具有双轴向气体注入和排放的等离子体处理室的制作方法

文档序号:7013716阅读:182来源:国知局
专利名称:具有双轴向气体注入和排放的等离子体处理室的制作方法
具有双轴向气体注入和排放的等离子体处理室
背景技术
随着半导体特征尺寸不断变小,努力使半导体制造工艺跟上步伐。制造工艺中的一种类型涉及暴露半导体晶片于等离子体或其他形式的反应气体以在晶片上沉积材料,或从晶片上去除材料。更小的特征尺寸,要求更精确的材料沉积和蚀刻的控制,而这又需要对如何将晶片暴露于等离子体/反应气体进行更精确的控制。这些更精确的控制要求可包括在整个晶片的等离子体的均匀性的更精确的控制,跨过晶片的等离子体密度的更精确的控制,和/或对暴露给晶片的等离子体的驻留时间的更精确的控制,等等。在这种背景下,产生了本发明。

发明内容
在一个实施方式中,公开了半导体晶片处理装置,其包括电极和气体分配单元。该电极被暴露于等离子体产生容积(volume),并且被限定为传输射频(RF)功率给该等离子体产生容积。该电极具有限定为保持暴露于该等离子体产生容积的衬底的上表面。该气体分配单元被设置在等离子体产生容积的上方,且在与所述电极基本平行的方向上。该气体分配单元被限定为包括被限定为将等离子体处理气体的输入流沿着基本垂直于该电极的上表面的方向引导到该等离子体产生容积中的气体供给端口的布置。该气体分配单元被进一步限定为包括每个延伸通过该气体分配单元以将该等离子体产生容积与排放区域流体连接的通孔的布置。该通孔中的每一个被限定为将来自该等离子体产生容积的等离子体处理气体的排放流沿着基本上垂直于该电极的上表面的方向引导。在另一个实施方式中,公开了 用于半导体晶片处理的系统。该系统包括限定为具有内腔的室。该系统还包括布置在该室的所述内腔内的卡盘。该卡盘具有限定为保持暴露于等离子体产生容积中的衬底的上表面。而且,该卡盘被限定为提供RF功率给该等离子体产生容积。该系统还包括设置在卡盘上,并限定为围绕和包围该等离子体产生容积的周边的外周结构。该系统进一步包括气体分配单元,其设置在该外周结构上并被限定为以与该卡盘的该上表面基本上平行的关系延伸穿过该等离子体产生容积。该气体分配单元被限定为包括限定为引导等离子体处理气体的输入流进入等离子体产生容积的气体供给端口的布置。该气体分配单元被进一步限定为包括通孔的布置。该系统还包括限定在室内的在该气体分配单元上方的排放区域,以便使得该通孔中的每一个延伸贯通该气体分配单元以流体连接该等离子体产生容积到该排放区域。该系统还包括流体连接到该排放区域以从该排放区域除去气体的泵。在另一个实施方式中,公开了一种用于半导体晶片处理的方法。该方法包括在与气体分配单元基本平行的方向上保持半导体晶片以使得等离子体处理容积在该半导体晶片和该气体分配单元之间形成的操作。该方法还包括使等离子体处理气体从该气体分配单元内沿着基本垂直于该半导体晶片的方向流入该等离子体处理容积的操作。该方法进一步包括将等离子体处理气体排放流从该等离子体处理容积内沿基本垂直于所述半导体晶片的方向引导通过该气体分配单元的操作,从而使通过该气体分配单元的该离子体处理气体排放流是来自该等离子体处理容积内的唯一的该等离子体处理气体排放流。本发明的其它方面和优点将通过下面以举例的方式阐述本发明的、结合附图进行的详述而变得更加明显。


图1A示出了根据本发明的一个实施方式所述的半导体晶片处理装置;
图1B示出了根据本发明的一个实施方式所述的具有箭头示出通过该气体分配单元的气体流和排放流的图1A的室;
图2示出了根据本发明的一个实施方式所述的图1A的室的替代结构;
图3A示出了根据本发明的一个实施方式所述的气体分配单元的仰视图3B示出了根据本发明的一个实施方式所述的气体分配单元的俯视图3C示出了根据本发明的一个实施方式所述的气体供给端口的横截面;
图4A示出了根据本发明的一个实施方式所述的布置在气体分配单元的上表面上的流控制板;
图4B示出了根据本发明的一个实施方式所述的被定位成使得限定在其中的孔式样允许流通过限定在下伏的气体分配单元内的全部通孔的流控制板的俯视图4C示出了根据本发明的一个实施方式所述的被定位成使得限定在其中的孔式样允许流仅通过限定在下伏的气体分配单元内的部分通孔的流控制板的仰视图4D示出了根据本发明的一 个实施方式所述的由多个同心的可旋转流控制板限定的流控制板组件的俯视图;以及
