具有良好稳定性的氮化物基半导体器件的制作方法

文档序号:7103686阅读:298来源:国知局
专利名称:具有良好稳定性的氮化物基半导体器件的制作方法
技术领域
本发明涉及一种具有良好稳定性的氮化物基半导体器件,更具体地讲,涉及一种稳定性提高的氮化物基半导体器件,该氮化物基半导体器件在氮化物半导体层中具有极少的裂纹并具有良好的表面粗糙度。
背景技术
随着信息通信技术的全球化发展已经进行到相当的程度,已经加速开发高速且大容量信号通信的通信技术。具体地讲,随着在无线通信技术中对个人蜂窝电话(PCS)、卫星通信、军用雷达、广播通信、通信中继器等需求的增加,对微波波段和毫米波波段的高速信 息通信系统所需的高速高功率电子装置的需求已增加。因此,正在积极地进行关于用于高功率电子器件的电源装置以及功耗的研究。具体地讲,由于GaN基氮化物半导体具有诸如高能带隙、高的热稳定性、高的化学稳定性、大约3X IO7厘米/每秒(cm/sec)的高电子饱和速度的有益性能,所以氮化物半导体可被容易实现为光器件以及高频率高功率的电子器件。因此,全世界正在积极进行关于氮化物半导体的研究。基于GaN基氮化物半导体的电子器件可具有各种各样的优势,例如,大约3X IO6伏特/厘米(V/cm)的高击穿电场、最大电流密度、稳定的高温操作、高的导热率等。基于氮化铝镓(AlGaN)和氮化镓(GaN)的异质结产生的异质结构场效应晶体管(HFET)在结界面处具有高的带不连续性,在该界面中会释放高密度的电子,因此,电子迁移率可增大。因此,HFET可应用为高功率器件。然后,用于生长适合氮化物单晶的晶格常数和热膨胀系数的氮化物单晶的基底并不普遍。氮化物单晶可基于单分子束外延(MBE)方法或气相外延方法(例如金属有机化学气相沉积(MOCVD)方法、氢化物气相外延(HVPE)方法等)生长在异质基底(例如,蓝宝石基底或碳化硅(SiC)基底)上。蓝宝石基底或SiC基底价格昂贵并且它们的尺寸受限,因而蓝宝石基底或SiC基底不适于量产。因此,除了提高导热率,Si基底可为容易用于通过加大基底的尺寸来提闻广率的大量生广的基底。然而,由于Si基底和GaN单晶之间的晶格常数的差异以及膨胀系数的差异,裂纹会容易形成在GaN层中,从而难以商业化。期望一种在Si基底上稳定生长GaN的方法。图I示出了传统氮化物基HFET的基本构造。参照图1,传统的氮化物基HFETlO可包括顺序层叠在Si基底11上的低温缓冲层12、AlGaN/GaN复合层13、非掺杂GaN层14和AlGaN层15。源极16和漏极18分别形成在AlGaN层15的上表面的两端上。栅极17设置在源极16和漏极18之间。保护层19形成在栅极17和源极16之间以及栅极17和漏极18之间。AlGaN/GaN复合层13形成为包括多个层,通过减小晶格常数之间的差异,GaN层可生长在AlGaN/GaN复合层13上。在传统的氮化物基HFETlO中,可基于具有不同带隙的GaN层14和AlGaN层15的异质结形成二维电子气(2-DEG)层。这里,当信号被输入到栅极17时,可通过2-DEG层形成沟道,从而电流可在源极16和漏极18之间流动。非掺杂GaN层14可被构造为未执行掺杂的GaN层,并且可形成为具有相对高的电阻,以防止电流泄漏到Si基底以使器件分离。

发明内容
本发明的一方面提供了一种稳定性提高的氮化物基半导体器件,该氮化物基半导体器件在氮化物半导体层中具有极少的裂纹并具有良好的表面粗糙度。根据本发明的一方面,提供了一种氮化物基半导体器件,所述氮化物基半导体器件包括基底J^Kg-(AlSixCh)预处理层,形成在基底上;掺杂铝(Al)的氮化镓(GaN)层,形成在AlSixCVx预处理层上;氮化铝镓(AlGaN)层,形成在掺杂Al的GaN层上。 AlSixCh预处理层可被构造为从由单床结构、规则点结构、不规则点结构和图案结构中选择的结构。所述氮化物基半导体器件还可包括缓冲层,形成在AlSixCh预处理层上,并且缓冲层可包括氮化铝(AlN)。所述氮化物基半导体器件还可包括调整了表示第V族元素与第III族元素的比率的V/III族比率的GaN种子层,GaN种子层形成在AlSixCh预处理层和掺杂Al的GaN层之间。