一种废旧镀镍稀土-铁-硼系永磁材料的再生利用方法

文档序号:6818279阅读:162来源:国知局
专利名称:一种废旧镀镍稀土-铁-硼系永磁材料的再生利用方法
技术领域
本发明涉及一种废旧镀镍稀土 -铁-硼系永磁材料的再生利用方法。特别地,本发明涉及一种利用废旧镀镍稀土-铁-硼系永磁材料制备新的稀土永磁材料的方法。
背景技术
随着国际工业化的发展,功能材料的使用日趋广泛,磁性材料领域的发展日新月异。我国的稀土矿探明储量占世界的80%,更使我国的稀土永磁材料领域发展迅猛。但因为稀土永磁材料产品的自身特性和加工因素的原因,导致稀土永磁材料产品在生产过程中易产生缺角、气孔、开裂、刀丝等缺陷;而且由于材料自身特性原因,产品在使用过程中也容易产生功能老化失效现象,导致磁性功能丧失。所以,对废旧稀土永磁材料的功能再生利用极为重要。在进行功能再生利用的稀土永磁材料产品中,镀镍的稀土永磁材料产品占一半以上的比例。而传统的镀镍稀土永磁材料的再生利用方法采用退镀工艺,但是退镀工艺存在工艺条件复杂、成本高、易造成环境污染等缺陷。本发明专利根据稀土 -铁-硼系永磁材料吸氢后晶格膨胀破碎的自身特性,有效的分离镍层,再通过添加辅助材料,修复材料缺陷,达到材料的功能再生,实现了回收过程的工艺简单、成本低、不污染环境,对环境清洁、无害等特点。

发明内容
本发明的目的在于提供一种工艺简单、成本低、不污染环境的废旧镀镍稀土-铁-硼系永磁材料的再生利用方法,所述再生利用方法包括以下步骤(1)对所述废旧镀镍稀土-铁-硼系永磁材料进行人工分拣和擦除,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质;( 对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行锤式机械破碎,得到混合颗粒;(3)在真空压力为0. IPa的无氧环境下,充入氢气,保持压力为0. IMP,稀土-铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,在300°C 600°C下进行脱氢,得到镍层和颗粒的混合物,筛分分离,回收所述镍层,得到稀土 -铁-硼系永磁材料粉末;(4)向所述稀土-铁-硼系永磁材料粉末中加入稀土类辅助材料,混合均勻后进行球磨或气流磨,得到混合粉末;和(5)对步骤(4)得到的所述混合粉末进行取向成型,然后烧结、回火热处理,制得稀土永磁产品。其中,吸氢处理的具体步骤为将粗破碎后的混合颗粒通过阀门,加入到金属压力罐中,对压力罐进行抽真空,抽真空至0. lPa,充入氮气,再对压力罐进行抽真空,抽真空至 0. lPa,充入氢气,保持压力为0. 1MP,稀土-铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,在300°C 600°C下脱氢4小时,得到镍层和颗粒的混合物,粒径为0. 01 5mm的稀土 -铁-硼系永磁材料粉末,然后分离回收所述镍层。优选地,步骤⑵中混合颗粒的粒径为1 50mm;步骤(3)中粉末的粒径为 0. 01 5_ ;步骤(4)中混合粉末的粒径为0. 1 100 μ m。优选地,步骤(3)中脱氢时间为4小时。优选地,所述稀土类辅助材料为稀土金属、稀土金属合金、稀土金属氧化物、和稀土金属氟化物。优选地,所述稀土类辅助材料和所述稀土 -铁-硼系永磁材料粉末的质量比为 0. 005 0. 5 1。优选地,所述稀土金属选自la、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y中的一种或两种。优选地,所述稀土金属合金为(PrNd)14.4Fe79.8B5.8、或(PrNdHo) 14.4Fii79.8B5.8。优选地,所述稀土金属氧化物为Dy203。优选地,所述稀土金属氟化物为DyF3、或TbF3。优选地,脱氢处理后,使用10目的筛分离回收所述镍层。其中,所述吸氢处理的具体步骤为将粗破碎后的混合颗粒通过阀门,加入到金属压力罐中,对压力罐进行抽真空,抽真空至0. IPa,充入氮气,再对压力罐进行抽真空,抽真空至0. IPa,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气, 晶格膨胀,晶粒破碎,在300°C 600°C下脱氢4小时,得到镍层和颗粒的混合物,粒径为 0. 01 5mm的稀土 -铁-硼系永磁材料粉末,然后分离回收所述镍层。本发明所提供的废旧镀镍稀土-铁-硼系永磁材料的再生利用方法根据稀土-铁-硼系永磁材料在吸氢后晶格长大、并膨胀破碎的自身特性,有效地分离了镍层,然后通过添加辅助材料来修复废旧稀土 -铁-硼系永磁材料的缺陷,并在烧结、回火热处理过程中,利用稀土 -铁-硼系永磁材料自身的液相烧结原理和热力学原理,实现废旧镀镍稀土-铁-硼系永磁材料的再生利用。具体地说,首先,对废旧镀镍稀土-铁-硼系永磁材料进行表面处理,清除废旧镀镍稀土 -铁-硼系永磁材料表面的杂质,以得到洁净的镀镍稀土 -铁-硼系永磁材料。然后,对所得的镀镍稀土 -铁-硼系永磁进行机械破碎,得到粒径为1 50mm的颗粒。对这些颗粒进行吸氢处理,稀土 -铁-硼系永磁材料在吸氢后晶格长大、并膨胀破碎,从而使镍层与稀土 -铁-硼系永磁材料相分离,这样就可以通过一定目数的筛分离回收镍层。在该吸氢处理过程中,应避免氧的进入和参与。对于经过吸氢处理的稀土-铁-硼系永磁材料,加入一定量的辅助材料对该稀土 -铁-硼系永磁材料进行修复。其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.005 0.5 1。而所使用的辅助材料是稀土金属,例如la、Ce、Pr、Nd、Gd、Tb、Dy或Ho,稀土金属化合物,例如稀土金属的氧化物、氟化物, 稀土金属合金,是上述稀土金属、稀土金属化合物和稀土金属合金的复合添加。