图5示出了根据本发明的一个实施方式所述的用于半导体晶片处理的方法的流程图。
具体实施例方式在下面的说明中,为了提供对本发明的全面理解,阐述了多个具体的细节。然而,对于本领域技术人员显而易见的是,可以不通过这些具体细节中的一些或全部来实施本发明。在其它情形下,为了避免不必要地使本发明变得不清楚,未详细描述公知的处理操作。本文公开了一种半导体晶片处理装置,其使得等离子体的驻留时间和跨过整个晶片的均匀性能精确控制,从而实现需要快速和均匀的处理气体注入和泵出的晶片制造工艺。这些需要快速和均匀的处理气体注入和泵出的晶片制造工艺的示例包括,但不限于,原子层蚀刻和原子层沉积。该装置包括布置在等离子体产生区域的上方的气体分配单元,被保持在静电卡盘上的晶片位于其下方且暴露于该等离子体产生区域。该气体分配单元被限定为将等离子体处理气体以基本均匀的方式向下朝着该晶片提供。该气体分配单元还被限定为以基本上均匀的方式从该晶片向上排放等离子体处理气体。因此,如在下面更详细描述的,所述气体分配单元提供轴向的气体注入和排放。图1示出了根据本发明的一个实施方式的半导体晶片处理装置。该装置包括室100,室100由顶板100A、底板100B和壁100C形成。在一个实施方式中,壁100C形成了邻接的圆柱形壁100C。在其它实施方式中,壁100C可具有其它构造,只要室100的内腔100D能够与室100外部的外界环境隔离即可。多个密封件139布置在室顶板100A、底板100B和壁100C之间以有利于室100的内腔100D与外界环境的隔离。在各个实施方式中,室100的顶板100A、底板100B和壁100C可由这样的金属形成该金属具有良好的导热性和导电性,并且能够与在晶片处理期间暴露于内腔100D的处理气体化学兼容。例如,在各个实施方式中,诸如铝、不锈钢等金属可用于形成室100的构件。而且,密封件139可以是弹性密封件或消耗性(consumable)金属密封件,或任何其它类型的密封材料,只要密封件139能够与暴露于内腔100D的处理材料化学兼容并且密封件139提供内腔100D与室100外部的外界环境的充分隔离即可。应当理解的是,在其它实施方式中,一个或多个额外的板或部件可根据需要布置在顶板100A、底板100B或壁100C中的任一个或多个的外部,以满足室100的特定部署条件或其它构思。另外,顶板100A、底板100B和/或壁100C能够适当地紧固到这些额外的板或部件上以适合于特定的实施方案。包括顶板100A、底板100B和壁100C的室100的结构由导电材料制成并且与基准接地电位电连接。室100包括排放口 135,排放口 135提供内腔100D与外部的排放泵137之间的流体连接,使得负压能够通过排放口 135施加以从内腔100D内移除气体和/或颗粒。在一个实施方式中,室100还包括闸阀102,闸阀102形成在室壁100C的剖面内以使能将晶片113插入到内腔100D中以及相应地将晶片113从内腔100D中移除。在其闭合状态,闸阀102被限定为保持内腔100D与外界环境的隔离。在各个实施方式中,排放泵137能够以不同的方式来实现,只要排放泵137能够在排放口 135处施加抽吸力以从室100的内腔100D中抽出流体流即可。等离子体处理装置被布置在室100的内腔100D内。该等离子体处理装置包括形成在卡盘107A/B和气体分配单元115之间的等离子体产生容积109。更具体地,等离子体产生容积109位于卡盘107A/B的上方和气体分配单元115的下方,卡盘107A/B的上表面和气体分配单元115的下表面布置在彼此基本平行的方向。外围结构构件108也被布置以包绕在气体分配单元115和卡盘107A/B的上表面之间的等离子体产生容积109的周边。如上所述的,卡盘107A/B被布置在腔室100的内部腔室100D内,在等离子体产生容积109的下方。卡盘107A/B包括主体部分107A和电极部分107B。在一个实施方式中,卡盘主体107A是从室100的壁100C设置的悬臂。在一个实施方式中,卡盘107A/B是静电卡盘,具有被限定为传输RF功率给等离子体产生容积109的电极107B。卡盘107B的电极部分的上表面被限定为保持暴露于等离子体产生容积109的衬底113(8卩,晶片113)。在一个实施方式中,石英聚焦垫圈149被布置在卡盘107A的主体上且围绕卡盘107B上的衬底113接纳/保持区域的周边。