GaN种子层可包括第一 GaN种子层,第一 GaN种子层的V/III族比率相对高;第二 GaN种子层,第二 GaN种子层的V/III族比率相对低。所述氮化物基半导体器件还可包括形成在AlSixCh预处理层和掺杂铝的GaN层之间的渐变AlGaN层,渐变AlGaN层的Al含量从AlSixCh预处理层向掺杂铝的GaN层逐渐降低。渐变AlGaN层中的Al含量可从大约70wt%降低至大约15wt%。掺杂铝的GaN层的Al含量可在大约O. lwt%至O. 9wt%的范围内。所述氮化物基半导体器件还可包括形成在AlGaN层上的保护层,保护层可包括从由氮化硅(SiNx)、氧化硅(SiOx)和氧化铝(Al2O3)中的一种选择的材料。基底可包括从蓝宝石、硅(Si)、AlN、碳化硅(SiC)和GaN中选择的材料。所述氮化物基半导体器件可以是从常开器件、常闭器件和肖特基二极管中选择的器件。所述氮化物基半导体器件可包括第一导电半导体层、活性层和第二导电半导体层。将在接下来的描述中部分阐述本发明另外的方面、特征和/或优点,还有一部分通过描述将是清楚的,或者可以经过本发明的实施而得知。


专利或申请文件包含至少一副彩色附图。当请求和支付所需费用时专利局会出具具有彩色附图的本专利或专利申请公布的副本。从下面结合附图对实施例的描述中,本发明的这些和/或其它方面、特征和优势将变得清楚且更易于理解,在附图中图I是示出了根据传统技术的异质结构场效应晶体管(HFET)的基本构造的示图;图2是根据本发明实施例的HFET的剖视图;图3是根据本发明实施例的肖特基二极管的剖视图;图4是根据本发明实施例的半导体发光器件的剖视图;图5A是根据本发明实施例的在缓冲层生长在基底上之前铝(Al)预处理氮化物半导体的表面的光学图像;图5B是根据本发明实施例的碳化铝硅(AlSixCh)预处理氮化物半导体的表面的光学图像;
图6是根据本发明实施例的在缓冲层生长在基底上之前Al预处理氮化物半导体的表面的X射线衍射分析值的曲线图以及AlSixCh预处理氮化物半导体的表面的X射线衍射分析值的曲线图;图7是根据本发明实施例的AlSixCh预处理氮化物半导体的X射线衍射分析数据(omega_2theta)的曲线图;图8是根据本发明实施例的与整个AlSixCh预处理氮化物半导体的厚度相关的映射数据的曲线图;图9是示出了根据本发明实施例的AlSixCh预处理氮化物半导体的光学图像和显微图像的图。
具体实施例方式现在将参照本发明的实施例进行详细说明,本发明的示例示出在附图中,其中,相同的标号始终表示相同的元件。下面通过参照附图来描述实施例,以解释本发明。在整个说明书中,当描述层、侧、芯片等中的每个形成“在”层、侧、芯片等的“上面”或“下面”时,术语“在…上面”可包括“直接在…上面”和“间接在…上面”,并且术语“在…下面”可包括“直接在…下面”和“间接在…下面”。每个元件的“在…上面”或“在…下面”的标准可根据对应的图来确定。为了便于描述,可夸大图中每个元件的尺寸,并且每个元件的尺寸不表示实际尺寸。图2示出了根据本发明实施例的异质结构场效应晶体管(HFET)IOO的剖视图。图3示出了根据本发明实施例的肖特基二极管200的剖视图。根据本发明实施例的氮化物基半导体器件可应用于HFET100、肖特基二极管200和半导体发光器件300。氮化物基半导体器件可为从常开器件、常闭器件和肖特基二极管中选择的器件,并且可以为包括第一导电半导体层、活性层和第二导电半导体层的半导体发光器件。参照图2至图4,尽管相同的元件执行相同的功能,但是对于每幅图,相同的元件可具有不同的标号,例如,基底110、210和310,碳化铝硅(AlSixCh)预处理层120,220和320,缓冲层130,230和330,氮化镓(GaN)种子层141、142、241、242、341和342,渐变氮化铝镓(AlGaN)层 150,250 和 350,掺杂铝(Al)的 GaN 层 160,260 和 360 以及 AlGaN 层 170、270和370。为了便于描述,将参照图2描述每个元件,并且为了清楚和简洁,在对图3和图4的描述中将省略在前面的描述中已经描述过的相同元件。参照图2,根据实施例的氮化物基半导体器件可包括基底110 MSixCh预处理层120 ;掺杂Al的GaN层160,形成在AlSixC1^x预处理层120上;AlGaN层170,形成在掺杂Al的GaN层160上。