将辅助材料和稀土 -铁-硼系永磁材料混合均勻后进行球磨或气流磨,得到粒径为0. 1 100 μ m的混合粉末。最后,采用任何一种现有技术对上述混合粉末进行取向成形、烧结和回火热处理, 从而得到新的稀土永磁材料。通过本方法的再生利用方法所制备得到的稀土永磁材料通常可以含有下列元素 la、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、C、N、0、F、Cl、Si、B、Al、Ga、P、S、Ti、Sc、V、Nb、Cr、Mo、Mn、 Fe、Co、Ni、Si、Ag、Au、W、Sn、Cu、H、Ca等(因为回收材料来源广泛,所以上述元素在回收材料中原始均含有)。其中,这些元素的质量为整个稀土永磁材料的质量的0. 001% 70%。由于本发明的废旧镀镍稀土-铁-硼系永磁材料的再生利用方法采用吸氢处理来分离镍层,因此该再生利用方法具有工艺简单、成本低、不污染环境等优点。
具体实施例方式为了能够进一步了解本发明的结构、特征及其他目的,现结合所附较佳实施例详细说明如下,所说明的较佳实施例仅用于说明本发明的技术方案,并非限定本发明。实施例1首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. 1 的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为600°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。 向稀土 -铁-硼系永磁材料粉末中加入辅助材料Nd、(PrNd) 14.4Fe79.8B5.8> DyF3> Dy2O3 (辅料比例为25 :1:5: 1),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末, 其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.005 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时, 将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 12. 78 12. 9IKGs,Hcj :14. 68 15. 15K0e,Hk :13. 45 14. IlKOe, (BH)max 37. 9 39. IMGO0产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例2首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. 1 的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为300°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土-铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。 向稀土 -铁-硼系永磁材料粉末中加入辅助材料Nd、(PrNd) 14.4Fe79.7B5.8、DyF3> Dy2O3 (辅料比例为25 :1:5: 1),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末, 其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.005:1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量
Br :12. 78 12. 91KGs,Hcj :14· 68 15. 15K0e,Hk :13· 45 14. IlKOe, (BH) max 37. 9 39. IMGO0产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例3首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁_硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁_硼系永磁材料粉末,并回收镍层。 向稀土 -铁-硼系永磁材料粉末中加入辅助材料Nd、(PrNd) 14.4Fe79.8B5.8> DyF3> Dy2O3 (辅料比例为25 1 5 1),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末, 其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.005 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时, 将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 12. 78 12. 9IKGs,Hcj 14. 68 15. 15K0e,Hk 13. 45 14. IlKOe, (BH)max 37. 