开HVDC转换器205 ;从多站HVDC系统200断开HVDC线路210 ;等等。然而,对用于在正常操作期间使HVDC线路210断路的HVDC断路器100的要求通常不同于对用于使有故障线路断路的HVDC断路器100的要求。在线路故障情形(诸如短路或接地故障),在断路器100上所需的电压一般超过额定电压。当在正常操作期间使HVDC线路210断路时,另一方面,所需电压小得多,通常在20%-40%额定电压的数量级。如果设计成建立高得多的反电压的断路器100用于在正常操作期间使HVDC线路断路,则电压瞬变将发生,这将给系统200的其它部分施压并干扰系统200的其它部分。在正常操作期间,通常重要的是,HVDC线路210的断路不以不可接受的方式干扰HVDC系统200操作,而时间可能不是这种关键因素-如果电流断路花了时间,则没有危害。在短路或接地故障情形,另一方面,电流断路是紧迫的,并且电流快速断路一般相比将HVDC系统200的其它部分中的干扰保持在低电平具有更高优先级。而且,电压应力将较小,这是因为HVDC断路器100 —侧上的电压是零。在正常负载断路时,HVDC断路器100两侧上的电压达到额定电压,在其顶上将加上来自HVDC断路器100的瞬变。通过非线性电阻器120的电流的时间导数的绝对值随着非线性电阻器120上电压的增大而增大。因此,非线性电阻器120的属性影响HVDC断路器100的电流断路时间。非线性电阻120上的电压越高,电流减小的速率将越高。由此在线路故障情形,期望非线性电阻器120的SIPL的大值。然而,用的SIPL越大,将发生的瞬变越大,这将对系统200的放电器235等施压。因此,在用于在正常操作期间使HVDC线路210断路的HVDC断路器100中,通常将期望非线性电阻器120的SIPL的值比在线路故障情形中更小。用具有更小SIPL的非线性电阻器120,瞬变将更小,以断路操作速度为代价。通过串联连接HVDC断路器分段的集合(HVDC断路器分段和/或预先选择的HVDC断路器分段组可单独地被控制),可实现适合于在线路故障情形和在正常操作期间使HVDC线路210断路的HVDC断路器。图3示意性例证了包括HVDC断路器分段305的集合的HVDC断路器300。这种HVDC断路器300可称为分段式HVDC断路器300。图3的HVDC断路器300包括四个HVDC断路器分段305,每个HVDC断路器分段305包括断续器105 ;具有电容器130的谐振电路115 ;以及非线性电阻器120。HVDC断路器分段305的集合可包含任何数量的可单独地被控制的HVDC断路器分段和/或超过I的HVDC断路器分段的组。在图3的示例中,所有四个HVDC断路器分段305分别可以是可单独地被控制的。在该备选中,图左侧的两个HVDC断路器分段305可形成第一可控组,并且图右侧的其余两个HVDC断路器分段305可形成第二可控组,其中每组的HVDC断路器分段设置成同时被操作。任何其它组合都是可能的,例如,最远离左右侧的HVDC断路器分段305可能是可被分开控制的,并且中间的两个HVDC断路器分段305可形成可控组。HVDC断路器分段300的断续器105通常具有激励断续器105的触点135分开的机械布置。断续器105例如可以是压力式断路器(pufferbreaker),也称为活塞断路器(piston breaker);自通风断路器(self-blast breaker)或任何其它适当的断路器。断续器105的变形可包含SF6或真空断路器。断续器105在备选中可以是功率半导体断续器或开关,或者独立或者与其它机械断续器和/或功率半导体断续器组合。机械断续器105的激励器例如可以是弹簧操作机构、气动操作机构、液压操作机
构、液压弹簧操作机构或任何其它适当机构。为了允许分开控制HVDC断路器300的HVDC断路器分段305,不同HVDC断路器分段305的激励机构应该优选在物理上分开并且可单独地被控制。HVDC断路器分段305例如可设置成接收将使其断续器105跳闸的分段激励信号。可直接从外部控制设备接收这种分段激励信号或经由HVDC断路器300中设置成接收一个或多个分段激励信号并将一个或多个这种信号分布到一个或多个相关HVDC断路器分段305的装置接收这种分段激励信号。这种装置例如可以是处理器或其它逻辑电路。在包括串联连接的HVDC断路器分段305的集合的HVDC断路器300中,响应于操作事件跳闸的HVDC断路器分段305的非线性电阻器120将一起用于吸收中断过程的能量。因此,每个非线性电阻器120上的电压将小于在要使用仅具有一个HVDC断路器分段的HVDC断路器100的情况下。由此,可使用具有较低SIPL值的非线性电阻器120。结果,电容130经受的最大电压将更低,并且可以减小提供电容130的电容器的物理大小。通过在HVDC断路器300中提供串联连接的HVDC断路器分段305的集合,其中这些分段或者一个接一个或者成组地或者以它们的混合方式可被单独地控制,HVDC断路器300的断路能力可适合于具体操作事件的需求。