卡盘107还被限定为包括冷却通道和/或加热元件的构造,从而使能进行衬底113和等离子体产生容积109的温度控制。卡盘107A/B被限定为在内腔100D内如箭头123所指示地垂直地移动。通过这种方式,卡盘107A/B能够被降低以通过闸阀102接受/提供衬底113,并且能够被升高以形成等离子体产生容积109的下表面。而且,能够通过控制卡盘107B的垂直位置来设定和控制跨过等离子体产生容积109的垂直距离,垂直于卡盘107B和气体分配单元115测量得到该垂直距离。跨过等离子体产生容积109的 垂直距离能够被设定以实现充分的中央到边缘的等离子体均匀性和密度,并且还能够被设定以避免通过流自气体分配单元115的气体供给端口 119的气体的喷射流打印到晶片113上。在各个实施方式中,跨过等离子体产生容积109的垂直距离能够被设定在从大约Icm延伸到大约5cm的范围内。在一个实施方式中,跨过等离子体产生容积109的垂直距离能够被设定在约2cm。应当理解,跨过等离子体产生容积109的垂直距离被控制,以便能够快速排空等离子体产生容积109,并从而能够精确控制在等离子体产生容积109内等离子体的驻留时间。卡盘107B的电极部分被限定为将RF功率从RF功率源111供给到等离子体产生容积109。应当理解的是,RF功率源111通过匹配网络连接以能将RF功率传输到卡盘107B的电极部分。如之前所讨论的,在一个实施方式中,气体分配单元115电气连接到基准接地电位,以便使气体分配单元115用作等离子体产生容积109的RF功率回路中的基准接地电极。气体分配单元115被保持在等离子体产生容积109和周边结构构件108的上方的固定的位置处。气体分配单元115被限定为通过气体供给端口 119的布置将等离子体处理气体提供到等离子体产生容积109。气体分配单元115被进一步限定为包括通孔117的布置,以提供从等离子体产生容积109的流体排放。通孔117中的每一个延伸贯通气体分配单元115的板,从该板上表面通到其下表面 。图1B示出了根据本发明的一个实施方式所述的具有示出通过气体分配单元115的气体流和排放流的箭头的图1A的室。正如图1A和IB所示的,等离子体处理气体从一个或多个等离子体处理气体供给源118A/118B被供给到气体分配单元115。等离子体处理气体流过气体分配单元115以及流出气体供给口 119进入等离子体产生容积109。等离子体处理气体从等离子体产生容积109通过气体分配单元115的通孔117排放进入排放歧管103。在图1A和IB的实施方式中,等离子体产生容积109被密封,使得等离子体处理气体仅通过气体分配单元115的通孔117排放到排放歧管103。在一个实施方式中,排放歧管103通过阀101连接到真空泵102。阀101可以被操作以使泵102与排放歧管103流体连接/流体断开,从而将排放歧管103内的压强能被释放到泵102,以使得在压强较高的等离子体产生容积109内的等离子体处理气体会流过气体分配单元115的通孔117,进入较低压强的排放歧管103,通过阀101,到泵102,以从等离子体产生容积109排放等离子体处理气体。图2示出了根据本发明的一个实施方式的室100的替代的配置。在本实施方式中,气体分配单元115的通孔117与室100的内腔100D流体连通。在本实施方式中,等离子体处理气体通过气体分配单元115的通孔117从等离子体产生容积109直接排放进入室100的内腔100D。通过泵137,该室的内腔100D内的等离子体处理气体经由排放口 135被去除。在本实施方式中,室100的内腔100D使用作为排放歧管。因此,图1A和IB的实施方式所述的外部结构构件104被除去。并且,顶板100A由不包括阀101以及与泵102的连接件的顶板100E替换。在本实施方式中,室100的内腔100D内的压强可相对于等离子体产生容积109内的压强进行控制,进而控制通过气体分配单元115的通孔117的等离子体处理气体排放流率。应当理解的是,由气体分配单元115所提供的双轴等离子体处理气体输入和排放使晶片113的等离子体处理在晶片113上具有基本均匀的中心到边缘的等离子体密度。更具体地,由气体分配单元115所提供的双轴向等离子体处理气体输入和排放防止在等离子体产生容积109内径向的等离子体处理气体流,其可能导致中心到边缘的等离子体密度分布的径向非均匀性。