9 39. IMGO0产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例4首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为300°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料Nd、(PrNd) 14.4Fe79.8B5.8、DyF3、Dy203(辅料比例为1 15 1 1),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末,其中,辅助材料和稀土 _铁-硼系永磁材料粉末的质量比为0.5 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时, 将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 13. 12 13. 23KGs,Hcj 12. 53 13. 12K0e,Hk 11. 75 12. 46K0e, (BH) max 40. 02 41. 6MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,40°C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例5首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为600°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料Nd、(PrNd) 14.4Fe79.8B5.8、DyF3、Dy203 (辅料比例为1 15 1 1),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末,其中,辅助材料和稀土 _铁-硼系永磁材料粉末的质量比为0.5 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时, 将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 13. 12 13. 23KGs,Hcj 12. 53 13. 12K0e,Hk 11. 75 12. 46K0e, (BH) max 40. 02 41. 6MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例6首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料Nd、(PrNd) 14.4Fe79.8B5.8、DyF3、Dy203 (辅料比例为1 15 1 1),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末,其中,辅助材料和稀土 _铁-硼系永磁材料粉末的质量比为0.5 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时, 将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 13. 12 13. 23KGs,Hcj 12. 53 13. 12K0e,Hk 11. 75 12. 46K0e, (BH) max 40. 02 41. 6MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例7首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处
7理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为300°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土-铁-硼系永磁材料粉末中加入辅助材料La-Ce、(PrNdHo) 14.4Fe79.8B5.8> TbF3、 Dy2O3 (辅料比例为1 10 1 3),混合均勻后进行气流磨,得到粒径为0.1 IOOym的混合粉末,其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结 5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 11. 35 11. 43KGs,Hcj 21. 35 22. 76K0e,Hk 19. 92 21. 3IKOe, (BH)max 29. 96 31. IMGO0产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例8首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为600°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料La-Ce、(PrNdHo) 14.4Fe79.8B5.8、TbF3、 Dy2O3 (辅料比例为1 10 1 3),混合均勻后进行气流磨,得到粒径为0.1 IOOym的混合粉末,其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结 5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 11. 35 11. 43KGs,Hcj 21. 35 22. 76K0e,Hk 19. 92 21. 3IKOe, (BH)max 29. 96 31. IMGO0产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例9首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料La-Ce、(PrNdHo) 14.4Fe79.8B5.8、TbF3、 Dy2O3 (辅料比例为1 10 1 3),混合均勻后进行气流磨,得到粒径为0.1 IOOym的混合粉末,其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结 5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 11. 