例如,HVDC断路器300可设计成使得当集合中的所有HVDC断路器分段305同时跳闸时,HVDC断路器300的HVDC断路能力对应于线路故障情形的要求。因此,在线路故障情形的操作事件中,这种HVDC断路器300的所有HVDC断路器分段305都将跳闸。另一方面,在正常操作期间断开HVDC转换器205或HVDC线路210的操作事件中,例如为了维护目的,可能仅使这种HVDC断路器300的一个或一些HVDC断路器分段305跳闸就足够了,这是因为时间要求不那么严格。由线路断路动作引起的任何电压瞬变因此相比设计成在线路故障情形使HVDC线路200断路的大HVDC断路器100要跳闸的情况将更小。因此,包括串联连接的可单独地被控制的HVDC断路器分段305或HVDC断路器分段组的HVDC断路器300可适应目前的需求,并提供按需的电流断路属性。响应于具体操作事件要跳闸的HVDC断路器分段305数量可能取决于事件类型。可能需要使HVDC断路器300的一个或多个HVDC断路器分段305或HVDC断路器分段305组跳闸的操作事件的示例是=HVDC转换器205的预定断开;经由HVDC断路器300连接的HVDC线路210上的接地故障;到HVDC转换器205的辅助功率损耗等。要跳闸的HVDC分段305的适当数量和/或HVDC分段305组的适当数量对于具体事件可设置成使得获得快速断路操作与小瞬变之间的适当平衡。图4中示意性例证了 HVDC断路器系统401的示例,HVDC断路器系统401包括HVDC断路器300和用于单独地控制HVDC断路器300的HVDC断路器分段305的跳闸动作的控制设备400。在图4的示例中,控制设备400显示为控制包含四个HVDC断路器分段305的HVDC断路器300的跳闸动作,其中为了提高附图的清楚性,仅对于它们中的一个指示了附图标记。然而,控制设备400可设计成控制包括任何数量HVDC断路器分段305的HVDC断路器300。尽管图4中显示为两个分开的物理实体,但断路器300和控制设备400可合并到同一物理装置中(如果期望的话)。图4的控制设备400包括激励控制机构405、系统状态信号接口 410和分段激励信号接口 415,其中激励控制机构405连接到系统状态信号接口 410和分段激励信号接口 415。系统状态信号接口 410设置成接收系统状态信号420。系统状态信号420例如可以是由设置成检测在HVDC系统200的具体部分中发生的具体故障的保护装置生成的信号。可生成系统状态信号420的保护装置的示例是图2的电流测量设备240和电压测量设备245,它们设置成感测HVDC线路210上的DC线路故障。可使用不同的保护装置,其可设置成比较在HVDC线路210两端的电流,或确定流入包含多于两个HVDC转换器205的HVDC系统200中的DC总线的电流之和。保护装置可位于系统200中的适当位置,例如以便检测接地故障、线路故障、开关故障、过电流、HVDC转换器205中的内部故障等。保护装置一般是本领域众所周知的,并且在本文将不做进一步讨论。操作和维护(0&M)系统也可设置成生成系统状态信号420,系统状态信号420例如在HVDC线路210的预定断路操作情况下(如果期望的话)由系统状态信号接口 410接收。系统状态信号420也可借助用户接口以人工方式被输入到系统状态信号接口 410中。由系统状态信号接口410接收的任何系统状态信号420都将被中继到激励控制机构405。该激励控制机构设置成接收至少两种类型的系统状态信号420。激励控制机构405设置成以相同方式对其响应的系统状态信号420将被称为属于相同系统状态信号类型。相同类型的不同系统状态信号420可来自不同的系统状态信号源。基于一个或多个接收的系统状态信号420的一种或多种类型,激励控制机构405将确定要跳闸的HVDC断路器分段305和/或HVDC断路器分段305组的数量。而且,激励控制机构405将经由分段激励信号接口 415向HVDC断路器300发送指示应该跳闸的HVDC断路器分段305的数量和/或HVDC断路器分段305组的数量的至少一个分段激励信号435。在一个实现中,这种分段激励信号435被作为单独的分段激励信号435发送到应该跳闸的HVDC断路器分段305的每一个断续器105(参考图4),这种分段激励信号435例如以脉冲形式。在另一个实现中,这种分段激励信号435可作为指示应该跳闸的HVDC断路器分段的数量和/或HVDC断路器分段组的数量的单个信号被发送。根据HVDC断路器300的设计,由控制设备400发送的分段激励信号435例如可以是电学脉冲信号、光学脉冲信号、电气数据信号、光学数据信号、无线电