另外,当需要时,由气体分配单元115所提供的双轴等离子体处理气体输入和排放使晶片113的等离子体处理在晶片113上具有明显短的等离子体滞留时间。图3A示出了根据本发明的一个实施方式的气体分配单元115的仰视图。气体供给端口 119和通孔117中的每一个均被限定为通过气体分配单元115的下表面开放式流体连通。气体供给端口 119的布置散布在通孔117的布置之间。气体供给端口 119通过气体分配单元115与一个或多个等离子体处理气体供给源118A/B接通,使得在气体供给端口 119和气体分配单元115内的通孔117之间不存在直接的流体连通。图3B示出了根据本发明的一个实施方式所述的气体分配单元115的俯视图。通孔117中的每一个均被限定为通过气体分配单元115的上表面开放式流体连通。然而,气体供给端口 119不通过气体分配单元115的上表面流体暴露。因此,气体供给端口 119被限定为使等离子体处理气体仅流入等离子体产生容积109。相反,通孔117被限定为能使从等离子体产·生容积109流体连通到排放歧管103 (或到图2的实施方式中的内腔100D)。流体流经气体分配单元115的通孔117主要是通过等离子体产生容积109和排放歧管103(或图2的实施方式中的内腔100D)之间的压强差来控制的。应当理解的是,气体分配单元115充当RF回路电极、等离子体处理气体歧管、以及流体流动挡板。在各个实施方式中,气体分配单元115可由这样的金属形成这种金属为良好的导电体和导热体,并且与在等离子体产生容积109中要进行的处理化学兼容,诸如铝、不锈钢、等等。在各个实施方式中,气体分配单元115可电气连接至基准接地电位或偏置电压以实现气体分配单元115的RF回路电极功能。因此,气体分配单元115提供用于等离子体产生容积109的接地电极。在一个实施方式中,电极107B和气体分配单元115形成接近一对一的功率到接地的表面面积。相对于电极107B的气体分配单元115的配置使得能够在等离子体产生容积109内形成电容耦合等离子体。在一个实施方式中,被暴露于等离子体的气体分配单元115的部分由耐等离子体材料覆盖物保护。在一个实施方式中,耐等离子体材料形成为涂层。在另一实施方式中,耐等离子体材料形成保形地覆盖气体分配单元115的保护结构,例如,板。在这些实施方式中的任一实施方式中,耐等离子体材料被固定到气体分配单元115,以确保该耐等离子体材料和气体分配单元115之间的足够的电传导性和热传导性。在耐等离子体保护结构的实施方式中,通过一定数量的紧固件,或当放置在气体分配单元设置115的下方时通过在气体分配单元115和外周结构108之间的挤压,该保护结构可以被固定到气体分配单元115。在各种实施方式中,用于保护气体分配单元115的耐等离子体腐蚀涂层/保护结构,可由硅酮、碳化硅、氧化硅、氧化钇、或基本上任何其它的为等离子体处理提供足够的耐等离子体性、导电性、和传热性的材料制成,其中,该材料暴露于该等离子体处理。气体分配单元115被限定为可替换构件。不同版式/配置的气体分配单元115可被限定为具有不同的气体供给端口 119和通孔117的布置。另外,在等离子体使气体分配单元115或其功能劣化的情形下,可以更换气体分配单元115。气体供给端口 119和通孔117中的每个均被限定为使通过其中的流体流最优化,同时防止等离子体不利地侵入到其中。经气体供给端口 119和通孔117中的每个的流体流率以及到气体供给端口 119和通孔117中的每个的等离子体侵入率与其尺寸成正比。因此,需要限定气体供给端口 119和通孔117中的每个以使其尺寸足够小从而防止等离子体不利地侵入到其中,同时保持足够大从而提供足够的通过其中的流体流。在各个实施方式中,气体供给端口 119的直径的尺寸在从大约O.1mm延伸到大约3_的范围内。在各个实施方式中,通孔117的直径的尺寸在从大约O. 5mm延伸到大约5mm的范围内。然而,应当理解的是,在各个实施方式中,气体供给端口 119和通孔117可分别被限定为具有基本上任何直径尺寸,只要该直径尺寸在提供充分抑制等离子体侵入其中的同时提供足够的通过其中的流体流即可。因为通往气体供给端口 119的流体流压强直接可控,所以可以将气体供给端口119限定为具有足够小的尺寸以基本上防止等离子体侵入到气体供给端口 119中。