氮化物基半导体器件还可包括缓冲层130、GaN种子层141、142和渐变GaN层150。基底110可包括从蓝宝石、硅(Si)、氮化铝(A1N)、碳化硅(SiC)和GaN中选择的材料。即,基底110可为绝缘基底,例如,玻璃基底或蓝宝石基底,可为导电基底,例如,Si、SiC和氧化锌(ZnO)。基底100可为用于生长氮化物的基底,例如,AlN基基底或GaN基基底。AlSixCh预处理层120可消除氮化物半导体层中的应力,该应力是由于基底110 与形成在基底110上的氮化物半导体层之间的晶格常数、膨胀系数等的差异而导致的。因此,在氮化物半导体层中产生的裂纹的存在可被最少化并且可改善氮化物半导体层的表面粗糙度,从而可以提高氮化物基半导体器件的稳定性和性能。AlSixCh预处理层120可被构造为从单床结构、规则的点结构、不规则的点结构和图案结构中选择的结构,并且该结构可不限于此。AlSixCh预处理层120可被构造为各种结构和形状,以使氮化物半导体层中产生的裂纹的存在最少并改善氮化物半导体层的表面粗糙度。缓冲层130可形成在AlSixC^预处理层120上。缓冲层130可包括A1N。缓冲层130可形成为厚度在大约20纳米(nm)至IOOOnm范围内的单晶。缓冲层130与AlSixC^x预处理层120 —起可使基底和氮化物基半导体层之间的晶格常数和膨胀系数的差异最小化,因而可提高氮化物基半导体器件的稳定性和性能。GaN种子层(例如,第一 GaN种子层141和第二 GaN种子层142)可形成在缓冲层130上。GaN种子层可包括第V族元素和第III族元素,以稳定地形成氮化物基半导体层。这里,氮化物半导体层可包括渐变GaN层150、掺杂Al的GaN层160和AlGaN层170。GaN种子层可促进氮化物基半导体层的垂直生长,以提高氮化物基半导体器件的制造效率和氮化物基半导体器件的质量。GaN种子层可调整V/III族比率,所述V/III族比率表示第V族元素与第III族元素的比率。GaN种子层可被构造为包括具有高V/III族比率的第一 GaN种子层141和具有低V/III族比率的第二 GaN种子层142的两层。第一 GaN种子层141可形成在缓冲层130上,并可在高压和高V/III族比率的条件下形成。例如,第一 GaN种子层141可在压力大于或等于300托(Torr)并且V/III族比率大于或等于10000的条件下形成。第二 GaN种子层142可形成在第一 GaN种子层141上,并且可在低压和低V/III族比率的条件下形成。例如,第二 GaN种子层142可在压力小于或等于50ΤΟ1Γ并且V/III族比率小于或等于3000的条件下形成。渐变AlGaN层150可形成在AlSixC^x预处理层120和掺杂Al的GaN层160之间。渐变AlGaN层150中的Al含量可从AlSixC^x预处理层120向掺杂Al的GaN层160逐渐减少。渐变AlGaN层中的Al含量可从大约70%降至大约15%。渐变AlGaN层150可被构造为多层,并且多层中的各自的Al含量可相互不同。例如,渐变AlGaN层150可被构造为包括顺序层叠的第一渐变AlGaN层(未示出)、第二渐变AlGaN层(未示出)和第三渐变AlGaN层(未示出),其中,第一渐变AlGaN层中的Al含量从大约70%减少至大约50%,第二渐变AlGaN层中的Al含量从大约50%减少至大约30%,第三渐变AlGaN层中的Al含量从大约30%减少至大约15%。因此,可形成Al含量向掺杂Al的GaN层160逐渐降低的渐变AlGaN层150,从而形成具有稳定的结构并防止产生裂纹的氮化物半导体层。渐变AlGaN层150的多层可具有适于使氮化物半导体层中产生的裂纹的存在最少化并对氮化物半导体层提供稳定结构的厚度。例如,第一渐变AlGaN层中Al含量为大约70%的AlGaN层可形成为厚度在大约20nm至IOOOnm的范围内,整个第二渐变AlGaN层可形成为厚度在大约20nm至50nm的范围内。掺杂Al的GaN层160可形成在渐变AlGaN层150上。掺杂Al的GaN层160可含有范围为大约O. 1%至O. 9%的Al。期望的是,掺杂Al的GaN层160可含有范围为大约O. 3%至O. 6%的Al。