号等。在图4中,每个HVDC断路器分段305被显示为还包含设置在每个断续器105处的可选分段状态指示装置440,以便检测具体HVDC断路器分段305的跳闸是否已经成功。分段状态指示装置440例如可以是用于指示断续器105是否已经以机械方式打开的辅助触点;被连接以测量断续器105的打开触点135a与135b之间的任何电弧电流的DC电流测量装置;二者的组合;或能够检测断续器105是否已经正确打开和/或从断续器105到电容器130的电流换向是否已经成功发生的任何其它适当装置。指示HVDC断路器分段305的断续器105是否正确操作的分段状态信号445然后可从分段状态指示装置440发送到控制设备400。图4的控制设备400包括设置成接收此类分段状态信号445的分段状态信号接口 450。分段状态信号接口 450设置成将任何接收的分段状态信号445中继到激励控制机构405。激励控制机构405可有利地设置成响应于接收到指示HVDC断路器分段305的激励已经成功的分段状态信号445向尚未打开的HVDC断路器分段305 (诸如例如冗余HVDC断路器分段305)发送分段激励信号435。通过在断续器105处提供分段状态指示装置440,检测断续器105的有故障操作的时间可大大缩减该时间通常可落入I-IOms 数量级的时标内,其相比仅在已经发现HVDC断路器300还未成功地迫使通过HVDC断路器300的电流为0之后检测到有故障操作的情形大大缩减了。HVDC断路器300可设计成使得没有、一些或所有HVDC断路器分段305和/或HVDC断路器分段305组包含分段状态指示装置440。分段状态信号445可被看作系统状态信号420的一种类型,并且分段状态信号接口 450可被看作系统状态信号接口 410的一部分。相同或不同的物理接口可用于实现系统状态信号接口 410和分段状态信号接口 450。而且,接口 410和415可以是相同或不同的物理接口。激励控制机构可优选地设计成使得,如果同时接收到不同类型的系统状态信号,则需要打开最高数量HVDC断路器分段305的类型的信号将普遍。以这种方式,能确保将总是指令所需数量的HVDC断路器分段305打开。HVDC断路器300可设计成包含一个或多个冗余HVDC断路器分段305,使得在最坏情况线路故障情形下,还将需要少于所有HVDC断路器分段305的跳闸。这可通过确保少于所有HVDC断路器分段305的非线性电阻器130的SIPL值之和超过HVDC断路器300的额定线路电压来实现,使得在少于所有HVDC断路器分段305跳闸时在HVDC断路器300上生成的反电压将以充分裕度(margin)超过额定电压,以中断该电流。由此,如果激励控制机构405例如通过接收到分段状态指示信号445发现HVDC断路器分段305的有故障操作,则在最坏情况情形下还将存在另一个HVDC断路器分段305跳闸。如果期望的话,在HVDC断路器300中还可提供冗余HVDC断路器分段305,其中没提供分段状态指示装置440。在这种实现中,可响应于最坏情况线路故障情形,使所有HVDC断路器分段305 (包含冗余HVDC断路器分段)立即跳闸,由此得出断路速度-当所有HVDC断路器分段305正确操作时-其超过了用于使短路的HVDC线路210断路的需要。图5示出了示意性例证激励控制机构405的示例的操作的流程图,激励控制机构405形成用于控制包括HVDC断路器分段305的集合的HVDC断路器300的跳闸动作的控制设备400的一部分。在图5的步骤500,激励控制机构405接收一个或多个系统状态信号420。在步骤505,激励控制机构405确定HVDC断路器300的多少HVDC断路器分段305或HVDC断路器分段组应该跳闸。该确定基于根据接收的一个或多个系统状态信号420的类型确定的目前操作事件。系统状态信号420的类型在一个实现中可根据包含在接收的系统状态信号420自身中的信息导出和/或根据在状态信号输入接口 410的哪个输入端接收系统状态信号导出,这是因为可在不同输入端接收由不同源生成的系统状态信号。如果期望的话,另外的信息(诸如例如包含在之前接收的系统状态信号420中的信息)也可用作判定的基础。在步骤515,分段激励信号435然后被发送到所需数量的HVDC断路器分段和/或HVDC断路器分段305 组。在一个实施例中,步骤505不仅可包含与响应于一个或多个系统状态信号420多少HVDC断路器分段305和/或其组应该跳闸有关的判定,而且可包含在HVDC断路器300部分跳闸的情况下(即当要打开少于所有HVDC断路器分段305以便使电流断路时的情况下)选择哪些HVDC断路器分段305和/或其组应该跳闸的步骤。也在部分跳闸的情况下,一旦电流已经中断,其余的并且由此闭合的HVDC断路器分段305就可最终打开,下文将对此进行讨论。执行选择哪些HVDC断路器分段305和/或其组应该打开例如可基于从随机数发生器获得的值,或基于关于上次HVDC断路器300部分跳闸使用哪些HVDC断路器分段305和/或其组的信息,或基于有关每个HVDC断路器分段305已经跳闸多少次的信息,或基于接收的系统状态信号420的类型,或以任何其它适当方式。通过改变在HVDC断路器300 部分跳闸时使哪些HVDC断路器分段305和/或其组跳闸,和/或改变哪个HVDC断路器分段305是冗余断路器分段305-如果有的话_,不同HVDC断路器分段305的使用可能近似相同。由此,不同HVDC断路器分段305将以近似相同的速率老化。而且,检测到有故障HVDC断路器分段300的机会将增大。在一个实施例中,相反在HVDC断路器300中执行选择使哪些HVDC断路器分段和/或其组跳闸的步骤,该选择基于类似原理。