然而,正确的是避免将气体供给端口 119限定为如此小以至于导致通过气体供给端口 119的超声波流体流。为了避免来自气体供给端口 119的超声波流体流,气体供给端口 119可被限定为其在气体分配单元115的下表面的出口处具有扩散器的形状。图3C示出了根据本发明的一个实施方式所述的气体供给端口 119的截面。气体供给端口 119被显示为在其从气体分配单元115的出口位置处具有扩散器形状307。气体分配单元115包括与气体供给端口 119的布置流体连接的内部气体供给通道。这些内部气体供给通道与一个或多个等离子体处理气体供给源118A/B流体连接。尽管为了便于说明,图1A、图1B和图2的实施方式显示了两个等离子体处理气体供给源118A/B,但应当理解,根据气体分配单元115和室100的特定的配置,基本上任何数量的等离子体处理气体供给源118A/B/C/D等可被连接以供应等离子体处理气体到气体分配单元115。并且应当理解的是,内部气体供给通道和相关的气体供给端口 119被限定在通孔117的布置之间,使得等离子体处理气体在进入通孔117之前被分配到等离子体产生容积109。在一个实施方式中,诸如图3A中所描绘的,气体分配单元115内的内部气体供给通道被限定为跨越气体分配单元115的下表面将气体供给端口 119的布置流体分离成多个同心区域/区115么、1158、115(,使得能够单独地控制等离子体处理气体到多个同心区域/区115A、115B、115C中的每个内的气体供给端口 119的流率。在一个实施方式中,每个同心径向区域/区115A、11 5B、115C内的气体供给端口 119与相应的气流控制装置305A、305B、305C接通,使得能够独立地控制到每个同心径向区域/区115A、115B、115C的等离子体处理气体的供给。将气体供给端口 119分离成独立可控的多个同心区域/区115A、115B、115C提供了等离子体产生容积109内的中央到边缘的气体供给控制,这转而有利于等离子体产生容积109内的中央到边缘的等离子体均匀性控制。尽管图3A的示例性实施方式示出了三个同心的气体供给区域/区115八、1158、115(,但是应当理解的是,气体分配单元115可被限定为包括更多或更少的独立可控的气体供给区域/区。例如,在另一实施方式中,气体分配单元115被限定为包括两个独立可控的同心的气体供给区域/区。在一个实施方式中,通孔117的数量大于气体供给端口 119的数量,以从等离子体产生容积109提供足够的流体排放流。而且,通孔117可被限定为具有比气体供给端口119大的尺寸,以从等离子体产生容积109提供足够的流体排放流。然而,如之前所讨论的,通孔117的尺寸被限定以防止等离子体从等离子体产生容积109中不利地侵入到通孔117中。在一个实施方式中,流控制板被布置在气体分配单元115的上表面上以控制那些开通以从等离子体产生容积109排放流体的通孔117。图4A示出了根据本发明的一个实施方式的布置在气体分配单元115的上表面302上的流控制板401。在一个实施方式中,流控制板401被限定为具有在从大约3mm延伸至大约6mm的范围内的厚度403的盘。流控制板401盘被限定为具有足以覆盖通孔117以控制通过通孔117的流的直径。在一个实施方式中,流控制板401盘被限定为具有覆盖气体分配单元115的上表面的直径。在一个实施方式中,流控制板401由导电且导热材料制成,并且被紧固到气体分配单兀115以确保流控制板401和气体分配单兀115之间充分的电传导和热传导。在一个实施方式中,流控制板401可通过多个紧固件而被紧固到气体分配单元115。而且,在各个实施方式中,流控制板401可由诸如上文针对气体分配单元115所讨论的耐等离子体涂层覆盖和保护。在一个实施方式中,多种式样的孔被限定为贯通流控制板401。流控制板401内的多种式样的孔中的每个与气体分配单元115内的不同组通孔117对准。流控制板401在气体分配单元115的上表面上在流控制板401相对于气体分配单元115的上表面的特定旋转位置处的布置对应于流控制板401内的多种式样的孔中的特定一个与气体分配单元115内的其相应组通孔117的对准。延伸贯通流控制板401的多种式样的孔中的每个被限定为暴露气体分配单元115内的不同数量或不同空间式样的通孔117。因此,能够通过将流控制板401设定在相对于气体 分配单元115的上表面的特定旋转位置处来控制通过气体分配单元115的流体排放。