掺杂Al的GaN层160可钝化由Al导致的GaN层中的缺陷Ga空位。因此,GaN层的晶化可通过将生长抑制为二维(2D)或三维(3D)电势而得以改善。 AlGaN层170可形成在掺杂Al的GaN层160上。保护层190可进而形成在AlGaN层170上。保护层190可包括从氮化硅(SiNx)、氧化硅(SiOx)和氧化铝(Al2O3)中选择的材料。保护层190可为钝化薄膜层,可降低AlGaN层表面的不稳定性,并可减少高频操作期间由电流崩塌导致的功率特性的降低。根据本发明一方面的氮化物基半导体器件可应用于各种类型的电子器件。如图2所示,氮化物基半导体器件可应用于常开器件和常闭器件,所述常开器件和常闭器件为包括源极181、栅极182和漏极183的HFET。源极181和漏极183可包括从由铬(Cr)、Al、钽(Ta)、钛(Ti)和金(Au)选择的材料。如图3所示,氮化物基半导体器件可应用于包括欧姆电极281和肖特基电极282的肖特基二极管。欧姆电极281可包括从Cr、Al、Ta、Ti和Au选择的材料。肖特基电极282可包括从镍(Ni)、Au、氧化铜铟(CuInO2)、氧化铟锡(ΙΤ0)、钼(Pt)和它们的合金中选择的材料。上述合金的示例可包括Ni和Au的合金、CuInO2和Au的合金、ITO和Au的合金、Ni、Pt和Au的合金以及Pt和Au的合金,并且这些示例可不限于此。如图4所示,氮化物基半导体器件可应用于包括第一导电半导体层383、活性层384和第二导电半导体层385的半导体发光器件。活性层384可在半导体发光器件中具有量子阱结构,并且半导体发光器件可包括透明电极386、P型电极387和η型电极388。图5Α示出了根据本发明实施例的在缓冲层生长在基底上之前Al预处理氮化物半导体的表面的光学图像,图5Β示出了根据本发明实施例的AlSixCh预处理氮化物半导体的表面的光学图像。图6示出了根据本发明实施例的在缓冲层生长在基底上之前Al预处理氮化物半导体的表面的X射线衍射分析值的曲线图以及AlSixCh预处理氮化物半导体的表面的X射线衍射分析值的曲线图。参照图5Α和图5Β,在缓冲层生长之前,在Al预处理氮化物半导体的表面中产生了精细的裂纹,而AlSixCh预处理氮化物半导体的表面不包括裂纹。参照图6,Al预处理氮化物半导体的X射线衍射分析值指示716弧秒(arcsec),而AlSixCh预处理氮化物半导体的X射线衍射分析值降低至313arcsec。因此,AlSixCVx预处理可消除氮化物半导体的应力,可减少裂纹的存在,并可改善晶化。图7示出了根据本发明实施例的AlSixCh预处理氮化物半导体的X射线衍射分析数据(omega-2theta)。图8示出了根据本发明实施例的与整个AlSixCVx预处理氮化物半导体的厚度相关的映射数据。图9示出了根据本发明实施例的AlSixCh预处理氮化物半导体的光学图像和显微图像。参照图7,示出了与氮化物基半导体器件中的Al含量相关的峰。参照图8和图9,由于氮化物基半导体器件包括AlSixCh预处理层和调整了 V/III族比率的GaN种子层,所以由显微镜观察到,氮化物基半导体器件具有极少的裂纹并具有粗糙度为O. 53nm的优质表面。传统上,氮化物基半导体层生长到预定厚度是具有难度的。然而,根据本发明实施例的氮化物基半导体器件可在基底上包括AlSixCh预处理层,因此,可使氮化物半导体层生长至至少预定厚度且具有极少的裂纹。如图8所示,氮化物基半导体器件可具有极少的裂纹,可具有2. 2 μ m的整体厚度,并且具有偏差为大约I. 6%的相对恒定的厚度。 在根据本发明实施例的氮化物基半导体器件中,当形成在掺杂Al的GaN层上的AlGaN层的Al含量为大约40%时,二维电子气体(2-DEG)层的迁移率为大约1000平方厘米每伏特秒(cm2/Vs)并且载流子面密度可为大约I. 5X1013/cm2。根据本发明实施例的氮化物基半导体器件可包括AlSixCh预处理层,因此可释放由基底和形成在基底上的氮化物半导体层之间的性能(例如,晶格常数和膨胀系数)差异导致的氮化物半导体层中的应力。因此,在氮化物半导体层中产生的裂纹的存在可被最少化,并可改善氮化物半导体层的表面粗糙度,因此,可改善氮化物基半导体器件的稳定性和性倉泛。根据本发明实施例的氮化物基半导体器件可包括Al含量从基底逐渐减少的渐变AlGaN层,因此,可使氮化物半导体层中产生的裂纹的存在最少化,并可形成具有稳定结构的氮化物半导体层。尽管已经示出和描述了本发明的一些实施例,但是本发明不限于描述的实施例。相反,本领域技术人员将理解的是,在不脱离本发明的原理和精神的情况下可对这些实施例做出改变,本发明的范围由权利要求及其等同物限定。