备选地,不执行选择步骤,使得将使相同HVDC断路器分段305响应于相同类型的系统状态信号420跳闸。在一个实施例中,在具体操作事件时跳闸的HVDC断路器分段305和/或其组同时跳闸,并且任何另外的HVDC断路器分段305将保持闭合。在另一个实施例中,如果使电弧电流断路需要打开少于所有HVDC断路器分段305,则一旦电流已经中断,就还可打开一些或所有其余的并且由此闭合的HVDC断路器分段305,以便降低每个非线性电阻器130将冒险经受的最大电压。例如,一旦已经通过所需的HVDC断路器分段305的立即跳闸中断了电流,则其余闭合的HVDC断路器分段305就可以具体时间间隔(例如在IO-IOOms范围内)一个接一个地按顺序跳闸。不同的HVDC断路器分段305的跳闸定时例如可通过激励控制机构405以顺序方式发送分段激励信号435来控制。备选地,一旦电弧电流已经中断,则其余闭合的HVDC断路器分段305就可全部同时打开。不同的HVDC断路器分段305跳闸之间的时间间隔可取决于跳闸发生所响应的操作事件,或可独立于操作事件。如相关于图4所提到的那样,HVDC断路器分段305可选地可包含分段状态指示装置440。图6中示意性例证了由控制设备400-例如由激励控制机构405-在接收到分段状态信号445时执行的方法的示例的流程图。在步骤600,从分段状态指示装置440接收分段状态信号445。在步骤605,分析分段状态信号445,以便确定该分段状态信号445涉及的断续器105是否已经正确跳闸。这个分析例如可包含在分段状态指示装置440包含电流测量装置的情况下,检验电弧电流是否已经达到具体值,和/或如果分段状态指示装置包含辅助触点,检验断续器触点135a、b是否已经正确分开。如果断续器105已经成功跳闸,则进入步骤615,在其中该方法结束。然而,如果分段状态信号445指示断续器105尚未正确跳闸,则进入步骤610,在其中分段激励信号435被发送到当前闭合的另外的HVDC断路器分段305(参考图5的步骤515)。在一个实现中,如果HVDC断路器分段305的跳闸不成功,则HVDC断路器分段305的分段状态指示装置440将仅发送分段状态信号445。因此,在此实现中,可省略步骤605,并且在接收到分段状态信号445时将无条件地进入步骤610。激励控制机构435可借助硬件、或硬件和软件的适当组合实现。图7是激励控制机构405的硬件实现示例的例证。图7的激励控制机构405设置成控制具有五个HVDC断路器分段305的HVDC断路器300,其中一个HVDC断路器分段305是冗余的。尽管它们在图7中未示出,但是要由图7的激励控制机构控制的HVDC断路器分段300的五个HVDC断路器分段305在下文将称为HVDC断路器分段305i、305ii、305iii、305iv和305v,其中HVDC断路器分段305v被指定为冗余HVDC断路器分段。图7的激励控制机构405设置成经由系统状态信号接口 410接收如下系统状态信号类型的系统状态信号420 :类型420a的系统状态信号,类型420a的系统状态信号的接收 将引起激励控制机构405发送分段激励信号435以使四个HVDC断路器分段305i_iv立即跳闸;类型420b的系统状态信号,类型420b的系统状态信号的接收将引起激励控制机构405发送分段激励信号435以使一个HVDC断路器分段305i立即跳闸,并使其余HVDC断路器分段305ii-v以延迟为T的延迟顺序方式跳闸;类型420c的系统状态信号,类型420c的系统状态信号的接收将引起激励控制机构405发送分段激励信号435以使四个HVDC断路器分段305i-iv立即跳闸,并使其余HVDC断路器分段305v在延迟t之后跳闸;以及类型420d的系统状态信号,类型420d的系统状态信号的接收将引起激励控制机构405发送分段激励信号435以使两个HVDC断路器分段305i-ii立即跳闸,并使其余HVDC断路器分段305iii-v以延迟为T的延迟顺序方式跳闸。在图7中示出,激励控制机构405设置成从上面讨论的每一个系统状态信号类型420a-420d的两个不同源接收系统状态信号420,然而,激励控制机构405可设置成从任何数量的系统状态信号源接收具体控制信号类型的系统状态信号420,这种源例如是不同的保护装置、0&M系统、用户接口等。对于激励控制机构405设置成从多于一个源接收属于其的系统状态信号420的每一个系统状态信号类型,激励控制机构405包括输入“或”门。图7的输入“或”门700a-d设置成分别接收类型420a-d的所有系统状态信号402,它们由激励控制机构405形成其一部分的控制系统400接收,并且设置成在接收到相应类型420a-d的至少一个系统状态信号420时分别产生输出信号705a-d。输出信号705a_d在下文将称为跳闸信号705a_d。尽管在图I中,附图标记420、700&705和附图标记305、435、445、710、715&720仅以索引出现,其中在图7的描述中,索引a-e分别表示与不同系统状态信号420a_e的关系,并且索引i_v分别表示与不同HVDC断路器分段305i-v的关系,但当一般性地参考图7的这些装置时,经常省略这些索引。