图4B示出了根据本发明的一个实施方式的被定位成使得限定于其中的孔405式样能让流通过限定在下伏的气体分配单元115内的全部通孔117的流控制板401的俯视图。图4C示出了根据本发明的一个实施方式的被定位成使得限定于其中的孔405式样仅能让流通过限定在下伏的气体分配单元115内的通孔117的一部分的流控制板401的俯视图。而且,在其它实施方式中,流控制板401中的多种式样的孔405被限定为提供通过气体分配单元115的不同空间式样的流体排放流。图4D示出了根据本发明的一个实施方式的由多个同心可旋转流控制板407A、407B.407C限定的流控制板组件401A的俯视图。每个同心可旋转流控制板407A、407B、407C能够被独立地设定以提供中央到边缘的控制,通过中央到边缘的控制使得气体分配单元117内的通孔117打开或关闭。具体地,流控制板组件401A包括中央盘407A和多个同心环407B/407C,多个同心环407B/407C以同心方式布置在气体分配单元115的上表面上。应当理解的是,图4D的特定构造是通过举例的方式提供的。其它实施方式可以包括与图4D所示不同的多个同心可旋转流控制板。中央盘407A和多个同心环407B/407C中的每个分别包括延伸贯通其中的多种式样的孔。多种式样的孔中的每个与气体分配单元115内的不同组通孔117对准,使得中央盘407A和同心环407B/407C中的每个在气体分配单元115的上表面上相对于气体分配单元115的上表面的特定旋转位置处的布置对应于多种式样的孔中的特定一个与气体分配单元115内的其相应组通孔117对准。延伸贯通中央盘407A和同心环407B/407C的多种式样的孔中的每个被限定为暴露气体分配单元115内的不同数量或不同空间式样的通孔117。应当理解的是,等离子体产生容积109的尺寸被设置为容纳约束等离子体。约束等离子体的有益之处在于,能够通过控制等离子体区域内(即,等离子体产生容积109内)的容积、压强和流来控制其驻留时间。等离子体驻留时间影响离解过程,其为自由基/中性粒子形成的因素。并且,等离子体驻留时间影响在晶片113上发生的沉积或蚀刻的量,其是在执行诸如原子层沉积或原子层蚀刻等短的驻留时间的工艺中的重要的因素。等离子体产生容积109小且其压强和温度可被很好地控制。在各个实施方式中,下部的等离子体处理容积109内的压强能够被控制在从大约5mTorr延伸至大约IOOmTorr,或者从大约IOmTorr延伸至大约30mTorr,或者从大约IOOmTorr延伸至大约ITorr,或者从大约200mTorr延伸至大约600mTorr的范围内。应当理解,因为气体被垂直地泵出,由气体分配单元115提供的双轴向等离子体处理气体输入/排放能够在整个晶片113上实现精确的压强均匀性控制,其中被垂直地泵出是与被径向地泵出相对的,后者将导致跨越晶片113的径向压强分布。双轴向等离子体处理气体输入/排放还使得能在要求短的等离子体驻留时间(例如小于一毫秒)的低流应用(诸如原子层沉积或原子层蚀刻)中进行驻留时间的精确控制。图5示出了 根据本发明的一个实施方式所述的用于半导体晶片处理的方法的流程图,所述方法包括操作501,其用于沿与气体分配单元基本平行的方向保持半导体晶片,以使得等离子体产生容积在半导体晶片和该气体分配单元之间形成。在一个实施方式中,该气体分配单元被限定为在整个等离子体处理容积上方延伸的板。此外,在一个实施方式中,该半导体晶片被保持在卡盘的上表面。该方法还包括使等离子体处理气体沿基本垂直于该半导体晶片的方向从该气体分配单元内流入该等离子体处理容积的操作503。此外,执行操作505以引导来自该等离子体处理容积内的等离子体处理气体排放流沿着基本垂直于该半导体晶片的方向通过该气体分配单元。通过该气体分配单元的等离子体处理气体排放流是来自该等离子体处理容积内的唯一的等离子体处理气体排放流。该方法进一步包括将RF功率传输到等离子体处理容积以将等离子体处理气体转换成暴露给半导体晶片的等离子体的操作507。在一个实施方式中,保持半导体晶片的卡盘被操作作为电极以将RF功率传输到等离子体处理容积。并且在该方法中,来自气体分配单元的等离子体处理气体的排放流被接收到排放区域内。泵被操作以提供抽吸力给流体连接到该排放区域的阀。