权利要求
1.一种氮化物基半导体器件,所述氮化物基半导体器件包括 基底; AlSixCh预处理层,形成在基底上; 掺杂Al的GaN层,形成在AlSixC^预处理层上; AlGaN层,形成在掺杂Al的GaN层上。
2.根据权利要求I所述的氮化物基半导体器件,其中,AlSixCh预处理层被构造为从由单床结构、规则点结构、不规则点结构和图案结构组成的组中选择的结构。
3.根据权利要求I所述的氮化物基半导体器件,所述氮化物基半导体器件还包括 缓冲层,形成在AlSixCh预处理层上, 其中,缓冲层包括A1N。
4.根据权利要求I所述的氮化物基半导体器件,所述氮化物基半导体器件还包括 GaN种子层,形成在AlSixCh预处理层和掺杂Al的GaN层之间,其中,GaN种子层的V/III族比率进行了调整,V/III族比率表示第V族元素与第III族元素的比率。
5.根据权利要求4所述的氮化物基半导体器件,其中,GaN种子层包括 第一 GaN种子层,第一 GaN种子层的V/III族比率相对高; 第二 GaN种子层,第二 GaN种子层的V/III族比率相对低。
6.根据权利要求I所述的氮化物基半导体器件,所述氮化物基半导体器件还包括 渐变AlGaN层,形成在AlSixCh预处理层和掺杂Al的GaN层之间, 其中,渐变AlGaN层的Al含量从AlSixCh预处理层向掺杂Al的GaN层逐渐降低。
7.根据权利要求6所述的氮化物基半导体器件,其中,渐变AlGaN层中的Al含量从70wt% 降低至 15wt%。
8.根据权利要求I所述的氮化物基半导体器件,其中,掺杂Al的GaN层的Al含量在O.lwt%至O. 9wt%的范围内。
9.根据权利要求I所述的氮化物基半导体器件,所述氮化物基半导体器件还包括 保护层,形成在AlGaN层上, 其中,保护层包括从由SiNx、SiOx和Al2O3组成的组中选择的材料。
10.根据权利要求I所述的氮化物基半导体器件,其中,基底包括从由蓝宝石、硅、A1N、SiC和GaN组成的组中选择的材料。
11.根据权利要求I所述的氮化物基半导体器件,其中,所述氮化物基半导体器件是从由常开器件、常闭器件和肖特基二极管组成的组中选择的器件。
12.根据权利要求11所述的氮化物基半导体器件,其中,肖特基二极管中的欧姆电极包括从由Cr、Al、Ta、Ti和Au组成的组中选择的材料。
13.根据权利要求11所述的氮化物基半导体器件,其中,肖特基二极管中的肖特基电极包括从由Ni、Au、CuInO2、氧化铟锡、Pt及它们的合金组成的组中选择的材料。
14.根据权利要求11所述的氮化物基半导体器件,其中,所述氮化物基半导体器件包括第一导电半导体层、活性层和第二导电半导体层。
全文摘要
本发明提供了一种氮化物基半导体器件。该氮化物基半导体器件包括基底;AlSixC1-x预处理层,形成在基底上;掺杂铝的GaN层,形成在AlSixC1-x预处理层上;AlGaN层,形成在掺杂铝的GaN层上。该氮化物基半导体器件可包括AlSixC1-x预处理层,因此可容易消除由基底和形成在基底上的氮化物半导体层之间的性能(例如,晶格常数和膨胀系数)的差异导致的氮化物半导体层中的应力。因此,在氮化物半导体层中产生的裂纹的存在可被最少化并且可改善氮化物半导体层的表面粗糙度,因此可改善氮化物基半导体器件的稳定性和性能。氮化物基器件可包括Al含量从基底逐渐降低的渐变AlGaN层,因此,在氮化物半导体层中产生的裂纹的存在可被最少化并且可形成具有稳定结构的氮化物半导体层。
文档编号H01L33/32GK102881718SQ20121024184
公开日2013年1月16日 申请日期2012年7月12日 优先权日2011年7月12日
发明者李哉勋 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1