激励控制机构405对于要由激励控制机构405形成其一部分的控制设备400控制的每个HVDC断路器分段305还包括继电装置710。在图7中,示出了继电装置710i_v。继电装置710设置成在接收到跳闸信号705时经由接口 415发送分段激励信号435。来自输入“或”门700的输出端可连接到一个或多个继电装置710的输入端,使得系统状态信号420的接收将使分段激励信号435被发送到HVDC断路器300的一个或多个HVDC断路器分段305。来自输入“或”门700的输出端例如可直接或者半直接-经由输出“或”门715,如下面讨论的_,或经由一个或多个时间延迟机构720连接到继电装置710的输入端。时间延迟机构720设置成将跳闸信号705到继电装置710的传送延迟一时段T。图7的激励控制机构405中包含四个时间延迟机构720ii-v,四个时间延迟机构720ii-v级联地串联连接以分别产生T、2 T、3 T或4 T的延迟。如果期望的话,继电装置710可经由适当数量的时间延迟机构720连接到输入“或”门700的输出端,以响应于由输入“或”门700接收的系统状态信号420产生由继电装置710传送的分段激励信号435的适当延迟。例如当通过打开少于所有可用HVDC断路器分段305来执行HVDC断路器的初始打开时,一个或多个分段激励信号435的延迟可能是期望的,使得通过最终打开其余闭合的HVDC断路器分段305,断路器300可提供HVDC线路210的两部分的彼此更好的长期隔离。其余HVDC断路器分段305的级联或顺序打开然后可能是有益的。时段T例如可在IO-IOOms的范围。时段T对于激励控制机构405的所有时间延迟机构720可能都是相同的,或者可在不同时间延迟机构720之间改变。继电装置710可连接到多于一个输入“或”门700,使得可由多于一种类型的系统状态信号420触发由继电装置710传送分段激励信号435。 因此,输入“或”门700与继电装置710之间的连接例如可以是直接连接;经由称为输出“或”门715的另外的“或”门715的连接,服务其它系统状态信号类型的其它“或”门700也连接到“或”门715 ;经由延迟机构720的连接;或经由延迟机构720和输出“或”门715的连接。当由具体继电装置710触发分段激励信号435应该立即并仅响应于一种类型系统状态信号420发生时,可使用直接连接。图7中未示出这种连接,但图7的输入“或”门700与继电装置710之间的所有连接都是经由输出“或”门715的连接。图7中示出了五个输出“或”门715i-v,每个的输出端都连接到继电装置710i-v。因此,可以分别通过多于一种类型的系统状态信号420使要由图7的激励控制机构405控制的HVDC断路器300的HVDC断路器分段305i-v跳闸。如上面提到的,要由图7的激励控制机构405控制的HVDC断路器300包括冗余HVDC断路器分段305v。图7的设置成向HVDC断路器分段305v发送激励控制信号435v的继电装置710v的输入端不直接连接到任何输入“或”门700a-d,而是经由时间延迟机构720连接到输入“或”门700a-d。然而,图7的激励控制机构405还包括设置成从HVDC断路器300接收分段状态信号445的输入“或”门700e,并且在下文称为分段状态输入“或”门700e。分段状态输入“或”门700e的输出端连接到服务于冗余HVDC断路器分段305v的继电装置710v的输入端,使得在接收到分段状态信号435时,将分段激励信号435v立即传送到HVDC断路器分段305v。用这种方式,如果HVDC断路器分段305i_iv之一的激励尚未成功,则可实现冗余HVDC断路器分段305v的快速激励。仅作为示例给出图7的激励控制机构,并且可以许多方式改变。例如,如果HVDC断路器分段305i-v的立即激励是优选的,则可省略一些或所有时间延迟机构720。另一方面,如果将期望所有类型的系统状态信号420的接收都应该触发至少一个HVDC断路器分段435的时间延迟跳闸,则所有输入“或”门700a-d的输出端都可连接到至少一个时间延迟机构420。继电装置710的数量可改变为对应于要控制的HVDC断路器300的HVDC断路器分段305的不同数量。“与或”门的数量可改变为对应于系统状态信号类型的不同数量。如果激励控制机构405设置成仅从一个源接收具体系统状态信号类型的系统状态信号420,则可省略用于这个具体类型的“或”门700。以常规方式借助二极管705设计图7的输入“与或”门700a_e和输出“或”门715i-v。继电装置710例如可借助继电器和继电器线圈实现,如图7所指示的。借助生成持续时间t的脉冲的脉冲发生器、继电器线圈和时间延迟生成工具设计图7的时间延迟机构720。也可考虑实现“或”门700和715、时间延迟机构720和继电装置710的其它方式。图7中未示出系统状态信号接口 410、分段激励信号接口 415和分段状态信号接口450。这种接口例如可以是常规信号输入端/输出端。