35 11. 43KGs,Hcj 21. 35 22. 76K0e,Hk 19. 92 21. 3IKOe, (BH)max 29. 96 31. IMGO0产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格。实施例10首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁_硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料Pr-Nd、(PrNdHo) 14.4Fe79.8B5.8、TbF3、 Dy2O3 (辅料比例为1 10 1 3),混合均勻后进行气流磨,得到粒径为0.1 IOOym的混合粉末,其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结 5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 12. 65 12. 72KGs,Hcj 17. 34 18. 65K0e,Hk 16. 47 17. 7IKOe, (BH)max 38 38. 6MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5% NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格实施例11首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土-铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁_硼系永磁材料粉末,并回收镍层。
9向稀土 -铁-硼系永磁材料粉末中加入辅助材料Gd、(PrNdHo) 14.4Fe79.8B5.8、DyF3、Dy203 (辅料比例为1 10 1 3),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末, 其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 11. 18 11. 23KGs,Hcj 12. 65 13. 32K0e,Hk 12. 01 12. 65K0e, (BH) max 29. 7 30MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格实施例12首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土-铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁_硼系永磁材料粉末,并回收镍层。 向稀土 -铁-硼系永磁材料粉末中加入辅助材料Y、(PrNdHo) 14.4Fe79.8B5.8、DyF3、Dy2O3 (辅料比例为1 10 1 3),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末, 其中,辅助材料和稀土-铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 10. 98 11. 12KGs,Hcj 12. 13 12. 59K0e,Hk 11. 52 11. 96K0e, (BH) max 28.6 29. 36MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格实施例13首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料Ho、(PrNd) 14.4Fe79.8B5.8、DyF3、Dy203(辅料比例为1 10 1 3),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末,其中,辅助材料和稀土 _铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在iioo°c的温度下烧结5小时,将成形体在500°c的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 11. 89 12. 02KGs,Hcj 16. 37 17. 12K0e,Hk 15. 55 16. 26K0e, (BH) max 33. 6 34. 7IMGOο产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格实施例14首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料Tb、(PrNd) 14.4Fe79.8B5.8、DyF3、Dy203(辅料比例为1 15 1 3),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末,其中,辅助材料和稀土 _铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量Br 12. 08 12. 22KGs,Hcj 24. 64 25. 85K0e,Hk 23. 46 24. 