并且,该阀被操作以控制离开该排放区域的排放流,并从而控制排放流从等离子体产生容积通过气体分配单元进入该排放区域。在一个实施方式中,操作503包括使等离子体处理气体从在气体分配单元内的多个独立可控的气体供给区流入等离子体处理容积中。在该实施方式中,通过多个气体供给区中的每一个的等离子体处理气体相应的流率是受控的以使能够控制跨越半导体晶片的等离子体密度。并且,在该实施方式的一个实施中,该多个独立可控的气体供给区跨越气体分配单元同心地限定。此外,在一个实施方式中,以脉冲的方式执行使等离子体处理气体从气体分配单元内流入等离子体处理容积,并引导来自等离子体处理容积内的等离子体处理气体排放流通过气体分配单元,以控制暴露给半导体晶片的等离子体的驻留时间。尽管已经参照多个实施方式对本发明进行了说明,但应理解的是,本领域技术人员在阅读前面的说明书并研究附图时将意识到其各种改动、添加、替换和等同方案。因此,本发明旨在包含落在本发明的真正主旨和范围内的所有这样的改动、添加、替换和等同方案。
权利要求
1.一种半导体晶片处理装置,其包括 暴露于等离子体产生容积的电极,所述电极被限定为将射频(RF)功率传输到所述等离子体产生容积,所述电极具有被限定为保持暴露于所述等离子体产生容积的衬底的上表面;以及 气体分配单元,其设置在所述等离子体产生容积上方且在与所述电极基本平行的方向上,所述气体分配单元被限定为包括被限定为沿着基本垂直于所述电极的所述上表面的方向将等离子体处理气体的输入流引导到所述等离子体产生容积的气体供给端口的布置,所述气体分配单元被进一步限定为包括每个都延伸通过所述气体分配单元以将所述等离子体产生容积与排放区域流体连接的通孔的布置,其中,所述通孔中的每个被限定为将来自所述等离子体产生容积的所述等离子体处理气体的排放流沿着基本垂直于所述电极的所述上表面的方向引导。
2.如权利要求1所述的半导体晶片处理装置,其中,所述电极形成所述等离子体产生容积的下表面,且其中,所述气体分配单元被限定为板,所述板被形成为将所述等离子体产生容积与所述排放区域分离,使得所述板的下表面提供所述等离子体产生容积的上边界。
3.如权利要求2所述的半导体晶片处理装置,其中,所述板包括内部气体供给通道,所述内部气体供给通道流体连接到限定在所述板的所述下表面以将所述等离子体处理气体分配到所述等离子体产生容积的所述气体供给端口的布置。
4.如权利要求3所述的半导体晶片处理装置,其中,所述气体供给通道被限定为将所述气体供给端口的布置流体分离成跨过所述板的所述下表面的多个同心区域,以便使所述等离子体处理气体到在所述多个同心区域中的每一个内的所述气体供给端口的流率独立地受控。
5.如权利要求1所述的半导体晶片处理装置,其中,所述气体分配单元由导电材料制成,且与基准接地电位电连接,以使得所述气体分配单元为所述等离子体产生容积提供接地电极。
6.如权利要求1所述的半导体晶片处理装置,其中,所述电极能够沿朝向和远离所述气体分配单元的方向移动以便提供对延伸跨过所述等离子体产生容积的与所述电极和所述气体分配单元两者均垂直的距离的控制。
7.如权利要求1所述的半导体晶片处理装置,其进一步包括 排放歧管,其布置在所述气体分配单元的上方以形成所述排放区域; 阀,其流体连接到所述排放歧管;以及 泵,其流体连接到所述阀,以提供抽吸力到所述阀,其中,所述阀能操作以控制来自所述等离子体产生容积的排放流通过所述气体分配单元。
8.如权利要求1所述的半导体晶片处理装置,其进一步包括 室,其被限定为包绕所述电极和所述气体分配单元在所述室的内腔内,其中,所述室的所述内腔形成所述排放区域; 泵,其流体连接到所述室的所述内腔,以提供抽吸力到所述室的所述内腔;以及 阀,其被设置以控制缘于由所述泵提供的所述抽吸力的来自所述室的所述内腔的流体流。
9.一种用于半导体晶片处理的系统,其包括室,其被限定为具有内腔; 卡盘,其布置在所述室的所述内腔内,所述卡盘具有被限定为保持暴露于等离子体产生容积的衬底的上表面,所述卡盘被限定为将射频(RF)功率供给到所述等离子体产生容积; 外周结构,其被布置在所述卡盘上并被限定为围绕和包绕所述等离子体产生容积的周边; 气体分配单元,其被设置在所述外周结构上并被限定为以与所述卡盘的所述上表面基本平行的关系延伸跨过所述等离子体产生容积,所述气体分配单元被限定为包括被限定为引导等离子体处理气体的输入流进入所述等离子体产生容积的气体供给端口的布置,所述气体分配单元被进一步限定为包括通孔的布置; 排放区域,其被限定在所述室内在所述气体分配单元的上方,以使得所述通孔中的每一个延伸通过所述气体分配单元,从而将所述等离子体产生容积流体连接到所述排放区域;以及 泵,其流体连接到所述排放区域以将气体从所述排放区域去除。