在图8中,示出了示意性例证图4控制设备400的备选方式,其中通过使用硬件和 软件的组合实现激励控制机构405。图8示出了控制设备400,控制设备400包括连接到以存储器形式的计算机程序产品805以及接口 410、415和450的处理构件800 (参考图4)。存储器805存储以计算机程序810形式的计算机可读代码构件,计算机程序810当由处理构件800运行时使激励控制机构405执行分段激励控制方法,图5和6中例证了该方法的示例。换句话说,激励控制机构405在这个实施例中将借助一个或多个通用处理器或特别开发用于控制设备400的一个或多个处理器结合用于执行分段激励控制的软件810实现。软件810例如可包含映射表,这种映射表例如将可包含在系统状态信号420中的可能值或可在其处接收系统状态信号420的系统状态信号接口 410的可能输入端映射到指示应该跳闸的HVDC断路器分段305和/或HVDC断路器分段305组的数量的第一值。在另外的实施例中,该映射可包含指示哪些HVDC断路器分段305和/或HVDC断路器分段305组应该跳闸的第二值。备选地,代替第一和第二值,映射表可只包含哪些HVDC断路器分段305和/或其组要跳闸而没有明确阐明它们的数量的指示。在图8中,软件810显示为存储在一个物理存储器805上,然而,软件810可被分在多于一个的物理存储器805上。存储器805可以是任何类型的非易失性计算机可读构件,诸如硬驱、闪存、EEPROM(电可擦除可编程只读存储器)、DVD盘、CD盘、USB存储器等。 为了进一步改进分段式HVDC断路器300的可靠性,分段式HVDC断路器300可与冗余控制系统组合。在图9中示出HVDC断路器系统401,包括设置成从两个独立操作的HVDC控制设备400A和400B接收分段激励信号435的分段式HVDC断路器300。图9的控制设备400A和400B又设置成分别接收源于独立源的系统状态信号420A和系统状态信号420B。为了更进一步改进HVDC断路器300的可靠性,HVDC断路器分段305可包含冗余跳闸机构,例如冗余跳闸线圈,它们各连接到控制设备400A和400B 二者。分段式HVDC断路器300和复制的控制系统的组合得到非常高程度的可靠性。没有单个偶然故障将引起HVDC断路器300的不成功操作。例如,如果状态信号420A失效,则对应的状态信号420B将仍由控制设备400B接收;如果控制设备400A失效,则控制设备400B将仍命令HVDC断路器300的所需操作;如果一个HVDC断路器分段305失效,则分段状态指示装置440可发起另外的HVDC断路器分段305的操作。而且,在当多个HVDC断路器分段305被命令中断DC电流时的大多数情况下,正确操作的HVDC断路器分段305将中断DC电流,即便一个HVDC分段305失效时也是如此。图10例证了包含具有三个不同HVDC断路器分段305的分段式HVDC断路器300的单极HVDC系统200,它们的跳闸由控制设备400控制。控制设备400设置成接收至少一个系统状态信号420,并确定响应于一个或多个接收的系统状态信号420要跳闸的HVDC断路器分段305的数量。控制设备400此外设置成向HVDC断路器分段305发送一个或多个分段激励信号435,响应于一个或多个分段激励信号435确定数量的HVDC断路器分段305中的断续器105将跳闸。为了例证的目的,作为示例示出了图10的单极HVDC系统200。然而,本文讨论的技术可应用于任何HVDC系统200-单极或双极的;具有电压源转换器205或线路换向转换器205 ;包括多个HVDC转换器站205的网络的系统或连接两个转换器站205的单个线路等。在图11中,示出了另一个HVDC系统200,其中在网络中经由HVDC线路210:1、210:2&210:3和 DC 总线 1100:1、1100:2&1100:3 设置7三个 HVDC 转换器站 205:1,205:2&205:3。而且,HVDC转换器205:1,205:2&205:3分别经由汇流条布置1103:1、1103: 2&1103:3连接至Ij DC总线1100:1、1100:2&1100:3。为了清楚起见,对于图11中出现的大多数组件类型,附图标记仅指示一次。在可应用的情况下,已经使用了与图2和9中相同的附图标记。分段式HVDC断路器300位于图11的系统200中的多个位置,使得HVDC线路210:1、210:2和210:3可有效地断开,或者HVDC转换器205:1、205:2、205:3有效地断开,取决于如此需要的若干操作事件。在图11中,分段式HVDC断路器300连接在HVDC线路 210: I、210:2和210:3的各端;以及HVDC转换器205与将HVDC转换器205连接到网络的DC总线1100之间。每个分段式HVDC断路器300都连接到控制设备400,其又连接到系统状态信号420的源。系统状态信号420的源例如可以是电流测量装置240、电压测量装置245或0&M系统1105。为了例证清楚性目的,控制设备400与系统状态信号240的源之间的连接仅已经指示为进入每个控制设备400的虚线。