66K0e, (BH)max 35. 02 36. 03MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5 % NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格实施例15首先,采用人工分拣和擦除方法对废旧镀镍稀土 -铁-硼系永磁材料进行表面处理,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质。然后,使用锤式机械破碎装置对经过表面处理的废旧镀镍稀土-铁_硼系永磁材料进行机械破碎,得到粒径为1 50mm的混合颗粒。随后,在真空压力为0. IPa的无氧环境下对所得的颗粒进行吸氢处理,充入氢气,保持压力为0. IMP,稀土 -铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,脱氢温度为500°C,脱氢时间为4小时,得到镍层和粒径为0. 01 5mm的稀土 -铁-硼系永磁材料混合粉末,使用10目的筛分离镍层和稀土-铁-硼系永磁材料粉末,并回收镍层。向稀土 -铁-硼系永磁材料粉末中加入辅助材料Dy、(PrNd) 14.4Fe79.8B5.8、TbF3、Dy203(辅料比例为1 15 1 3),混合均勻后进行气流磨,得到粒径为0.1 100 μ m的混合粉末,其中,辅助材料和稀土 _铁-硼系永磁材料粉末的质量比为0.25 1。最后,对得到的混合粉末进行取向成形、烧结和回火热处理。其中,将成形体在1100°C的温度下烧结5小时,将成形体在500°C的温度下回火热处理5小时。产品用AMT-4磁化特性自动测量仪测量
Br :12. 18 12. 26KGs,Hcj :22· 37 23. 67K0e,Hk :21· 21 22. 56K0e, (BH)max 35. 25 35. 76MG0。产品镀镍,用AKD-60型盐雾腐蚀试验箱进行腐蚀检测。试验条件为5% NaCl溶液,400C,0. 2Mp饱和蒸汽压,24小时。试验结果,无锈点和腐蚀白点,镀层检测结果合格需要声明的是,上述发明内容及具体实施方式
意在证明本发明所提供技术方案的实际应用,不应解释为对本发明保护范围的限定。本领域技术人员在本发明的精神和原理内,当可作各种修改、等同替换、或改进。本发明的保护范围以所附权利要求书为准。
权利要求
1. 一种废旧镀镍稀土 -铁-硼系永磁材料的再生利用方法,所述再生利用方法包括以下步骤(1)对所述废旧镀镍稀土-铁-硼系永磁材料进行人工分拣和擦除,以清除所述废旧镀镍稀土-铁-硼系永磁材料表面的杂质;(2)对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行锤式机械破碎,得到混合颗粒;(3)在真空压力为0.1 的无氧环境下,充入氢气,保持压力为1MP,稀土-铁-硼系永磁材料混合颗粒吸收氢气,晶格膨胀,晶粒破碎,在300°C 600°C下进行脱氢,得到镍层和颗粒的混合物,筛分分离,回收所述镍层,得到稀土 -铁-硼系永磁材料粉末;(4)向所述稀土-铁-硼系永磁材料粉末中加入稀土类辅助材料,混合均勻后进行球磨或气流磨,得到混合粉末;和(5)对步骤(4)得到的所述混合粉末进行取向成型,然后烧结、回火热处理,制得稀土永磁产品。
2.根据权利要求1所述的再生利用方法,其特征在于,步骤O)中混合颗粒的粒径为 1 50mm ;步骤(3)中粉末的粒径为0. 01 5mm ;步骤中混合粉末的粒径为0. 1 100 μ m0
3.根据权利要求1所述的再生利用方法,其特征在于,步骤(3)中脱氢时间为4小时。
4.根据权利要求1所述的再生利用方法,其特征在于,所述稀土类辅助材料为稀土金属、稀土金属合金、稀土金属氧化物、和稀土金属氟化物。
5.根据权利要求1所述的再生利用方法,其特征在于,所述稀土类辅助材料和所述稀土-铁-硼系永磁材料粉末的质量比为0.005 0.5 1。
6.根据权利要求4所述的再生利用方法,其特征在于,所述稀土金属选自la、Ce、ft·、 Ν(1、6(1、 1κ0γ、Ηο、Υ 中的一种或两种。
7.根据权利要求4所述的再生利用方法,其特征在于,所述稀土金属合金为 (PrNd) 14.4Fe79.8B5.8、或(PrNdHo) 14.4Fe79.8B5.8。
8.根据权利要求4所述的再生利用方法,其特征在于,所述稀土金属氧化物为Dy203。
9.根据权利要求4所述的再生利用方法,其特征在于,所述稀土金属氟化物为DyF3、或 TbF3。
10.根据权利要求1所述的再生利用方法,其特征在于,脱氢处理后,使用10目的筛分离回收所述镍层。
全文摘要
本发明提供了一种废旧镀镍稀土-铁-硼系永磁材料的再生利用方法,该再生利用方法包括(1)对废旧镀镍稀土-铁-硼系永磁材料进行表面处理。;(2)对经过表面处理的废旧镀镍稀土-铁-硼系永磁材料进行机械破碎,得到粒径为1~50mm的混合颗粒;(3)在无氧环境下对颗粒进行吸氢处理,得到镍层和粒径为0.01~5mm的稀土-铁-硼系永磁材料混合粉末,然后筛分离回收镍层;(4)向稀土-铁-硼系永磁材料粉末中加入辅助材料,混合均匀后进行球磨或气流磨,得到粒径为0.1~100um的混合粉末;(5)对步骤(4)得到的混合粉末进行取向成形、烧结和回火热处理。本发明的方法具有工艺简单、成本低、不污染环境的优点。
文档编号H01F1/08GK102453804SQ201010520608
公开日2012年5月16日 申请日期2010年10月20日 优先权日2010年10月20日
发明者辜程宏, 陈超 申请人:北京中科三环高技术股份有限公司, 宁波科宁达工业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1