10.如权利要求9所述的用于半导体晶片处理的系统,其中,所述气体供给端口中的每一个被限定为引导所述等离子体处理气体的输入流沿着基本垂直于所述卡盘的所述上表面的方向进入所述等离子体产生容积;以及 其中所述通孔中的每一个被限定为将来自所述等离子体产生容积的所述等离子体处理气体的所述排放流沿着基本垂直于所述卡盘的所述上表面的方向引导。
11.如权利要求9所述的用于半导体晶片处理的系统,其中,所述气体分配单元由导电材料制成,且与基准接地电位电连接,以使得所述气体分配单元为所述等离子体产生容积提供接地电极。
12.如权利要求9的用于半导体晶片处理的系统,其中,所述卡盘能够沿朝向和远离所述气体分配单元的方向移动以便提供对延伸跨过所述等离子体产生容积的与所述卡盘的所述上表面和所述气体分配单元两者均垂直的距离的控制。
13.一种用于半导体晶片处理的方法,其包括 保持半导体晶片在与气体分配单元基本平行的方向上,以使得等离子体处理容积在所述半导体晶片和所述气体分配单元之间形成; 使等离子体处理气体从所述气体分配单元内沿着基本垂直于所述半导体晶片的方向流入所述等离子体处理容积;以及 将来自所述等离子体处理容积内的等离子体处理气体排放流沿基本垂直于所述半导体晶片的方向引导通过所述气体分配单元,从而通过所述气体分配单元的所述等离子体处理气体排放流是来自所述等离子体处理容积内的唯一的所述等离子体处理气体排放流。
14.如权利要求13所述的方法,其中,所述气体分配单元被限定为在所述等离子体处理容积的整个上方延伸的板。
15.如权利要求13所述的方法,其进一步包括 将射频(RF)功率传输到所述等离子体处理容积以将所述等离子体处理气体转变为暴露给所述半导体晶片的等离子体。
16.如权利要求15所述的方法,其中,所述半导体晶片被保持在卡盘的上表面上,且其中,所述卡盘被操作作为电极以将所述RF功率传输到所述等离子体处理容积。
17.如权利要求13所述的方法,其中,使所述等离子体处理气体从所述气体分配单元内流入所述等离子体处理容积,以及将来自所述气体分配单元内的所述等离子体处理气体排放流引导通过所述气体分配单元是以脉冲的方式进行的,以控制暴露给所述半导体晶片的等离子体的驻留时间。
18.如权利要求13所述的方法,其中,所述等离子体处理气体从所述气体分配单元内的多个独立可控的气体供给区流入所述等离子体处理容积。
19.如权利要求18所述的方法,其进一步包括 控制通过所述多个气体供给区中的每一个的等离子体处理气体的流率以控制跨过所述半导体晶片的等离子体密度。
20.如权利要求18所述的方法,其中,所述多个独立可控的气体供给区跨过所述气体分配单元被同心限定。
21.如权利要求13所述的方法,其进一步包括 接收从所述气体分配单元流到排放区域的所述等离子体处理气体排放流; 操作泵以提供抽吸力给流体连接到所述排放区域的阀;以及 操作所述阀来控制来自所述等离子体产生容积的排放流通过所述气体分配单元。
全文摘要
一种电极被暴露于等离子体产生容积,并被限定为将射频功率传输到该等离子体产生容积,且包括用于保持暴露于该等离子体产生容积的衬底的上表面。气体分配单元被布置在该等离子体产生容积的上方,且在与该电极基本平行的方向上。该气体分配单元包括用于将等离子体处理气体的输入流沿基本垂直于该电极的上表面的方向上引导到该等离子体产生容积的气体供给端口的布置。该气体分配单元还包括每个延伸通过该气体分配单元以将该等离子体产生容积与排放区域流体连接的通孔的布置。该通孔中的每一个将来自等离子体产生容积的等离子体处理气体的排放流沿着基本上垂直于该电极的上表面的方向引导。
文档编号H01L21/3065GK103053012SQ201180038241
公开日2013年4月17日 申请日期2011年6月22日 优先权日2010年8月4日
发明者拉金德·丁德萨, 阿列克谢·马拉哈托夫, 安德鲁·D·贝利三世 申请人:朗姆研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1