具体控制设备400通常连接到监视需要由控制设备400控制的HVDC断路器300的跳闸(包括部分跳闸)的操作事件的系统状态信号240的源。通过以使得可对于不同操作事件定制系统200中短断路时间与低瞬变之间的折中的方式提供有效地使HVDC线路210断路的可能性,当系统200的另一部分正在呈现出故障或应该得到服务或维护时,使用分段式HVDC断路器300可大大降低正确操作的HVDC转换器205或HVDC线路210必须退出操作的风险。例如,如果图11的HVDC线路210:1呈现出线路故障,则即便HVDC线路210:1必须退出操作,HVDC转换器205:1,205:2 205:3也可继续经由HVDC线路210:2和210:3向网络提供电力。例如可依据图I的HVDC断路器100或依据任何其它适当的HVDC断路器设计来设计HVDC断路器分段305。例如,HVDC断路器分段305可包含预先插入电阻器以便在重新闭合HVDC断路器300时限制涌入电流;和/或用于帮助生成电流振荡的电子支持电路以便在打开断续器105时迫使电流为0,等等。在EP0660352中公开了电子支持电路的示例。在所附的附图中,已经例证了 HVDC断路器300,使得分段激励信号435由HVDC断路器分段305的断续器105直接接收。然而,本发明同样可应用于其中分段激励信号435最初由HVDC断路器300的另一部分(诸如例如控制断续器105的操作的处理器)接收的HVDC断路器设计。HVDC断路器分段305的电容130的大小通常选择成使得预计在断路器300中出现的最大电流-例如在额定线路电流十倍的数量级-可有效地换向到电容130。谐振电路115的电感125经常可由电路115的杂散电感形成,使得不需要单独的电感125,或备选地,可在谐振电路115中引入电感器。
HVDC断路器300的不同HVDC断路器分段305可以一样,或者可设计成具有不同的属性。例如,第一 HVDC断路器分段305的非线性电阻器120可具有与另一个HVDC断路器分段305的非线性电阻器120不同的值。这也将导致对电容130的不同要求。而且,一些但不是所有HVDC断路器分段305可包含预先插入电阻器;一些但不是所有HVDC断路器分段305可包含电子支持电路,一些但不是所有HVDC断路器分段305可包含分段状态指示装置440,等等。HVDC断路器300的总SIPL值的值-即不同HVDC断路器分段305的非线性电阻器120的SIPL值之和-不包含任何冗余HVDC断路器分段305的SIPL值,优选应该超过HVDC线路210的额定线路电压。总SIPL值与额定线路电压之间的比率值优选可设置成,使得非线性电阻器120不会受损,即便打开的HVDC断路器300在更长时段期间被暴露于全线路电压时也是如此,并且使得在接地故障情况下,来自HVDC线路210的通电(energized)的HVDC转换器205有效地与HVDC线路210隔离。总SIPL的适当值除了别的还取决于形成非线性电阻器120的材料的属性。当由氧化锌形成非线性电阻器120时,这个值例如可以是
1.5-1. 8倍的额定线路电压。如果在HVDC断路器300中包含一个或多个冗余HVDC断路器分段305,则包含所述一个或多个冗余分段的HVDC断路器300的非线性电阻器的所有SIPL值之和通常超过期望的总SIPL值至少冗余HVDC断路器分段305的SIPL值。如上面提到的,非线性电阻器120例如可以是以提供期望SIPL的配置设置的氧化锌电阻器。非线性电阻器120备选地可由其它材料(诸如例如碳化硅)形成。尽管在所附独立权利要求中阐述了本发明的各种方面,但本发明的其它方面包含在以上说明书和/或所附权利要求书中给出的任何特征的组合,并且不只是在所附权利要求书中明确阐述的组合。本领域技术人员将认识到,本文给出的技术不限于在所附附图和前面的具体实施方式
中公开的实施例,给出它们仅出于例证目的,而是可以许多不同方式实现它,并且它由如下权利要求书定义。
权利要求
1.一种HVDC断路器(300),包括串联连接的至少两个HVDC断路器分段(305),其中至少一个所述HVDC断路器分段和/或至少一组所述HVDC断路器分段设置成相对于其它HVDC断路器分段而言单独地被控制,并且其中以使得在所述HVDC断路器跳闸时跳闸的HVDC断路器分段数量取决于所述跳闸发生所响应的操作事件的方式设置所述HVDC断路器。
2.如权利要求I所述的HVDC断路器,其中HVDC断路器分段包括至少一个以机械方式操作的断续器(105)和/或至少一个功率半导体断续器。
3.如权利要求I或2所述的HVDC断路器,其中至少一个HVDC断路器分段包括分段状态指示装置(440),所述分段状态指示装置(440)设置成检测HVDC断路器分段的操作是否不成功,并且如果未成功地操作HVDC断路器分段则生成指示不成功操作的分段状态信号(445)。
4.如以上权利要求中任一项所述的HVDC断路器,其中所述HVDC断路器包括至少一个冗余HVDC断路器分段。
5.一种用于控制HVDC断路器(300)的跳闸的控制设备(400),所述控制设备包括 系统状态信号接口(410),设置成接收至少两个不同类型(420a; 420b; 420c; 420d; 445)的系统状态信号(420),其中所述系统状态信号类型指示所述HVDC断路器形成其一部分的HVDC系统(200)中的操作事件; 分段激励信号接口(415),设置成向所述HVDC断路器传送至少一个分段激励信号(435),所述至少一个分段激励信号(435)使所述HVDC断路器的至少一个可单独地被控制的HVDC断路器分段和/或HVDC断路器分段组跳闸;以及 激励控制机构(405),连接到所述系统状态信号接口和所述分段激励信号接口,其中 所述激励控制机构设置成基于与至少一个已接收系统状态信号(420)的类型相关的信息确定应该跳闸的HVDC断路器分段和/或HVDC断路器分段组的数量,并经由所述分段激励信号接口发送一个或多个对应的分段激励信号以使所述数量的HVDC断路器分段和/或HVDC断路器分段组跳闸。
6.如权利要求5所述的控制设备,其中 所述激励控制机构还设置成响应于接收到所述系统状态信号选择要使哪些所述HVDC断路器分段和/或HVDC断路器分段组跳闸,并经由所述分段激励信号接口发送所述一个或多个对应的分段激励信号以使选择的HVDC断路器分段和/或HVDC断路器分段组跳闸。
7.如权利要求5或6所述的控制设备,还包括 接口(450),设置成从分段状态指示装置(440)接收指示HVDC断路器分段不成功操作的分段状态信号(445);并且其中 所述激励控制机构设置成响应于接收到指示HVDC断路器分段不成功操作的分段状态信号发送分段激励信号以使当前闭合的HVDC断路器分段或HVDC断路器分段组跳闸。
8.如权利要求5-7中任一项所述的控制设备,其中 所述激励控制机构设置成响应于接收到至少一种类型系统状态信号发送一个或多个对应的分段激励信号以使至少一个HVDC断路器分段和/或HVDC断路器分段组在第一时间点跳闸,并且使至少另外的HVDC断路器分段和/或HVDC断路器分段组在另一时间点跳闸。
9.一种HVDC断路器系统,包括如权利要求1-5中任一项所述的HVDC断路器和如权利要求5-8中任一项所述的控制设备。
10.如权利要求9所述的HVDC断路器系统,还包括 另外的如权利要求6-8中任一项所述的控制设备(400B),其中所述HVDC断路器设置成由第一控制设备(400A)和所述另外的控制设备彼此独立地控制;并且其中 所述另外的控制设备设置成从不同于第一控制设备的至少一个不同分段状态信号源(440, 445, 1105)接收至少一个分段状态信号。
11.一种HVDC功率传送系统(200),包括如权利要求9或10所述的HVDC断路器系统。
12.—种中断HVDC系统(200)中的DC电流的方法,所述方法包括 在用于控制具有至少两个HVDC断路器分段(305)的HVDC断路器(300)的控制设备(400)中接收(500)系统状态信号(420),所述系统状态信号(420)的类型指示需要所述DC电流的所述中断的操作事件; 根据接收的所述系统状态信号的类型确定(505)要用于中断所述DC电流的HVDC断路器分段和/或HVDC断路器分段组的数量;以及 向所述HVDC断路器发送(515) —个或多个对应的分段激励信号(435)以使所述数量的HVDC断路器分段和/或HVDC断路器分段组跳闸。
13.如权利要求12所述的方法,其中 借助映射表执行所述确定,其中所述映射表对于至少两个系统状态信号类型将所述系统状态信号类型映射到在接收到那个系统状态信号类型时要跳闸的HVDC断路器分段数量。
14.如权利要求12或13所述的方法,其中 所述确定步骤还包括响应于接收到所述系统状态信号选择哪些所述HVDC断路器分段和/或HVDC断路器分段组要跳闸;以及 发送一个或多个对应的分段激励信号以使选择的HVDC断路器分段和/或HVDC断路器分段组跳闸。
15.如权利要求12-14中任一项所述的方法,还包括 从分段状态指示装置(440)接收(600)指示HVDC断路器分段不成功操作的分段状态信号(445);以及 响应于接收到所述分段状态信号发送(610)分段激励信号以使当前闭合的HVDC断路器分段或HVDC断路器分段组跳闸。
全文摘要
本发明涉及包括串联连接的至少两个可单独地被控制的HVDC断路器分段(305)的HVDC断路器(300),其中以使得在HVDC断路器跳闸时跳闸的HVDC断路器分段数量取决于跳闸发生所响应的操作事件的方式设置HVDC断路器。本发明还涉及用于控制HVDC断路器的控制设备(400)以及使HVDC线路断路的方法。该方法包括接收(500)指示需要使HVDC线路断路的操作事件的系统状态信号以及确定(505)断路所需的HVDC断路器分段数量。
文档编号H01H33/16GK102656656SQ200980163168
公开日2012年9月5日 申请日期2009年10月27日 优先权日2009年10月27日
发明者祖林 L-E. 申请人:Abb 技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1